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C Jassical equilibrium thermodynamics is unique among 
the core courses in chemical engineering. It is un
commonly pervasive, for it addresses some of the 

deepest questions relating to the nature of the physical world 
and it lurks in the background of all disciplines (indeed, 
what but a departure from equilibrium drives transport, what 
but an approach toward chemical equilibrium is kinetics?). 
Yet it is also so plainly and tangibly applicable to real 
systems that, with a few well-placed comments, a teacher 
finds it quite unnecessary to apologize for any derivation, no 
matter how long, for there is always a need to know to act as 
a light at the end of the tunnel. 

Most people either Jove or hate thermodynamics; it seems 
to evoke such strong emotions that there is little room for a 
middle ground. One sees people indifferent to ( or mildly 
interested in or irritated by) transport, kinetics, control or 
design-but not so with thermo. And unlike other subjects, 
it seems not to be learned per se, but rather to be acquired by 
acclimation through repeated, deepening exposure in a se
quence of courses that ostensibly cover the same material. 

A teacher of thermodynamics makes a few inevitable ob
servations. To wit: why is it that the student who professes 
most strongly to have studied for the first hour exam (and, in 
particular, claims to understand fully the difference between 
functions of state and path-dependent quantities) proudly 
recites the first law as U = LlQ - Ll W? 

(Oh no!) 

And why is it that at some time in every single semester 
somebody uses the ideal gas law to estimate the density of 
liquid water? 

(NO! NO! NO!) 

Actually, the purpose of these lines is not to belabor com-
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mon experiences but rather to record my acquaintance with 
two individuals who have profoundly affected the way in 
which I teach undergraduate thermodynamics, and the ap
plied subject that rests so heavily upon it, separations. The 
first is a mysterious writer of urgent letters that always seem 
to arrive just before class and make me drop whatever I was 
"actually going to cover" in favor of working out his practi
cal problem (which turns out to have considerable pedagogi
cal value). Over time he has come to exude a real presence, 
despite the fact that he has never actually been seen by any 
student on or off campus. Rumor has it that he is quite 
incompetent (hence the need for all the help) and drinks 
copious amounts of organic liquids, apparently without ill 
effect. His name is Elroy Hutch. 

The second is far more capable than Elroy, but more 
elusive. He is Virial Man, caped crusader against inaccura
cies in physical property predictions. 
Faster than a speeding fugacity co
efficient! Able to leap whole phase 
diagrams in a single bound! He 
solves really hard thermo prob
lems without a second's thought. 
Unfortunately, his benevo
lent duties frequently re
quire his presence else-
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where, so he is rarely available. 

ENERGY 

I had the privilege of dining with Elroy on March 3, 1990, 
and on that day he made a statement that puzzled me. He 
said, "the internal energy of gases depends only upon tem
perature." I corrected him by adding the qualification, ideal 
gases, but he was quite insistent and dismissed my protesta
tions. Our conversation then turned to other things, but I was 
disturbed by his misconception, and slowly I began to real
ize why he'd said what he said. 

In most courses the ideal gas is introduced immediately 
because of its key role as the simplest working fluid and a 
realizable limiting case of real gas behavior. Textbooks ad
dress all sorts of processes with ideal gases, which readily 
present themselves, and the first law is easy to apply because 
dU is indeed CvdT. Soon it's off to the Carnot cycle, en
tropy, and the Maxwell relation leading to the identity 

( :~ t =T(:~ t -P {I) 

that finally allows one to ascertain the volumetric depen
dence of internal energy for real gases. But by then all the 
tough first-law problems with pistons and cylinders are for
gotten, and they often go unrevisited because time is short 
and one must move on to the Gibbs energy and phase equi
libria and mixtures and Raoult's law. So students can easily 
go on without being drilled in solving first-law problems 
with real gases using equations of state, and their first im
pulse is to write dU = CvdT always. 

By next morning I had come to the conclusion that I would 
have to change things. So I called Virial Man (who, thank
fully, was available, albeit brief! y for he soon had to be off to 
do battle against the Redlich-Kwong Invaders in the North) . 
He thought for a moment and then responded with character
istic brevity and insight: Why not give students the identity, 
Eq. (1), at the start, promise them you will derive it later, 
quickly discuss the reversible and irreversible, isothermal 
and adiabatic processes with ideal gases (which they have 
inevitably seen before), and then concentrate on real gases? 
Virial Man suggested the following exercise. 

• PROBLEM • One mol of ethylene gas is confined 
within an insulated, frictionless piston-and-cylinder assem
bly at 300K and 60 bar by a suitable weight in vacuo (Figure 
1). If half the weight is suddenly removed so that the gas 
undergoes an irreversible adiabatic expansion, what will be 
the gas temperature when it finally settles down to equilib
rium again? Data: the ideal gas heat capacity of ethylene is 
given byl11 

C~(T)= A+BT+CT2 +DT3 

with 
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A 

B 

38.06 bar cm3/mol K 

1.566 bar cm3/mol K2 

C - 8.348 x IQ·4 bar cm3/mol K3 

D 1.755 x I 0·7 bar cm3/mol K4 

and its PVT behavior may be assumed to be described by 
the Peng-Robinsonl21 equation 

P=E._- aa(Tr) , a(T )=[l+K(l-Tl /2)]2 
Y-b V 2 +2bV-b2 r r 

with 

a 0.45724 R2T/ 1Pc = 5.001 x 106 bar cm6/mol2 

b 0.07780 RTc!Pc = 36.24 cm3/mol 

K = 0.37464 + l.54226ro - 0.26992ro2 = 0.5098* 

Elroy's (ideal gas) solution • Assuming the piston to have 
negligible mass, the pressure has dropped by half in the final 
equilibrium state. The initial and final molar volumes are 
given by 

Note that the final temperature is unknown in the second 
equation. Assuming the heat capacity to be a constant, ap
proximated by its value at 300K (Cv at 300 K = 354.3 bar 
cm3/mol K), application of the first law gives 

ethylene 
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Figure 1. Piston-and-cylinder assembly for carrying 
out an irreversible adiabatic expansion. 

* Critical constants and acentric factor T, = 282.4K, P, = 50.4 bar, 
w= 0.089, from Reid, et alJl/ 
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Cv(Tr -T;) = Q- W = 0-Pr(Yr - Y;) 

in which Pr(V r V;) represents the work done by the gas in lifting the 
single weight remaining on the piston. It follows that 

Cv+R(Pr!P) 
T = ' T = 271.5 K 

r Cv +R ' 

Virial Man's solution • The initial and final molar volumes are 
given by 

RT aa(Tr;) 
60 bar= P; = --'- - 2 2 

Y; -b Y; +2bY; -b 
(2) 

RT aa(T,r) 
30 bar= Pr = __ r_ -

2 2 Yr-b Yr +2bYr-b 
(3) 

Again , the final temperature, Tr, is unknown in Eq. (3). 

Next, in applying the first law it will be necessary to ascertain the functional 
dependence of the internal energy U upon temperature T and molar volume V. By 
line integration from an arbitrary reference state at temperature T0 and effectively 
infinite molar volume, 

U(T,Y)=U o + J c ~ (T' )ctT' + J(~~) (T,Y')ctY' 

T0 T 

B 2 C 3 D 4 
=(A-R)T+-T +-T +-T 

2 3 4 

a , [y + (1- ..fi)bl 
+~[a(T,)-T,a (T,)] en ( ..fi) + canst. 

2-v 2b Y+ 1+ 2 b 

Substitution into the first-law statement 

U(Tr , Yr )-U(T; , Y;)= Q-W =0-Pr(Yr -Y;) 

gives the constraint 

Equations (2), (3), and (4) constitute three nonlinear equations in the three un-

A Word About the Figures ... 

knowns V;, Yr, and Tr. (Actually, Eq. 
2 can be solved first for V; indepen
dently of Eqs. 3 and 4 .) Solution by 
Newton's method (starting from Elroy's 
values as initial guesses) leads to the 
results 

V; = 210.l cm 3/mol 

V r = 367 .2 cm3/mol 

Tr = 251.1 K 

Work must be done to separate real 
molecules (which attract each other 
under these conditions), and the addi
tional energy to do this work comes at 
the expense of a greater drop in tem
perature than would be observed with 
an ideal gas. 

Examples where the temperature 
drop (and molar volume, for that mat
ter) are off by fifty percent or more do 
wonders to convince students that the 
ideal gas law really wouldn't cut it in 
modeling supercritical extraction. If 
students are furnished with a nonlinear 
equation solver, they usually become 
quite agreeable to solving such prob
lems (although I find surprising their 
initial reluctance to use the computer). 

There are cases where the manuscript review process is a wholly rewarding experience, and this paper represents one of them, owing particularly to the 
input of Professor Kenneth R. Jolls, who served as one of the referees. In addition to suggesting numerous improvements now incorporated in the text, he 
kindly offered to make the figures with his unique expertise in thermodynamics and its graphical representation. This is embodied, in part, in his Equations 
of State (EOS) software [see K.R. Jolls, "Understanding Thermodynamics Through Interactive Computer Graphics," Chem. Eng. Prog., 85, 64 ( 1989)]. It 
is a pleasure to acknowledge Professor Jolls as the creator of Figures 2-5 as they appear here, far better than the author could have made them. They are, in 
fact, quantitative representations of the various processes discussed based on the Peng-Robinson equation, and not mere qualitative sketches. 
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Figure 2. Two reversible paths between the initial state (300K, 60 bar) and the final 
state (251 .1K, 30 bar). One path consists of a reversible adiabatic expansion 

followed by an isochoric heating step. Th e other consists of an isochoric 
cooling step followed by a reversible isothermal expansion. 
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Figure 3. Final condition of the ethylene assuming the existence of only vapor (which 
turns out to be supersaturated vapor with molar volume 367.2 cm 3/mol at 251.1 K, 

indicated by the small square box) or both vapor and liquid (with respective 
molar volumes 447.9 cm3/mol and 72.3 cm3/mol at 259.9 K). 
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ENTROPY 

For thorough practice in applying the first 
law and manipulating real gas properties, I 
have found it to be highly beneficial for 
students to calculate the line integral 

between specified initial and final states by 
various reversible paths (e.g., the two paths 
in Figure 2). In the process, most students 
come to appreciate the following facts: 

1. For a real gas, a reversible adiabatic 
expansion is governed by the differen
tial equation 

which generally must be solved numeri
cally. The path PVY = constant is only a 
very special case. (Supplying a Runge
Kutta routine helps with the solution.) 
Of course, LlS = 0 for the reversible 
adiabatic expansion marked in Figure 2, 
but it is necessary to perform a calcula
tion to determine the temperature 245.9K 
at the start of the subsequent isochoric 
heating step for this path. 

2. For a reversible isothermal expansion, 
Q is generally not equal to W but rather 
is given by 

Vz 

Q = T J (!~ l dV 
VJ 

After a while the profound truth is driven 
home, by direct detailed calculation, that 
J dQ/f is invariably independent of path for 
reversible processes carried out with any 
working fluid (not just ideal gases). The 
concept of entropy becomes downright pal
atable. Virial Man informs me that LlS for 
the irreversible expansion considered above 
comes out to be 6.537 bar cm3/mol K (by 
either reversible path marked with arrows 
in Figure 2). Unfortunately, Elroy doesn't 
believe in entropy and his remarks concern
ing LlS are quite unprintable. 

PHASE EQUILIBRIUM 

The astute student will observe (and this 
sort of thing has happened!) that the vapor 
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[Elroy's letters] always seem to arrive just before class and make me drop whatever I was 
"actually going to cover" in favor of working out his practical problem (which 

turns out to have considerable pedagogical value). Over time he has come 
to exude a real presence, despite the fact that he has never 

actually been seen by any student on or off campus. 

pressure of ethylene at the final tem
perature in our example is lower than 
the prescribed final pressure of 30 
bar (or, equivalently, that the final 

temperature is lower than the boiling 
point of ethylene at 30 bar). This cir

cumstance furnishes an excellent opportunity to discuss meta
stable states (for the outcome of the expansion as predicted 
above is, in fact, a supersaturated vapor), and the fact that 
alternatives to a single phase can exist (see Figure 3). 

In the preceding problem we really ought to allow for the 
presence of two phases in equilibrium at the pressure Pr= 30 
bar. I mentioned this to Elroy, but his mind must have 
been on other things, for he responded only with the inexpli
cable statement, "two pints toluene, no ice," before rush
ing off. Predictably, the point was not overlooked by 
Virial Man, and it is worth considering somewhat later 
in the semester. 

Continuation of Virial Man's solution • Allowing for 
the existence of both liquid and vapor, distinguished by f 

and v subscripts, the molar volumes of the final coexisting 
phases must satisfy 

RT aa(Trr) 
30 bar - Pr - __ r_ - ---=---'-----'-~ 

- -Yv- b Y; +2bYv-b2 
(5) 

RT aa(Trr) 
30 bar= Pr = __ r_ - ---=-~~---=-

Ye - b Y[ +2bYe-b2 
(6) 

The condition of equality of chemical potential (molar Gibbs 
energy) leads to the additional constraint 

-RTfn[Yv-b] 
Ye-b 

+ aa(Trr) jen[vv +(1-✓2)b]-en[Ye +(1-✓2)bll 
2✓2b Yv +(1+✓2)b Ye +(1+✓2)b 

+30 bar(Yv - Ye)=0 (7) 

which is an algebraic statement of the Maxwell criterion. 
(This criterion will be discussed further below.) Equations 
(5) through (7) constitute three nonlinear equations in the 
three unknowns Tr, Vv, and Ve, and one finds 

Tr= 259.9 K 
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Vv = 447.9 cm3/mol 

Ve= 72.3 cm3/mol 

The first law enters in ascertaining how the ethylene is 
distributed between liquid and vapor phases according to the 
following equation for the fraction vapor q: 

qU(Tr, Yv )+ (t-q)u(Tr , Ye)- u(T; 'Y;) 

= -3Q bar(qYv + (t-q)Ye - Y;) 

By direct computation, 

u(T;,Y;)=1.92xl04 barcm3 /mol 

U(Tr, Yv) =2.05x !04 barcm 3 /mo! 

U(Tr, Ye) =-4.06x !04 barcm 3 /mol 

(8) 

based on the reference value constant = 0 (i.e., U0 = 0, 
T0 = 0) in the formula for U(T,V). With these numbers, one 
finds q = 0.88. Needless to say, had the original problem not 
led to a final supersaturated vapor, the solution of Eq. (8) 
would not satisfy the requirement O < q < 1. 

THE MAXWELL CRITERION 

The reason I tolerate Elroy's antics and excursions beyond 
the realm of rationality is that he has rare moments of lucid-

p 

perturbation 
vapor spinodal point 

V 

Figure 4. Perturbation of an isotherm in a manner that 
does not affect any measurable PVT properties. The 

perturbation should not have any effect, but according to 
the Maxwell equal-area construction, it changes the 

calculated vapor pressure. 
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ity in which he makes remarkably insightful observations. A 
case in point is an incident that occurred in late August of 
1992 when Elroy woke me at 2:30 AM, pounding on my 
front door, and began a fit of unintelligible screaming at the 
top of his lungs that persisted for nearly four hours without 
interruption while I watched and wrung my hands. The 
blaring stopped only after he turned his head skyward, bel
lowed the words that I shall never forget, "Maxwell is a 
reptile!!!" and then toppled over backwards, landing with 
a thud, an exhausted silent heap. When Elroy came to, 
his mood was one of resignation. He withdrew a tattered 
sketch from his pocket (reproduced here as Figure 4) and 
asked quietly, "What do I do with that?" I stared at the 
figure for several minutes, and then I saw what was trou
bling Elroy so deeply. 

According to standard practice, all thermodynamic func
tions (heat capacity Cv, Helmholtz energy A, etc.) are de
rived from the PVT equation of state together with ideal gas 
heat capacities by well-established integration procedures, 
and the formulas obtained are applied throughout the phase 
space. Thus, for instance, a liquid heat capacity at tempera
ture T and molar volume Ve is computed from the formula 

Vt 2 

Cv(T,Ye)=C~(T)+T J a ~(T,V)dV 
aT 

(9) 

The trouble with Eq. (9) is that it tacitly makes use of the 
equation of state in the unstable interval between the spinodal 
points where it is devoid of significance. Adding a perturba
tion to the isotherms that is negligible outside the unstable 
region (Figure 4) should not affect the values of any measur
able thermodynamic properties, but according to Eq. (9) it 
does. Similarly, in using Maxwell 's equal-area construction, 
the calculated vapor pressure would be materially affected 
by the perturbation indicated in Figure 4. 

p 

V 

Figure 5. Nonisothermal path between liquid and 
vapor states both at the same temperature T. 
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These types of concerns upon which Elroy stumbled 
were in fact enunciated many years ago in a short but 
profound article by G.D. KahJl3l which unfortunately has 
gone almost unnoticed, being cited only three times since 
its publication in contexts removed from engineering VLE 
calculations. The conclusion to be drawn from Kahl's work 
is that calculations of thermodynamic functions must in
volve paths restricted to stable portions of the phase space. 
In particular, liquid properties at subcritical temperatures 
should be related to ideal gas properties not by isothermal 
integration but rather by using nonisothermal paths that go 
around the two-phase region (Figure 5). Recent work 
by the authorl4l has shown that such a nonisothermal for
malism offers distinct practical advantages in modeling 
phase equilibria. In particular, it furnishes an extra param
eter for fitting vapor pressure data and enables the incorpo
ration of liquid heat capacity data into algebraic represen
tations of the free energy. 

From the pedagogical perspective, the usual statement 
that all thermodynamic properties can be derived from (i) 
the ideal gas heat capacity and (ii) an equation of state, 
needs to be amended. One must also be in possession of 
(iii) liquid heat capacity data at subcritical temperatures. 
Students should be made suspicious of isothermal integra
tion through the unstable region and be exposed to alterna
tives to this questionable procedure. They can derive con
siderable practice in the logical construction of 
nonisothermal computational paths between given initial 
and final states if they are forbidden to tread between the 
spinodal points. 

CONCLUDING REMARKS 

The exercise considered here, spawned by Elroy's mis
conception and brought to a satisfactory resolution with 
Virial Man's assistance, shows that a simple-looking first
law problem can teach a lot about the calculation of ther
modynamic properties with equations of state. There is 
value in revisiting a pithy example several times in a se
mester from increasingly advanced perspectives (e.g. , first 
law, second law, phase equilibrium), because this approach 
lends continuity and saves the time that would be spent in 
setting up several unrelated problems from scratch. Having 
friends to help (or hinder) you makes the teaching and 
learning process fun . 
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