
.t3_..ij11111§...._c_o_m__:_p_u_t_e_r._s_i_n_e_d_u_c_a_t,_·o_n __)

-CESL-
The Chemical Engineering Simulation Laboratory

D AVID A. KoFKE, MARc R. GRosso, SREENIVAS GoLLAPum, CARL R.F. LUND

State University of New York at Buffalo • Buffalo, NY 14260-4200

Engineering and science research today are conducted
within an emerging paradigm in which theory, ex­
periment, and computer simulation play distinct but

equally vital roles . Progress is often made in leapfrog fash­
ion as each leg surmounts hurdles that have stalled the other
two. Thus application of one technique never diminishes the
role of the others, but rather enhances them.

The situation in the realm of science and engineering
education is somewhat less advanced. Undergraduate in­
struction for decades has relied on a two-pronged approach
of classroom and laboratory experiences. Classroom lectures
convey concepts, while laboratory provides the students with
physical experience-it exposes them to valves, gauges, flow­
ing fluids , and generally, real-life operating equipment. Labo­
ratory also teaches the students how to perform and analyze
experiments, and well-designed laboratory exercises teach
them how to plan experiments as well. Laboratories teach
the limits of experiments, analysis of error, the importance
of significant figures , and application of the models pre­
sented in the classroom.

Classroom and laboratory experiences are each irreplacable

David A Kofke is Associate Professor of Chemical Engineering at SUNY
Buffalo. He earned his PhD in chemical engineering from the University of
Pennsylvania and his BSChE from Carnegie-Mellon University. His re­
search interests are in molecular thermodynamics.

Marc R. Grosso served as manager of the CESL project. He earned his
PhD in Learning and Instruction from SUNY Buffalo in 1994. He also
holds an MSE in Computer and Information Science from the University of
Pennsylvania, a BS in Information Systems Management from Buffalo
State College, and BSEd and MA degrees in Secondary Education. His
professional interests are in the application of computing in instruction.

Sreenivas Gollapudi holds a MS in chemical engineering from SUNY
Buffalo and is presently pursuing a MS in Computer Science. His BS
degree in chemical engineering is from /IT Bombay. His research inter­
ests are parallel systems and multimedia.

Carl R.F. Lund is Associate Professor of Chemical Engineering at SUNY
Buffalo. He earned his PhD in chemical engineering from the University of
Wisconsin and his BSChE from Purdue University. His research interests
are in catalysis and reaction engineering.

© Copyright ChE Diuision of ABEE 1996

114

components of undergraduate engineering education. Nev­
ertheless, they have shortcomings:

• Space, safety, cost, and time considerations restrict the choice
of laboratories

• Class sizes often preclude direct participation by students

• Laboratories must be maintained

• Class demonstrations are operated by the instructor

• It is difficult to make laboratory experiences substantially
different for each student

• Lecture examples and homework often sample only a "small
corner" of parameter space

• Laboratories are difficult to disseminate; the mere description
of a well-designed lab does not suffice for someone else to
implement it.

A more fundamental drawback of the classroom and labo­
ratory is their uncertain ability to instill physical intuition (as
opposed to physical experience, which laboratory does well).
Rarely is the laboratory a truly interactive exercise. The
student conducts a series of pre-planned experiments and
heads home to perform the analysis. This experience does
not leave the students with an intuitive feel for the nature
of the process. Likewise, classroom instruction is inter­
active in the sense of instructor-student, but it is not in
the sense of student-process; classroom instruction is
akin to teaching bicycling through the use of force and
torque balances.

Shortcomings of the classroom and the laboratory can be
alleviated through proper use of computer-based instruction.
In chemical engineering, substantial progress has recently
been made in this direction. A group at the University of
Michigan11 1 has produced a set of tutorial modules that ad­
dresses topics across the chemical engineering curriculum.
This we view as a valuable tool directed at the shortcomings
of the classroom. Software that focuses on the laboratory
also exists. In particular, a group at Purdue Universityl2l has
created a suite of modules that lets students perform pilot-

Chemical Engineering Education

scale laboratories on the computer. Additionally, a host of
packages has been developed for more specialized topics
in chemical engineering, such as process control. Indus­
trial simulation packages (e.g., Hysim, Aspen) are used
routinely and effectively, although this software has not
been developed with an eye toward pedagogy. We feel
that the potential of simulation as a tool for education is
largely unfulfilled.

Indeed, the recent literature in engineering and science
education journals has highlighted the tremendous potential
of computers as a pedagogical tool , while at the same time
lamenting the degree to which this potential is not being met.
Seiderl31 (prior to the efforts at Michigan and Purdue) noted
that in chemical engineering, instructional computing has
kept pace with the profession only in the areas of process
design and control. Many authorsl3-61 have noted two ob­
stacles to the complete integration of computers within
the engineering curriculum: the absence of powerful but
inexpensive computers with strong graphics capabilities
and the high cost (in terms of faculty time) of software
development. The steady improvement of computing hard­
ware has made the former a problem no longer. The latter
obstacle is our target.

WHAT IS CESL?

At SUNY Buffalo we have developed a detailed plan and
completed early development of software that enables edu­
cation via simulation; we call our package CESL (pronounced
"Cecil"). Seven department faculty have been active on this
project (these include, in addition to two of the authors of
thi s report , Scott Diamond , Johannes Nitsche, T.J .
Mountziaris, Tom Weber, and Mike Ryan). CESL is de­
signed to perform three functions:

• It is an authoring tool-CESL provides instructors with
the ability to construct simulations with relative ease.

• It is an environment for conducting simulations-CESL
permits the student to explore a process with a minimum
of unnecessary effort.

• It is an instruction and class management tool-CESL
allows the instructor to monitor, guide, record, and
sometimes restrict the student's actions.

While all these features are inherent in its design, to date
CESL has been developed only to a level that has permitted
three prototype simulations to be implemented. In particular,
many of the capabilities related to classroom use are de­
signed but not yet coded.

SIMULATION

Once one considers simulation as part of the educational
paradigm, one begins to realize how naturally and substan­
tially it complements the laboratory and classroom experi­
ences. As a simulator, CESL is much more than a simulated
laboratory; it does more than just port the traditional lab to

Spring 1996

Many authorsf3-5l have noted two obstacles to the
complete integration of computers within the

engineering curriculum: the absence of powerful
but inexpensive computers with strong graphics

capabilities and the high cost (in terms of faculty
time) of software development. The steady
improvement of computing hardware has

made the former a problem no longer.
The latter obstacle is our target.

the computer (although it can be used in that way too). There
are obvious features such as time compression or expansion,
a unique laboratory for each student, etc., enabled by simula­
tion. But beyond this are more the pedagogical features of

• Random events can be programmed to occur, to which the
student must respond appropriately; less dramatic but just as
useful, equipment can be programmed to "age" as it is used.

• Students can be quizzed in a number of ways, and their re­
sponses can be recorded; this can occur before, during, or
after the simulation, and subsequent operation of the simula­
tion can be based on their petformance (e.g. , the student
cannot begin until satisfactorily completing a pretest).

• Simulations can be conducted intermittently over several days,
with the student being given a fixed period of time to return to
the simulation; this time can be used by the student to reflect
on subsequent actions.

• Access to a simulation can be restricted; likewise, the student
may be given a fixed number of practice runs before conduct­
ing one or more runs for grading.

No doubt many more novel features can be conceived. Our
goal in developing CESL is to enable the simulation author
to program and implement these features and the instructor
to use them.

Clearly, there is great potential for diversity in design of
simulations. It is helpful then to have an organizing principle
when considering the options. We have identified the fol­
lowing four categories of simulation:

La,boratory • The student is presented with a piece of
(virtual) equipment, or an entire process, and he or she
conducts "experiments" on it to characterize its opera­
tion. This simulation is meant to mimic as closely as
possible an actual laboratory experience; it is the mere
simulated laboratory.

Steady-state simulation • The student must choose
conditions that optimize the operation of some equip­
ment when run at steady state. The parameters under
which the simulation proceeds vary through the course
of the experience, building an intuitive sense of cause­
and-effect. The student is given a period of time
(ranging from minutes to days, per simulation design) to
reflect on each action.

115

Unsteady-state simulation • The students operate equip­
ment in "real" time (which may be compressed or
expanded time, if needed). They must respond to regular
or random changes in process operating conditions,
relying mainly on an acquired intuitive "feel" for the
equipment' s operation. Many actions are demanded of
the student, each by itself being of small consequence,
but together adding up to success or failure (perhaps
catastrophic) in operating the equipment.

Design • The student is given equipment, or a budget with
which to "purchase" equipment, and must assemble,
test, and operate a process that is in some sense optimal.

Presently, only the first three categories of simulation can
be constructed with CESL, and we have developed a proto­
type module for each: a simple tank-draining Laboratory; a
pump-sizing steady-state module; and an unsteady-state con­
tinuous stirred-tank reactor (CSTR) module. We will de­
scribe the last of these prototypes.

THE PROTOTYPE CSTR MODULE

The display for the prototype CSTR module is presented
in Figure l (the actual display is in color). Series-parallel
reactions take place within the reactor:

A+X • B+Y

B+X • C+Y

The reactions are exothermic
and the reactor is not isother­
mal. Reactant X is presumed to
be a gas that dissolves very rap­
idly in the liquid-phase reaction
medium, so that the dissolved
concentration of X is always
proportional to its feed partial
pressure (i.e., Henry's law is
obeyed). Normally, the supply
pressure of Xis essentially con­
stant (though there may be small
fluctuations). The other reactant,
A, is supplied from three tanks:
one containing A in relatively
high concentration, one contain­
ing A in "medium" concentra­
tion, and one containing A in
"low" concentration. Deliveries
are made at random times to
replenish the three tanks.

must keep the reactor temperature under control. The stu­
dents can manipulate the flow rate leaving each tank, the
feed pressure of X (which must be less than or equal to the
supply pressure), the flow of steam to the reactant pre­
heater, and the flow of coolant to a coil within the reactor. A
reactor quench can be used in an emergency if the student
needs it. As already noted, the simulation will provide ran­
dom deliveries to the feed tanks. The concentration and
temperature in the tanks may fluctuate slightly due to these
deliveries and seasonal conditions. Other potential problems
that the simulation may invoke include a reduction in or loss
of steam pressure for the pre-heater, a reduction in or Joss of
supply pressure of reactant X, a loss of cooling water flow
or increase in cooling water temperature, and a gradual
decrease in the heat transfer coefficients for the two
exchangers. Because the reactions are exothermic, the
student will need to exercise care whenever the feed
concentration of reactant is increased or a thermal run­
away may occur. Similarly, a large decrease in feed con­
centration may result in a significant temperature drop
and thereby a loss of conversion.

The module is designed to develop within the students an
intuitive feel for how conversion, yield, selectivity, and out­
let temperature (call them response variables) are affected
by changes in operating variables (feed composition, feed
temperature, feed flow rate, and heat exchange) for series­
parallel reaction networks. There are several stages or levels

The students must operate the
system attempting to maximize
the yield of the intermediate
product, B. At the same time,
they must prevent any of the
tanks from overflowing and

Figure 1. Display presented to student while operating CSTR prototype
module. The actual display is in color.

116 Chemical Engineering Education

--- - - - -

of attaining such an intuition. The module allows the student
to progress through these levels.

At the most elementary level, the student intuitively knows
which operating variables to change and whether to increase
or decrease them, in order to effect a specified change in one
of the response variables. Often, a desired change can be
brought about by manipulation of more than one variable. At
the next level of intuition, the student knows which of the
operating variables will be most effective in bringing about
the desired response (i.e., he or she knows which operating
variable will cause the least change in the other response
variables). At a yet higher level, the student knows how all
the responses will change (at least direction and qualitative
magnitude) when a given operating variable is changed.

At a still higher level of understanding, the student can
explain why the system responds as it does to a given change
in operating variables. Here the student should be able to
formulate the explanation lucidly without the use of equa­
tions and mathematics. Finally, the ultimate objective of the
module is that the student knows how all the above would
differ if other parameters of the reactor were changed (e.g.,
if the reaction was endothermic instead of exothermic, if the
kinetic order of one or the other of the reactions increased or
decreased, etc.).

desired laboratory

simulation
author

SSL
script

OVERVIEW OF CESL DESIGN

A schematic of CESL and its role in the development and
implementation of simulation laboratories is presented in
Figure 2. In the upper-left comer of the figure is the process
to be simulated; perhaps it is too large, dangerous, expen­
sive, etc., to expose to the student. CESL comprises the
elements within the gray-shaded region. The white-on-black
components have not been implemented (or even designed)
in the present version of CESL, but they will be developed as
part of future work.

The si mulation author is responsible for identifying the
appropriate model for the physical system and for program­
ming it using an established language (let us say that this is
done in FORTRAN). We delegate this task to the module
author for several reasons. First, quantitative modeling and
programming form part of the undergraduate and graduate
training of chemical engineers, so an instructor should have
some competence here, at least for sufficiently simple ex­
periments. Second, general and robust process simulators
already exist, so any efforts expended by us in this direction
would be inefficiently placed and thus detract from the im­
portant task of developing the novel features of CESL. Third,
by making the model and simulation code separate from the
core ofCESL, we introduce a large element of flexibility in a

Student

'--- ---1• 0•\, __ ... ,.~1 numerical 1-- ----" 0)::s simulation
~ model author

'-------'

Spring 1996

simulation
author

Figure 2. Schematic of simulation laboratory and CESL's role in implementing it.
11 7

module, and indeed in CESL itself. Instructors may modify
or even replace the modeling code (presumably to im­
prove it) while retaining the general simulation design
and interface. More significant, extension of CESL to
disciplines other than chemical engineering is well fa­
cilitated by this design.

The simulation author is also responsible for creating a
graphical display through which the student interacts with
the modeling code. Our goal has been to make this task as
simple as possible. To this end, we have devised the Simula­
tion Script Language (SSL), a declarative language through
which the module author "equips the simulation" and speci­
fies rules concerning how the equipment may be used and
how it interacts with the numerical modeling code. The
module author prepares the script using any text editor. The
script is parsed by CESL when the student calls for the
laboratory to be loaded into the system, and the "Simulation
Control" element of CESL is thereby programmed with the
laboratory. The Simulation Control element interfaces with
the FORTRAN modeling program (to gather data and make
sure that solution of the numerical model is proceeding
synchronously with the wall clock), the operating system
(e.g., to record data to file), and the CESL interface (through
which the student conducts the simulation).

There are two elements presented in Figure 2 that were not
needed to implement the prototypes but which are important
to the ultimate success of CESL. First is a "pedagogy mod­
ule," which monitors the activity of the student and reports
to the Simulation Control the actions needed to improve the
student 's understanding of the lesson. Second is a script­
writing interface. In simplest form, this interface will enable
the author to prepare the SSL script using mouse-oriented
actions; it will also guide the author in creating modules that
are pedagogically sound. We plan to incorporate these fea­
tures over the coming years.

MODULE WRITING

The SSL is a declarative language comprising a set of
keywords and qualifiers that the module author uses to con­
struct a simulation. Declarations may be categorized into the
following three types:

Object statements declare "variables" and place correspond­
ing graphical elements on the screen; these graphics can
display or allow user-specified changes to the value of the
variable. Simple examples include a temperature gauge or a
valve that may be opened and shut.

Procedure statements declare the numerical routines that
model the system's behavior. Included in these statements is a
specification of the object-declared variables that are passed
to the routine, and when or how often the routine is called.
Routines may be called at fued points in the experiment (e.g.,
immediately after the student initializes the laboratory), at
regular intervals (of 0.1 sec, for example, if the routine is
integrating unsteady equations in time), at random intervals

118

(to cause random events to which the student must respond),
or at the behest of the student (by clicking on an appropriate
graphic button). As programming the routines is completely up
to the module author, they can make anything happen (e.g. , a
pressure loss is programmed by having the routine simply set
the appropriate pressure variable to the newly desired value).

Controls declare restrictions and monitors of student's
actions. The design and implementation of these features is in
an early stage.

There are only two basic conceptual matters that a module
author must grasp to construct a laboratory. The first deals
with how CESL, the student, and the modeling routines
change and communicate values of the laboratory param­
eters (e.g., temperatures, flow rates , status of valves) .
This is done using the "shared memory" concept. The
idea is simple: there is one "official" repository of all
parameter values , and they may be accessed or changed
at any time by CESL, the student, or the modeling rou­
tines. Thus, once the modeling routine has computed a
set of updated values (perhaps by completing a time-step
calculation), it makes a simple call to a library routine
that updates the shared-memory values.

The second conceptual matter concerns how CESL keeps
in sync with the wall clock (an issue only with Laboratory
and Unsteady-state simulations). The SSL script specifies
how often a procedure is to update process variables. After
computing its values, the routine suspends itself (again using
a simple library call), until restarted by CESL (after a period
of, say, 500 msec). When restarted, the values in shared
memory may have been altered (e.g., a valve may have been
shut off) . When the routine next uses such values, it will
produce results that reflect the changes. In particular, while
the routine is suspended, CESL can update the "time vari­
able" using the system clock. Thus the routine can be pro­
grammed to blindly update its variables to whatever time it
reads from shared memory, without any concern about
whether or how that time matches the wall clock.

The simple calls to routines that read and write shared
memory, or suspend subroutine execution, are the only addi­
tions that the FORTRAN-routine author must include to
interact with CESL. Everything else is familiar and standard.

PLANNED FEATURES OF CESL

CESL is a work in progress, and the following features
have been designed in some detail but not yet incorporated
in the software:

• Experimental error may be introduced to an arbitrary extent
and in two ways: the first is what we call "gauge error," and it
describes the simple addition of normally distributed stochas­
tic noise to the values reported to the student; the second is
what we call "fluctuation, " and it involves random perturba­
tions to the process variables themselves. In contrast to gauge
error, fluctuations are propagated through the system. They
may in fact be viewed as part of the model that describes the

Chemical Engineering Education

------ ---- --------- -------

physical behavior.

• Any process variable may be alarmed, with setpoints specified
by the module author or the student, and with notification
made audibly or via a visual indicator. It may prove interest­
ing to observe which variables the students decide to alarm.

• Any process variable may be subject to automatic control
using a PID 'device' that is tuned by the author or the student.

• The variability of the simulations is easily controlled; each
student may be provided with a unique piece of equipment, or
all students may be presented with the same equipment, or
either of a pair of pieces of equipment, etc. Equipment may
also be programmed to 'age,' with its operating characteris­
tics changing in an appropriate way as it get older.

• The instructor may schedule the "availability" of the (virtual)
equipment, restricting its use to, say, a particular one-week
period. Also, the number of practice and grading runs may be
specified, along with separate time periods for each.

• Data output by CESL for analysis by the student may be
presented in any of several pre- or student-defined formats.
The predefined fonnats are chosen to make them suitable for
immediate input to popular graphing and analysis programs.
This specification reflects a general design principle of CESL
to exploit pre-existing software to the fullest extent possible.
We do not wish to re-invent software that already exists and
functions well.

Phillips,rsi Koper,r71 and Wankat and Oreovicz181 each em­
phasize the importance of the team approach to educational
software development. Phillips notes the need for both cur­
riculum and computer specialists on such a team, and Koper
stresses the additional role of the educational technologist.
In addition to the expertise offered by computer science
majors and over half of our department's faculty , we have
recently recruited to the project experts in education technol­
ogy (Prof. Thomas Shuell of our Graduate School of Educa­
tion) and human-computer interfaces (Prof. Valerie Shalin
of our Department of Industrial Engineering). Their impact
will be felt particularly in our subsequent efforts.

An interesting application of CESL concerns the develop­
ment of new modules. We plan to offer to our students, in
the form of an elective Projects course, the opportunity to
develop new modules that could be used for instruction of
subsequent classes. As part of this project, the student will
be given the task of creating a working module. This will
entail the concept for the module, considering carefully the
instructional goal (provided by a faculty advisor), design of
the module, writing of the script, programming the model ,
and testing the product. In thi s manner CESL will provide to
the student a unique experience in pedagogy and design that
simply could not be offered by other means.

DEVELOPMENT PLATFORM

We have chosen to develop our software on a Unix plat­
form. We have been careful to employ development tools for
which there exist industry standards. Thus all of our code is

Spring 1996

written in ANSI-standard FORTRAN and (predominantly)
C. We use the X-windowing system because it is widely
portable and freely available. Because CESL itself interacts
very well with the Unix operating system, we can readily
introduce file-handling and classroom-management features
that will underlie many of CESL's capabilities. This capac­
ity also will facilitate the introduction of pedagogical func­
tions that contribute to the realization of a complete com­
puter-based instructional environment. r9i For example, a
record of student achievement and errors can be designed
and maintained, allowing CESL's activities to be tailored to
the student's progress.

Alternatives to our choice include the use of the C++
programming language and the traditional personal com­
puter platforms. C++ is object-oriented and thus very well
suited to our needs, so we are giving serious consideration to
its eventual use. There is, however, no present ANSI stan­
dard for thi s language, and it is not as widely available or
portable as C. The Macintosh and PC platforms are appeal­
ing because of their wide availability. These platforms are
capable of running Unix and X-windows, so our present
approach does not preclude porting to them.

ACKNOWLEDGMENTS

CESL was developed with the support of a Leadership in
Laboratory Development grant from the National Science
Foundation (DUE-9352500) and from the SUNY Buffalo
School of Engineering. We wish to thank both Mr. Rich
Alberth for very important contributions during CESL's for­
mative stages and Dr. Nitin Ingle, who provided program­
ming assistance to the project. Finally, we thank Sun
Microsystems, Inc., for substantial equipment discounts and
other support, and Mr. Corky Brunskill and his staff for their
many contributions to our efforts.

REFERENCES
1. Fogler, H.S. , and S. Montgomery, "Interactive Computer

Modules for Chemical Engineering Instruction," CACHE
News, 37, 1 (1993)

2. Squires, R.G. , G.V. Reklaitis, N.C. Yeh, J.F. Mosby, I.A.
Karimi, and P .K. Andersen, "Purdue-Industry Computer
Simulation Modules: The Amoco Resid Hydrotreater Pro­
cess," Chem. Eng. Ed., 25, 98 (1991)

3. Seider, W., "Chemical Engineering Instruction and Com­
puting: Are They in Step?" Chem. Eng. Ed., 27, 134 (1988)

4. Shacham, M., and M.B. Cutlip, "Authoring Systems for
Laboratory Experiment Simulators," Computers Educ. , 12,
277 (1988)

5. Phillips, W.A. , "Individual Author Prototyping: Desktop De­
velopment ofCourseware," Computers Educ., 1, 9 (1990)

6. Carnahan, B. , "Computing in Engineering Education: From
There, To Here, To Where?" Chem. Eng. Ed., 25, 218 (1991)

7. Koper, R. , "lnscript: A Courseware Specification Language,"
Computers Educ., 16, 185 (1991)

8. Wankat, P.C., and F.S. Oreovicz, Teaching Engineering,
McGraw-Hill, New York, NY (1993)

9. Wenger, E.L., Artificial Intelligence and Tutoring Systems,
Morgan Kaufmann, Los Altos, CA (1987) 0

119

