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ChE APPLICATIONS 
OF ELLIPTIC INTEGRALS 

PETER w. HART,* JUDE T. SOMMERFELD 
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E lliptic functions and elliptic integrals remain a mys­
tery to most chemical engineers-students, profes­
sors, and practitioners alike. Undoubtedly, this lack 

of familiarity derives from the classical absence of any sig­
nificant general applications of these tools within the prac­
tice of chemical engineering. This situation is slowly chang­
ing, however, with recent developments in the area of fluid 
mechanics, particularly in relation to safety considerations. 
Thus, the purpose of this article .is to present a brief exposi­
tion of the nature and genesis of elliptic functions and inte­
grals, followed by a summary of some of their applications, 
with particular emphasis on chemical engineering problems. 

ORIGIN OF ELLIPTIC FUNCTIONS 

The fundamental elliptic functions actually derive from 
the analytical solutionl'1 to the parabolic partial differential 
equation describing unsteady-state heat conduction in one 
direction (z) through a flat plate n units thick. The initial 
condition on the temperature for this problem is assumed to 
be a Dirac function at the mid plane of the plate ( z = n 12 ). 

The boundary conditions for the spatial variable (at z = O 
and at z = n) may be either of two such conditions com-
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monly invoked: 1) the two face temperatures are maintained 
at a constant value, or 2) the two faces of the plate are 
perfectly insulated, so that no heat transfer occurs at these 
two boundaries. 

The analytical solutions to this problem may then be recast 
in terms of what are known as theta functions. 121 These latter 
are typically written as ei (z), where i = 1, 2, 3,4 and O :c,; z :c,; n . 
The three fundamental elliptic functions are then defined as 
various ratios of theta functions [ei(O), ei(z)] and are denoted 
by sn(u), cn(u), and dn(u). The parameters z and u are related 
as follows: z = u t[ e3(o)]2 . A whole host of new elliptic func­
tions then derive from these three fundamental elliptic func­
tions, e.g., ns(u), cs(u), nc(u), sc(u), dc(u), sd(u), etc., as well as 
a wide variety of mathematical expressions similar to trigo­
nometric identities. Lastly, the various elliptic integrals are 
then defined in terms of these elliptic functions. 

FUNDAMENTAL ELLIPTIC INTEGRALS 

Perhaps a more straightforward manner in which to intro­
duce the subject of elliptic integrals, however, is to describe 
one of the first problems that most likely led to their devel­
opment. Thus, consider an ellipse, with its center at the 
origin of x-y coordinates (as in Figure 1), described by 

x2 y2 
-+-=l 
a2 b2 

(1) 

where the lengths of its semi-major and semi-minor axes are 
given by a and b, respectively. What then is the value of its 
perimeter P (or periphery or circumference)? In the special 
case of a circle with a= b = r, the area (A) and circumference 
(C) are readily computed as nr2 and 2m, respectively. Simi­
larly, the area of an ellipse is readily determined from the 
calculus as nab , but the evaluation of its perimeter (P) is not 
so simple. Specifically, this latter quantity must be obtained 
by integration of the differential length of arc (ds) over the 
entire periphery of the ellipse. 

For this purpose, it is convenient to convert x and yin Eq. 
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(1) to parametric form, e.g., to functions of the angular 
parameter 8 : 

x=asin8 y = bcos8 (2) 

where, as also indicated by Figure 1, e represents the eccen­
tric angle measured from the minor axis b. We recall the 
definition of a differential length of arc as 

ds = ✓(dx)2 + (cty)2 (3) 

and let s here denote the arc length parameter measured 
clockwise along the curve from the end of the minor axis. 
Then, in terms of the angular parameter 8, 

: 
141•--- a 

Figure 1. Sketch of an ellipse for determination of the 
value of its perimeter P. 

TABLE 1 

(4) 

Taking advantage of symmetry, it is clear that the total 
perimeter P of the ellipse is given as four times the perimeter 
of one quadrant, e.g., from e = o to 8 = n 12 . Thus, after 
replacing cos2 8 with ( I - sin 2 8), we have 

rc/ 2 

P = 4a J ✓~l -- -e-2 -si_n_2 -8 d8 (5) 
0 

as the expression for the perimeter of an ellipse. In Eq. (5), 

✓a2 - b2 
e=--- (6) 

a 

and is known as the eccentricity of the ellipse. More com­
monly, this quantity is referred to as the modulus k of the 
integral appearing in Eq. (5), which in turn is known as the 
complete (because of the fixed upper limit of n 12) elliptic 
integral of the second kind, generally denoted as E(k). An 
incomplete elliptic integral of the second kind 

<I> 

E(k,<j>)= f ✓I -k 2 si n 2 8 d8 

0 

(7) 

has a second angular argument <j> and obviously corresponds 
to incomplete integration ( <j> < n 12) about the arc of the first 
quadrant in Figure 1. 

The integral of Eq. (7) is one elliptic integral of three 
fundamental types. It can be shown131 that any integral of the 
form 

I= f R(x,✓X) ctx (8) 

where X is a cubic or quartic in x and R denotes a rational 
function, can, by suitable linear transformations and reduc­
tion formulae, be expressed as the sum of a finite number of 

elementary integrals plus elliptic in­
tegrals of these three fundamental 

Fundamental Elliptic Integrals (of the First, Second, and Third Kinds) types. These types , in both incom­
plete and complete form are summa­
rized in Table 1. Incomplete 

<I> 

2. E(k,<j>) = f ✓ I - k 2 sin 2 8 d8 

0 

<I> 

3. IT (k,n,<J>)= f 7 
0 

( I + n sin 2 8) I - k 2 sin 2 8 

where k = modulus of the elliptic integrals 
<j> amplitude of the elliptic integrals 

Complete 

rc / 2 

E(k) = f ✓~1--k2-s-in_2_8 d8 

0 

n parameter in elliptic integrals of the third kind 
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There exist in the mathematical lit­
erature1451 extensive compilations of 
the transformations necessary to per­
form any integration involving the 
elliptic integrals associated with a 
given problem. Similarly, there are 
numerous handbooks1

6-
81 that tabulate 

numeric values of elliptic integrals 
to aid in the actual computations as­
sociated with such a problem. 

PHYSICAL APPLICATIONS 

Before proceeding on to technical 
applications of elliptic integrals 
closely associated with chemical en-
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gineering practice, we choose to summarize briefly some of 
the earliest physical problems whose solutions incorporate 
elliptic integrals. Most of these are of a mechanical nature.191 

One of the early practical problems involving elliptic inte­
grals pertains to determination of the oscillation period T of 
a pendulum of length L swinging through a circular arc. The 
solution of the ordinary differential equation describing this 
situation yields the expression12·3·91 

T=l K(k) (9) 

where g is the acceleration due to gravity. The modulus k of 
the elliptic integral in Eq. (9) is given by 

k= /h =sin(a/2) f n (10) 

Here, h represents the height of the maximum point to which 
the pendulum swings above its rest point, while a is the 
angular amplitude of the pendulum oscillations ( correspond­
ing to the height of this maximum point h). 

Numerous other applications of elliptic integrals include 
characterization of planetary orbits under forces of attrac­
tion,121 determination of the torque exerted by a mechanical 
brake,191 and calculation of electrical current flow in a con­
ducting plate.'21 And, of course, there is the natural geometric 
extension of computing the surface area of an ellipsoid. The 
general equation for the latter is 

x2 y2 z2 
-+-+-=I 
a2 b2 c2 

(1 1) 

where a > b > c. It can be shown12·31 that the surface area of 
such an ellipsoid in the general case is 

S = 2 nc
2 + !i:a: {[cos

2 u][F(u, k)] + [sin2 u][E(u, k)l} (12) 

wherein the additional parameters u and k are defined as 

l-c2 /a2 = sin2 u (13) 

l-c2 /b2 = k2 sin 2 u (14) 

Simpler formulas (not requiring elliptic integrals) result in 
the special cases of 1) an oblate spheroid, for which a = b 
(and hence k = 1), and 2) a prolate spheroid, for which b = c 
(and hence k = 0). These various expressions for the surface 
areas of ellipsoids lead somewhat into the topic of applica­
tions of elliptic integrals in chemical engineering. Thus, 
from mass transfer studies,1'01 for example, it is known that 
liquid droplets, such as are formed as the dispersed phase in 
liquid-liquid extraction, are often ellipsoidal in shape and 
their area is directly related to the rate of mass transfer. 

CHEMICAL ENGINEERING APPLICATIONS 

Most known applications of elliptic integrals in chemical 
engineering derive from fluid mechanics. A simple such 

216 

application191 which readily comes to mind is determination 
of the hydraulic radius (ratio of flow area to the wetted 
perimeter) for a pipe of elliptical shape, where a value for the 
perimeter of the elliptical cross-section is clearly required. 
Other early applications of elliptic integrals from fluid me­
chanics include derivation of the capillary curve for a fluid 
enclosed between two parallel vertical plates191 and determi­
nation of the complex velocity potential for steady irrota­
tional flow of liquid in two dimensions.'31 

Perhaps one of the more practical early uses of elliptic 
integrals is found in the case of liquid flow across weirs­
traditionally more in the province of civil engineering but, 
with the recent advent of multifarious environmental con­
cerns, often also employed by chemical engineers as mea­
suring tools. Thus, classical civil engineering texts111 ·121 present 
flow formulas for the more popular types of weirs, including 
rectangular and triangular (or V-notch weirs). While not 
employed extensively in this country (as they are in Europe), 
however, circular weirs for the measurement of liquid flow 
rates in open channels, such as ditches, flumes, and troughs, 
have the advantage that the crest can be turned and beveled 
with precision in a lathe. Moreover, this weir crest does not 
have to be leveled, and hence the point of zero flow is 
readily determined. 

From the Bernoulli equation, the volumetric flow rate q as 
a function of the crest height h across a circular weir with a 
diameter of D, as depicted in Figure 2, is given by the 
integral equation 

h 

q = 2Cw.fzi J ,J(D-z)z(h-z) dz (15) 

0 

where Cw is a weir discharge coefficient, accounting prima­
rily for friction losses, much like an orifice discharge coeffi­
cient in closed channel flow measurement. In a 1957 paper, 
Stevens1'31 found the analytical solution, incorporating ellip­
tic integrals, for Eq. (15) to be of the form 

Figure 2. Open channel flow across a circular weir. 
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The modulus k of the elliptic integrals appearing in Eq. 
(16) is merely equal to .J(h!D). In his paper, Stevens also 
examined hundreds of experimental data points on water 
discharge rates from circular weirs. These data went back to 
the beginning of this century and were taken over the entire 
range of hlD from 0 to 1 on circular weirs up to three feet in 
diameter. An average value of the discharge coefficient Cw of 
0.59 was determined from his analysis of these data. 

Stevens' results were subsequently adapted to the problem 
of determining liquid overflow rates through circular open­
ings in process and/or storage tanks .1' 41 Equation (16) thus 
applies equally to the problem of computing such discharge 
rates through circular apertures (or short discharge pipes) , 
given the size of the opening and the liquid level therein. 
Indeed, Stevens1'

31 first became interested in this problem in 
conjunction with measuring the flow rate through a short 
pipe from a fishway into a power canal. In Reference [14] , 
an approximate representation of Eq. (16), invoking the 
concept of relative volatility from vapor-liquid equilib­
ria, was also developed and presented. Lastly, it comes 
as no surprise that this equation for the liquid flow rate 
across a circular weir is really just a special case for flow 
across an elliptical weir. I

'
5I 

The drainage of process vessels of many different shapes, 
such as cylindrical, spherical, and conical, represent conven­
tional calculus problems, solutions to which have long been 
known.1161 To be sure, with the recently heightened interest in 
chemical process hazard analysis in addition to environmen­
tal issues, many of these drainage (or efflux) formulas have 
also appeared in recent textbooks on process safety. I

'
71 It has 

been recently found that elliptic integrals (like Bessel func­
tions in heat transfer) have a way of recurring in many fluid 
efflux problems with macroscopic circular geometries. 

Thus, consider the problem of gravity drainage of a hori­
zontal annulus, W units long, such as might be represented 
by the shell side of a double-pipe heat exchanger (see Figure 

f 
h 

V 

Figure 3. Cross-section of a horizontal circular annulus. 
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3). The inner and outer radii of this annulus are denoted by r, 
and r,, respectively, while the drainage occurs through an 
aperture with a cross-sectional area of A0 located along the 
bottom center line of the annulus. A constant value for the 
orifice discharge coefficient (e.g. , C0 = 0.61) is assumed. 
Expressions for the drainage times required for the top and 
bottom thirds of this annulus (volumes I and III, respec­
tively, in Figure 3) are readily obtained from earlier results 
for conventional horizontal circular cylinders i '61 But the drain­
age time requirement for the middle volume (t11) of this 
annulus (that is, from the level of h = r, + r, down to h = r, - r,) 
is given by an expression incorporating elliptic integralsI

'
8I 

where the modulus kin this case is given by 

(18) 

The more general expression for partial drainage of this 
middle volume (II) of a horizontal annulus (i.e., from some 
intermediate elevation and/or down to some other intermedi­
ate elevation, both within this middle volume) is consider­
ably more complicated and specifically incorporates incom­
plete elliptic integrals of the first and second kinds.1' 8I 

Until recently, most fluid efflux analyses pertained to in­
tentional drainage from an opening at the bottom of a vessel. 
But now, because of increasing concerns about safety and 
loss prevention in the process industries, there exists a need 
for accurate formulas to compute fluid discharge and vessel 
emptying rates for an opening at an arbitrary elevation. Such 
a need may arise in analyzing an accident scenario resulting 
from a moving vehicle, e.g., a forklift truck or an automated 
guided vehicle (AGV), being driven into the side of a vessel. 
Such analytical formulas were originally presented by 
Crowl1'

91 for spherical and vertical cylindrical vessels. 

Subsequently, the following expression was developed1201 

for the time t required for drainage of a horizontal cylindrical 
vessel, with a diameter of D and W units long, from an 
arbitrary initial liquid level of h, through a hole with a cross­
sectional area of A0 and located at an equally arbitrary eleva­
tion of ho, 

t = 
4 W -fig {.Jo[(D-2 h0 )E(<I>, k)+ h0F(<j>, k)] 

3C0A0 2g 

(I 9) 

A sketch of this configuration is shown in Figure 4. The 
parameters of the incomplete elliptic integrals in Eq. (19) are 
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and 

D(h1 - ho) 

(D-ho)h1 

k= ✓ D~ho 

{20) 

(21) 

In this case, if the time required for the liquid level to fall from 
an initial elevation of h, to some intermediate elevation h, (or, 
equivalently, to discharge a given amount of material) is de­
sired, two successive applications ofEqs. (19) and (20) can be 
employed for this purpose. 

Recent interest has also arisen in the problem of exhausting 
process vessels through drain piping systemsY'1 Thus, the case 
of pipeline drainage of horizontal cylindrical tanks also re­
quires elliptic integrals.1221 Such a configuration is presented in 
Figure 5. In this instance, one is interested in the time required 
to drain the contents of a horizontal cylindrical vessel with a 
diameter of D and a length of W through a drain pipe system 
with an inside diameter of d, attached at the bottom center line 
of the vessel. This drain piping system originates at an eleva­
tion of h0 units above the datum plane and has an equivalent 
length ofL. Fully developed turbulent flow through this system 
is assumed, with a constant Moody friction factor off. 

With these assumptions, the resulting analytical solution1221 to 
this problem again incorporates (in the general case of incom­
plete drainage of a partially filled vessel) the incomplete ellip­
tic integrals of the first F( <J>, k) and second E( <j>, k) kinds. The 
latter collapse down to their complete form for the special case 
of complete drainage of a completely filled horizontal circular 
cylinder through a drain piping system. Saturator troughs in the 
shape of horizontal semi-elliptical cylinders are employed ex­
tensively in the textile finishing industries. Not surprisingly, 
the solution to the problem of determining drainage times for 
such troughs through a piping system also invokes elliptic 
integrals.1231 

CONCLUSION 

In this article, we have addressed the subject of elliptic 

-1~ - •--·1 
·,oll~------V•n,_t_,_ _____ _ 

!rf---=---__________ _ 
ill.___ __ 
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Figure 4. Horizontal circular cylindrical vessel with a 
puncture hole in its side and resulting liquid drainage. 

integrals, including their origins and definitions. Early 
scientific applications of elliptic integrals, primarily from 
the physics area, were briefly summarized. Then, a num­
ber of such applications in chemical engineering, most of 
which are relatively recent in origin, were described (see 

@rr 
H --+-""'--

......__! ..1..--* --~l 
q,v• 

/. 

Figure 5. Sketch of a horizontal circular cylindrical 
tank with drain piping. 

TABLE2 
Summary of Technical Problems with 

Elliptic Integral Solutions 

Problem Reference(s) 

Physics Problems 
• Area of an ellipse ...................... ...... ....... .. .... ... ............... (2,9] 
• Period of oscillation for a swinging pendulum ........... (2,3,9] 
• Torque exerted by a mechanical brake ... ... ... .................... [9] 
• Motion of a whirli ng chain or skipping rope .............. (2,3,9] 
• Area of the surface of an ellipsoid ................ .. ...... ... ... ... (2,3] 
• Planetary orbits under laws of attraction .. .. ......... ............. [2] 
• Current flow in a rectangular conducting plate .......... .... .. [2] 
• Electrostatics of a parallel plate capacitor ..... ... .. ..... ......... [2) 

Chemical E11gi11eeri11g Problems 
• Hydraulic radius of an elliptical pipe .. .. .. ...... .............. ..... (9] 
• Capillarity between two parallel vertical plates ............... [9) 
• Steady irrotational liquid flow in two directions .............. [3) 
• Fluid flow across circular weirs or openings ..... .. .. .. .. [13,14] 
• Fluid flow across elli ptical weirs or openings ................ [15) 
• Bottom drainage of horizontal annu li ............................. [ I 8) 
• Efflux from punctured horizontal cylinders ................... [20) 
• Drainage of horizontal cy linders through piping ....... [22,23] 
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Table 2). Most of the chemical engineering applications of 
elliptic integrals to date have been in the fluid mechanics area. 

NOMENCLATURE 
A surface area formed by the liquid level in a tank 

A
0 

cross-sectional area of flow opening 
a length of semi-major axis of an ellipse 
b length of semi-minor axis of an ellipse 
C circumference of a circle; length of chord formed by a 

liquid level 
C

0 
= orifice discharge coefficient 

Cw weir discharge coefficient 
c length of third semi-axis of an ellipsoid 

D diameter of a circular tank or weir 
d diameter of a circle 

d
0 

= diameter of flow opening 
E = elliptic integral (incomplete or complete) of the second 

kind 

e eccentricity of an ellipse l ={[a 2 -b2 J1' 2
} 1aJ 

F incomplete elliptic integral of the first kind 
g acceleration due to gravity 
H variable elevation of the liquid level in a tank above the 

outlet of drain piping 
h maximum elevation of a swinging pendulum above its 

rest point; variable elevation or height of the liquid 
level in a tank 

h
1 

= initial elevation or height of the liquid level in a tank 
h

0 
elevation of a tank bottom above the outlet of drain 
piping 

I general integral of Eq. (8) 
K complete elliptic integral of the first kind 
k modulus of elliptic integrals; parameter in calculation of 

ellipsoidal surface areas, defined in Eq . (14) 
L equivalent length of piping 
n parameter of elliptic integrals of the third kind 
P perimeter of an ellipse 
q volumetric flow rate 

R rational function of x and ✓X in Eq . (8); radius of a 
circular tank or weir 

r radius of a circle 
S surface area of an ellipsoid 
s length of arc 
T period of oscillation for a swinging pendulum 

time 
u argument of elliptic functions 

V fluid volume 
v linear velocity 

W length of a horizontal cylinder 
X cubic or quartic function of x in Eq. (8) 
x arbitrary independent variable of integration; horizontal 

coordinate 
y vertical coordinate 
z thickness of a flat plate 

Greek Letters 
a angular amplitude of oscillation of a pendulum 
qi = amplitude of elliptic integrals 
u = parameter in calculation of ellipsoidal surface areas, 
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IT 

7t 

0 

defined in Eq. (13) 

elliptic integral (incomplete or complete) of the third 
kind 
number pi (3.14159 .. . ) 

theta function; angular argument of elliptic integrals 
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