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In a traditional chemical engineering curriculum, the rich­
ness of discrete mathematics is not sufficiently used. 
Although selected numerical techniques for the solution 

of differential equation have received at least adequate atten­
tion in earlier textsl 1

-21 as well as in more recent works,f3·5
J 

mathematics courses taught to chemical engineering stu­
dents generally tend to put more emphasis on analytic ap­
proaches linked to continuous systems, and discrete tech­
niques usually take second place. 

In the domain of process dynamics and control, the impor­
tance of digital techniques has been reflected more percepti­
bly in the textbook literature. Sampled-data control , one of 
the most important applications of discrete mathematics, is 
routinely covered (but to a varying extent) in currently popu­
lar textbooks_l5-9J In spite of much progress in bringing dis­
crete mathematics to the forefront, competence of the aver­
age chemical engineering student in this area still leaves 
much to be desired. The course described in this paper is an 
attempt to remedy this situation. 

COURSE STRUCTURE 

The purpose of a senior-level elective course, which also 
carries full credit as a graduate course for Master 's degree 
candidates, is to increase the students' knowledge in discrete 
mathematics of interest to chemical engineers and to moti­
vate students to make further excursions into this field on 
their own. The contents of this one-trimester exercise (thir­
teen weeks, thirty-six lectures), shown in Table 1, lean some-
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what heavily to process dynamics and control, as a follow­
up to a compulsory introductory course in that subject. Ap­
plications independent of process control are also empha­
sized, and discrete techniques allowing the numerical solu­
tion of a variety of problems (not necessarily related to 
process control) make up a small but still significant propor­
tion of the course material. 

At the beginning of the lectures, the students receive a set 

TABLE 1 
Topic Areas Covered in Course 

I. Finite difference operators and systems • Application to discrete 
and continuous systems: numerical integration and solution of 
differential equations • Use of the E-operator, the state-transition 
matrix method, and z-transformation (7 lectures) 

2. Open-loop linear (control) systems • Sampling and the starred 
Laplace transform • z-transfonnation • Digital convolution • 
Hold elements and signal reconstruction • Pulse transfer function 
• Inversion of z-transforms • Digital transfer functions • Digital 
filtering• Digital P, PI, PD, and PID controllers (6 lectures) 

3. Closed-loop linear (control) systems • Closed-loop transfer 
functions and system stability via z-transforms and bilinear (r;w) 
transforms • Sampling instants and system stability • Elementary 
controller design: the minimal prototype/deadbeat response 
controller and the Dahlin controller • Digital control for load 
changes • Design of controllers via bilinear transform-based 
frequency response techniques ( 10 lectures) 

4. Elements of nonlinear discrete and sampled-data control systems 
• Digital convolution and diagonal invariance (3 lectures) 

5. Elements of discrete stochastic techniques• Markov-chain 
representation of discrete and continuous systems • Problem 
solution via linear algebra and z-transforms • Application to rate 
processes (2 lectures) 

6. Intersample behavior• Advanced- and modified z-transforms • 
Intersample response via digital convolution • Treatment of 
process time-delay via modified z-transforms (6 lectures) 

7. Review via a specific problem whose analysis is traced through 
the six topics listed above (2 lectures) 
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In spite of much progress in bringing discrete mathematics to the forefront, 
competence of the average chemical engineering student in this 

area still leaves much to be desired. The course described 
in this paper is an attempt to remedy this situation. 

TABLE2 
Illustration of Typical Problem Complexity 

Level: low 

A reactant decomposes in a batch reactor according to the rate law 
dc/dt=-0.5c0

·
5 where c is in mol/dm3 and t is in min. At zero time, 

c=l . Estimate the reactant concentration at equally spaced time 
intervals of 0.05 min by the RK-2 algorithm and compare the 
estimated values to the analytical solution. 

Level: low 

A continuous system is subjected to an impulse input of unit 
magnitude. The response is exp(-t) where t is time. The same 
system is exposed to a sampled ramp with unity slope. What is the 
system response? 

Level: medium 
Deri ve the quadrnture formula in Eq. (1) via Taylor-series theory 
and the stipulation that the integral be approximated as 
A[f(a)+f(-a)]+Bf(0), where A, B, and a are a-priori indeterminate 
constants.1 '01 

Level: medium 

Consider the infrared tracker problem in the text by Saucedo and 
Schiring,1111 Figure 9-35, page 418. The overall forward-branch 
transfer function is 

G(s)=K[l-exp(-0.1 s)]/[s2(s+3.5 )] 

with K=7. This is a unity-feedback system with an ideal sampler 
(T=0. l ) folJowing the comparator. 

a) Is thi s system marginally stable according to the GM~2; 
PM~30° criterion? 

b) What is the maximum value of K for marginal stability? 

c) Why is a very poor marginal stability tolerated for thi s 
system? 

Level: high 
In the forward branch of a control system block diagram, the 
transfer function G(s)=20/[(s+ l)(s+3)] is placed between two 
synchronized ideal samplers (T=0.5). The closed-loop system has 
a unity feedback. If we put a proportional controller in front of 
G(s), what is the region of stable controller gains? 

Level: high 
Analyze the ' recipe' for deadbeat-response controller design by 
Gupta and Hasdorff,1 121 with generalized input R(z)=Q/z·'r', 
where Q

0 
is a finite polynomial in powers of z·' such that there is 

no zero at z=l. 
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of solved problems of varying complexity, but there are no 
formal homework problem assignments. Encouraged through­
out the entire course to explore various "take-offs" on prob­
lems in the handout set, students have ample opportunity to 
employ various computer facilities available to them on 
campus; every problem in the handout set, however, can be 
solved with a standard scientific calculator. A small sample 
of typical problems is shown in Table 2. Students are exam­
ined via a two-hour mid-term test and a three-hour final 
examination. The open-book/open-notes exams are designed 
to equaJl y test the students' understanding of fundamental 
principles and their computational prowess. 

FAST AND ACCURATE 
NUMERICAL INTEGRATION 

A major principle reiterated in the course is the avoidance 
of a sledgehammer-against-the-fly application of numerical 
methods. A case in point is the quadrature formula[loJ 

JJx)dx = h[5 f(-h..JM)+8f(0)+5f(h..JM)] t9 (I) 

whose error, h7f vil(Q)/15790, guarantees an accurate value of 
integrals for monotonic functions whose sixth-order deriva­
tive is zero at the mid-interval of integration. If the integra­
tion interval is not symmetric around x=O, linear translation 
is first to be done. This integration formula seems to be 
unnoticed in the chemical engineering literature in spite of 

TABLE3 
Illustration of a Simple Gaussian Quadrature (Eq. 1) 

Problem • Estimate via Eq. ( I) the numerical value of the integral of 
the function f(x)=exp(x) on the interval [0,1). Compare to the 
analytical answer: exp(l )- 1=1.71828 (to five-decimal accuracy). 

Solution • The mid-point position being at x=0.5, we have for 
f(-h'1o.6) the expression 0.5-0.5.Jo.6=0.11270. Similarly, the 
expression 0.5+0.5'1o.6=0.88730 stands for f(h.Jo.6). Hence the 
integral is approximated by 

I 

f exp(x)dx 

0 

~ 0.5[5 exp(0.1127) + 8 exp(0.5)+ 5 exp(0.88730)]! 9 

=1.71 828 

The error of estimation is 8x 10-7 only! 
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its high accuracy and simplicity. Table 3 illustrates an appli­
cation. 

DISCRETE SOLUTION 
OF CONTINUOUS PROBLEMS 

The handling of linear differential equations by linear 
algebraic structures is one of the best indications of the 
power of di screte mathematics (and the humble program­
mable calculator). As di scussed in an earlier paper,1131 the 
Markov-chain model of chemical rate equations is particu­
larly instructive in this respect. The treatment of a consecu­
tive first-order decomposition process 

A • B• C {2) 

with rate constants k1 = 3.6/h (first step) and k2 = 7.2/h 
(second step) is used for illustration. The analytical solution 
for species concentrations A and B with initial conditions A0 

= 1 and B0 = 0 mol/dm3 

is contrasted with the Markov-chain model 

A[ n + l] = ( I - k 1 )A [ n] {4a) 

{4b) 

Equations (3a,3b) are obtained by solving analytically two 
differential mole balances, whereas Eqs. (4a,4b) are the 
Markov states obtained by post-multiplying the transitional 
probability matrix by the (n-1) state probability vector. 11 41 

Close agreement is demonstrated in Table 4 in the case of 
one-second state intervals. The establishment of Eqs. ( 4a,4b) 
does not require calculus and/or conventional discretization 
of differential equations. 

DIGIT AL CONVOLUTION 
AND THE DIAGONAL INVARIANCE PRINCIPLE 

For the computation of the output of a linear (control) 
system, the digital convolution equation 

n 

c[n] = L g[n-k]r[k] {5) 

k=O 

is a particularly useful tool. In Eq. (5), g denotes the impulse 
response of the system, r is the input into the system, and n 
represents the state of the discrete time. The principle of 
diagonal invariance1' 51 recognizes an important structural as­
pect of Eq. (5) written in its expanded form: 

c[ n ]= g[ n ]r[0]+ g[ n - l]r[ l]+ g[ n -2]r[2] +· · ·+ g[0]r[ n] {6) 

namely that cross-multiplication of elements of the vectors g 
and r, with respect to a vertical symmetry line drawn be­
tween them, yields c[n] at any arbitrary value of n. This 
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TABLE4 
Computation of Species Concentration in a First-Order 

Consecutive Reaction Scheme (Eq. 12) 
A0 = I mol/dm3; B0 = 0 mol/dm3

; k1 = 3.6/h; k2 = 7.2/h 

Time(s) or 
stage A(t) mol/dm3 A(t) mol/dm3 B(t) mol/dm3 B(t) mol/dm3 

number (n) Eq.(3) Eq.(4) Eq.(3) Eq.(4) 

0 0 0 

10 0.9900 0.9891 0.0098 0.0108 

50 0.9512 0.9502 0.0464 0.0473 

100 0.9048 0.9039 0.0861 0.0870 

200 0.8 187 0.8178 0.1484 0.1491 

500 0.6065 0.6058 0.2386 0.2390 

600 0.5488 0.5481 0.2476 0.2479 

693 0.5001 0.4994 0.2500 0.2502 

694 0.4995 0.4989 0.2500 0.2502 

700 0.4966 0.4959 0.2500 0.2502 

800 0.4493 0.4487 0.2474 0.2475 

1000 0.3679 0.3673 0.2325 0.2325 

Species B acquires its maximum 
value of = 0.25 mol/dm3 at 1 = 0.001 l n(2) = 693s. 

TABLES 
Analysis of a Nonlinear Closed-Loop 

Control System via Digital Convolution 
(Eq. 9) 

n g[n] m[n] c[n] e[n] 
-

0 0 I 0 0.3 

0.1998 0.1998 0.1002 

2 0.1740 - I 0.3738 -0.0738 

3 0.0776 0.0518 0.2482 

4 0.0304 0.1338 0.1662 

5 0.0114 - I 0.3380 -0.0380 

6 0.004239 0.0370 0.2630 

7 0.001564 0.1282 0.1718 

8 0.000576 -1 0.3359 -0.0359 

9 0.000212 0.0362 0.2637 

10 0.000078 0.1 279 0. 1721 
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property is especially useful in the case of a closed-loop 
system, were r[k] in Eq. (5) is replaced by e[k], i.e. , the k-th 
state value of the error. In the case of unity feedback, Eq. (5) 
is replaced by Eqs. (7a,7b): 

n 

c[n]= L,g[n-k]e[k] 
k=O 

e[ n] = r[ n] - c[ n] 

(comparator equation) 

{7a) 

{7b) 

Finally, if there is a nonlinear element placed between the 
comparator and the system, we have the equation set 

n 

c[ n ]= L,g[ n - k ]m[k] {8a) 

k=O 

m[ n] = f { e[ n]} {8b) 

e[ n] = r[ n ]- c[ n] (8c) 

where m=f(e) represents the nonlinear element. This well­
known approach in signal processing, which may also be 
regarded as a one-dimensional illustration of the state transi­
tion matrix technique, offers an efficient alternative to the 
conventional z-transformation approach to linear problems 
and an elegant as well as efficient means of dealing with 
nonlinear problems. 

Table 5 illustrates its application to the on-off control of a 
stirred-tank heater, discussed by Coughanowrcsi in terms of 
phase-plane analysis. A dimensionless on-off element with 
output magnitudes (-1,+1) is placed between an ideal sam­
pler receiving the error signal and the process with transfer 
function Gp(s) = l/[(s+l )(s+2)]. The process gain is arbi­
trarily set to unity, since the purpose of the exercise is only 
to show oscillatory behavior. This being a sample-data vari­
ant of the original problem, we also insert a zero-order hold 
with transfer function [l - exp(-Ts)]/s between the controller 
output and Gp(s). Defining G(s)=Gp(s)/s and setting T=l , we 
obtain 

g(t) = [l + exp(-2t) - 2 exp(-t)]/2 

hence 

g[0] = 0 

g[ n] = 1.71828 exp{-n )- 3.1945 exp(-2n) n = 1,2, ... 

(9a) 

(9b) 

upon some manipulation. Let the set-point be suddenly 
changed to 0.3 (from zero). The computation of the output 
proceeds as follows: 

c[0]= g(0]m[0] = 0 

r[0]=0.3 

m[0]= 1 

c[l] = g[l]m[0] + g[0] m[l] = 0.1998 
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r[I]= 0.1002 

m[l]= 1 

c[2]= g[2] m[0]+ g[l]m[I] + g[0]m[2] = 0.3738 

r[2]= -0.0738 

m[2]= -I 

etc. 

The vertical line between the g-column and the m-column in 
Table 5 is the symmetry axis for diagonal invariance. Notice 
that g[O]m[k] element is zero regardless of the value of k, 
hence each c[n] value depends only on previous values m[O] , 
m[l] , ... m[n-1] . As n increases, the output settles to a vanish­
ingly.small-amplitude oscillation, known as the chatter phe­
nomenon. 

FINAL REMARKS 

No currently available textbook covers the entire course 
material , but several texts treat the contents of individual 
chapters. Students consulting the books by StephanopoulosC61 

and Coughanowrcsi seem to fare best in the course. 
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