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A SIMPLE 
PROCESS DYNAMICS EXPERIMENT 

SRINIVAS PALANKI, VISHAK SAMPATH 
FAMU-FSU College of Engineering• Tallahassee, FL 32310-6046 

P
rocess dynamics is concerned with analyzing the time
dependent behavior of a process in response to an 
input change. Understanding the dynamic behavior is 

essential for process design , for selection of optimal operat
ing conditions, and for implementing process control strate
gies, but a majority of experiments in a typical unit opera
tions laboratory focus on the steady-state behavior of chemi
cal processes. In this paper, we will describe a simple, low
cost experiment for analyzing the dynamic behavior of a 
second-order system. While the experiment is easy to per
form , it requires the student to combine analytical as well as 
computational skill s to analyze experimental data. 

EXPERIMENTAL SET-UP 

A schematic of the experimental setup is shown in Figure 
I. There are two tanks connected in series, with each tank 
having a cross-sectional area of 48.65 cm2

. Water is fed to 
Tank l from an overhead reservoir. The reservoir has an 
ove1ilow pipe near the top and is continuously supplied with 
water. The overflow pipe ensures that a constant flow rate is 
maintained at the inlet of the first tank. A strip of masking 
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Figure 1. Schematic representation of the 
experimental set-up. 
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tape is attached to the side of each tank so that the water level at any given time 
can be marked off on the tape. The flow rates to the first tank and the second 
tank can be adjusted by ball valves. 

Initially, the water levels in the two tanks are at steady state. The objective of 
the experiment is to predict how the water level in the two tanks changes with 
time when a beaker full of water is suddenly added to the first tank, and to verify 
this prediction experimentally. 

THEORY 

Assuming that the cross-sectional area of both tanks is uniform and equal to A, 
and that the density of water is constant, an unsteady-state mass balance around 
each individual tank results in the following equations: 

and (I) 

where q; 11 and q 1 are the volumetric flow rates of the inlet and outlet streams of 
Tank 1, and q2 is the volumetric flow rate of the outlet stream of Tank 2. The 
flow rates in the exit lines of the two tanks depend on the pressure drop, which in 
turn depends on the water levels h1 and h2 in the two tanks. 

LINEAR MODEL 

If a linear head-flow relationship is assumed, we get 

and 
h, 

q , =--
- R2 

(2) 

where R 1 and R2 are the flow resistance terms of the pipes exiting from Tank 1 
and Tank 2, respectively. 

Substituting Eq. (2) into Eq. (I), and putting in matrix form, we get 

[ I l [ l h -- 0 h I 
d I AR 1 -

_ I + A q d,[J A~, -A~, [h,] 0 '" (3) 

At steady state 

~=~=0 
dt dt 

Thus, from Eq. (3) 

and (4) 

where h15 and h25 are the steady-state values of the water level in Tank 1 and 
Tank 2, respectively, and q; 11 5 is the steady-state flow rate. 

It can be easily shown 111 that when q; 11 is subjected to an impulse change of 
strength M, and R 1 i= R2, the impulse response is given by 

(5) 

Eq. (5) provides analytical expressions that predict the water levels h1 and h2 

with time. 
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NONLINEAR MODEL 

The valve discharge rate in each tank can be modeled by 
the following square-root law :l21 

qi =C1,fo"; 

q2 = C2Fi ( 6) 

where C 1 and C2 are the valve coefficients of valves I and 2, 
respectively, and depend on the valve openings. 

Substituting Eq . (6) into Eq. ( l), the following nonlinear 
model is obtained: 

At steady state, 

Thus, from Eq. (7) 

C _ qins 
1---

~ 

C - C R:ls 2- I -
h 2, 

(7) 

(8) 

When a beaker of water of volume M is suddenly added to 
Tank 1, the initial conditions of the system represented by 
Eq. (7) are given by 

5. Take a beaker of water (about 400 ml) and 
measure the volume of water in a graduated 
cylinder. Add thi s beaker of water to the first tank. 
At the same time, start the stop watch and mark 
off the level of water in both tanks. 

6. Mark off the level of water in both tanks in 10-
second intervals for 120 seconds . 

7. Measure the water level recorded with time on the 
masking tape attached to each tank. 

8. Plot the water level in each tank versus time. 

9. Using the steady-state values of the water level in 
each tank and the steady-state flow rate, calculate 
the flow resistance R 1 and R2 in the linear model 
using Eq. (4). 

LO. Plot the analytical solution given by Eq. (5) on the 
same graph as the experimental data. 

11 . Using the steady-state values of the water level in 

Table 1 
Steady State Measurements 

A 

M 

48.65 cm2 

24.S cm 

16.6 cm 

400 cm3 

35 ,-- ---,-----~---~---~--- ~-~- ~ 
(9) 

The nonlinear model represented by Eq. (7) can 
be integrated numerically using the initial condi
tions given by Eq. (9) to predict how the water 
level in the two tanks changes with time. 

EXPERIMENTAL PROCEDURE 
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I . Set up the apparatus as shown in 
Figure 1. 

2. Start the flow rate of water into the 
reservoir and wait until steady state is 
reached. Note the area of cross section of 
the two tanks. 

3. Measure the steady-state heights in the 
two tanks. 

4. Measure the steady-state flow rate of 
water coming out of the second tank with 
the help of a graduated cylinder and stop 
watch. 
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Figure 2. Graph showing comparison between the two models and 
their fit with the experimental data. 
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each tank and the steady-state flow rate, calculate 
the valve coefficients C 1 and C2 in the nonlinear 
model using Eq. (8). 

12. Integrate the nonlinear model numerically using 
the initial conditions given in Eq. (9). 

13. Plot the numerical solution given of the nonlinear 
model on the same graph as the experimental data. 

14. Comment on the accuracy of the linear model and 
the nonlinear model. 

TYPICAL RESULTS AND DISCUSSION 

Table l shows the experimental values obtained in a typi
cal experimental run. Figure 2 shows the prediction of the 
linear model and the nonlinear model along with the experi
mental data points. A program in MATLAB"' [JJ to generate 
Figure 2 is shown in Table 2. We note that the nonlinear 
model prediction of the experimental data is better than the 
linear model prediction. 

A comparison of the initial volume of water in Tank l and 
Tank 2 with the volume of water added at the initial time 
shows that there is a 33.6% deviation from the initial steady 
state of Tank 1. This deviation may be too large for the linear 
model to predict dynamic behavior accurately. 

It is assumed that the beaker of water is added instanta-

TABLE2 
MATLAB Program 

% Numerical Integration of Nonlinear Model 

tO = O; 

tf = 120; 

x0 = (32.7 16.6]; 

[t,x] = ode23( 'ode', t0 , tj; x0); 

% Analytical Solution of Linear Model 

ti= linspace(0, 120, l00); 

y l = 24.5 + 8.222 * exp(-11/12.6); 

y2 = 16.6 + 17.435 * (exp(-tl/ 12.6)- exp(-tl/8.562)); 

% Experimental Data 

t2 = [O; IO; 20; 30; 40; 50; 60; 70; 80; 90; I 00; I I 0; 120]; 

h I = (32.7 ; 30.8; 29.5; 28.2; 27.4; 26.8; 26.3; 26; 25.7; 25 .3; 25.2; 25; 24.9] 

h2 = (16.6; 18.6; 19.2; 19.4; 19.2; 18.9; 18.5; 18.2; 17.8; 17 .6; 17.4; 17.2; 17] 

% Comparison between so lutions 

p/01(1, x, ti, y l , , __ , tl ,y2, --- -, 12, hl ,'+', 12, h2 , 'o' 

function xdot = ode (r,x) 
xdot( I)= 1.942 - 0.392 • sqrt(x( l )); 
xdot(2) = 0.392 * sqrt(x( l )) - 0.477 * sqrt(x(2)); 
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neously. This addition takes finite time, however, and so the 
use of an impulse response is an idealization of the actual 
pulse response that might lead to some discrepancy between 
predicted and experimental values. Errors in the experiment 
could also result due to lack of coordination between the 
student who is keeping time and the students who are mark
ing off the water level in the two tanks. 

HOMEWORK EXERCISE · - - - - - - - - 7 
1. Derive Eq . (5). I 
2. The derivation of Eq. (5) assumes that R 1 =t- R2 . 

Under what physical conditions would R 1 = R2? 
Derive the impulse response when R 1 = R 2• 

3. For what magnitude of the impulse input M is the 
linear model prediction close to the nonlinear 
model prediction? 

I 
I 
I 
I 
I 
I 

4. If the system is subjected to a step input of I 
magnitude M , what are the predictions of the I 

I linear and nonlinear models? I 

L------- - ---- - -- - ~ 

CONCLUSIONS 

A simple low-cost dynamics experiment is described 
in thi s paper. The apparatus costs less than $100 to 
build . The experiment introduces the concept of pro
cess dynamics and illustrates the differences between 
linear and nonlinear model prediction. The students are 
tested on their analytical as well as their computational 
skills. 

NOMENCLATURE 

area of cross section of Tank I and Tank 2, cm2 

valve coefficient of Valve I 

valve coefficient of Valve 2 

water level in Tank I, cm 

water level in Tank 2, cm 

volumetric flow rate into Tank I, cm3/sec 

volumetric flow rate out of Tank 1, cm3/sec 

volumetric flow rate out of Tank 2, cm3/sec 

flow resistance of Pipe I 

flow resistance of Pipe 2 

time, sec 
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