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D esign and simulation of unit operations and many 
other physical phenomena require development of 
mathematical models and a solution of the models. 

In the past, the analytical solution was the only option. 
Nowadays, however, with the introduction of interactive, 
user-friendly numerical software packages, the model is of­
ten solved numerically even if an analytical solution can be 
obtained, since a numerical solution usually requires less 
effort and allows solution of more realistic problems. Obvi­
ously, an analytical expression can provide more informa­
tion than a numerical solution. While a numerical solution 
provides numerical information only inside the region where 
simulation is carried out, an analytical expression allows 
investigation of the model behavior over the entire region of 
its validity. Furthermore, when the analytical model is pre­
sented in a dimensionless form, the effects of its various 
(dimensionless) parameters can often be predicted even with­
out solving the equations. 

But arriving at an analytical solution often requires simpli­
fication of the rigorous model by making certain assump­
tions. Once an assumption is made, it is sometimes difficult 
to appreciate the inaccuracy it introduces and to decide 
whether the solution reached for the simplified model is also 
a valid solution for the original problem. The information 
provided by analytical and numerical solutions complement 
each other, and therefore it is very important to obtain both 
whenever it is possible. The recommended procedure would 
start with solving the simplified model both analytically and 
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numerically. This apparently superfluous step validates the 
analytical solution of the simplified model and at the same 
time substantiates the numerical scheme. Then one can pro­
ceed to solve the rigorous model numerically. 

If the rigorous model consists of ordinary differential equa­
tions (ODE) or nonlinear algebraic equations (NLE), the 
numerical solution is a feasible approach, even at an under­
graduate level, using readily available software tools such as 
MAPLE,P1 MATLAB ,£21 and POLYMATHP 1 Often, rigor­
ous models of simple systems contain both ordinary differ­
ential equations and implicit nonlinear algebraic equations. 
Such a system of equations is called a differential-algebraic 
system (DAE). The software tools available for solving such 
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In this paper, we present two simple examples where some simplified models yield incorrect 
results and there is a need to solve DAE systems. A simple technique f or solving DAE 

system s using the software tools familiar to engineering students is introduced. 

systems are not yet appropriate for use by undergraduate 
students, and instructors fee l reluctant to present realistic 
models containing DAEs. 

In this paper, we present two simple examples where some 
simpli fied models yield incotTect results and there is a need 
to solve DAE systems. A si mple technique for solving DAE 
systems using the software tools familiar to engineering 
students is introduced. 

FORMULATING SIMPLIFIED 
AND RIGOROUS MODELS FOR 
BINARY BATCH DISTILLATION 

Calculation of the composition in a batch distill ation still 
as a function of the amount of the remaining liquid is a 
class ical problem, described in many textbooks.14-71 The sim­
plified model for batch distillation was provided by Lord 
Rayleigh in 1902. 181 

The batch distillation apparatus is shown schematically in 
Figure 1. Liquid of the amount L0 moles is ini tially charged 
into the still. Distillate is removed continuously at a rate of V 
moles/hr. Total material and component balances on the still 
yield 

dL =-Y 
dt 

L(t = 0) = L 0 

d(Lx;) 
--=-Y y-

dt I 

(I) 

(2) 

where X; is the mole fraction of spec ies i in the liquid phase, 
and Yi is the mole fraction of species i in the vapor phase. 
Equations (1) and (2) are combined to yield 

dL L 

dx; Yi - x; 
X;( t = 0) = X;0 (3) 

,---•Vapor out (V, Yi) 

Liquid (L, Xi) 

Steam in 

Condensate out 

Figure 1. Batch distillation apparatus. 
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The solution of Eq. (3) requires an equilibrium relation­
ship between Yi and xi. Such a relationship can be expressed 
using either the vapor liquid equilibrium ratio ki or the rela­
tive volatility a;i. During di stillation, the liquid and vapor 
compositions change. Consequently, the temperature changes, 
following the bubble point curve of the liquid. lf the value of 
ki can be assumed to be constant, Eq. (3) can be integrated 
from the initial mole frac tion of species i, xio to the final 
mole frac tion xi, to yield 

( 
L ) I ( X · ) en - =--Jin - 1 

L 0 k; - I X;0 

(4) 

For a binary system when a ii is assumed to be constant, 

integration of Eq . (3) yields 

(5) 

To verify that either k; or a;i may be assumed to be 
constant, the bubble point temperature at the initial and final 
compositions and the respective k; and CX;j values must be 
calculated. If there is onl y a small difference between the 
initial and fi nal values, an average value of ki or a;i can be 
used in Eqs. (4) or (5), respecti vely. But when a considerable 
difference is encountered, the simplified model gives incor­
rect results and the rigorous model must be used. 

In the rigorous model, the effect of changing compositions 
and temperature during the distillation on the ki and a;i 

values must be taken into account. The temperature changes 
in the batch still follow the bubble point curve. The bubble 
point temperature is defined by the implicit algebraic equa­
tion 

f(T)= I - L., k;X; =0 (6) 

For near-atmospheric pressures, the vapor-liquid equilib­
ri um ratio can be expressed by 

(7) 

where P; , Yi are the vapor pressure and the activity coeffi­
cients of the species, respectively, and Pis the total pressure 
(usually constant). 

The vapor pressure of an individual component can be 
correlated as a fu nction of temperature using, for example, 
the Antoine equation. The activity coefficient for a binary 
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system can be expressed as a function of the liquid composi­
tion using Margules, Van-Laar, or similar equations. 

The system of equations comprising Eqs. (3), (6), and (7) 
is a DAE system. Thus, if neither k; nor a;j can be assumed 
to be constant, the solution of a binary batch distillation 
problem requires a numerical solution of a DAE system. 

NUMERICAL SOLUTION OF 
THE SIMPLIFIED AND RIGOROUS MODELS 

The results of the simplified model and the rigorous model 
are compared by solving both numerically . The initial tem­
perature and the associated k; and a;j values are obtained by 
solving the bubble point temperature, Eq. (6), at the initial 
composition. From this initial point, the ODE equation, Eq. 
(3), can be integrated while maintaining constant (say, the 
initial) values for the temperature, k; and a;j. The error 
introduced by this assumption is estimated from Eq. (6), 
which is rewritten in the form 

E=I- L, k;x; (6a) 

The error calculated from Eq. (6a) provides a basis for 
correcting the temperature along the bubble point curve. The 
temperature can be changed in proportion to the error. Thus 

i!:._ = K E 
dx; c 

(8) 

A proper choice of Kc will keep the error below a desired 
error tolerance Ed throughout the whole integration interval. 
Equations (6a) and (8) combined yield an ODE system that 
represents the rigorous model. 

This method for solving a DAE system by converting it to 
an ODE system will be called the "controlled integration" 
method. The name indicates that the variation of the alge­
braic variable is being controlled during the integration to 
maintain the error of the implicit algebraic equation below a 
desired level. 

The value of Kc, appropriate for a certain error tolerance, 
can be estimated from the rate of increase of the error whi le 
the temperature is kept constant. A method for calculating 
Kc is explained in Appendix A. The value of Kc can also be 
determined by a simple trial-and-error technique. Students 
often find this approach easier to understand and more con­
venient to implement. It will be demonstrated in the detailed 
example that follows. 

Another option to convert a DAE system into an ODE 
system is differentiation of the implicit algebraic equation(s) 
(such as Eq. 6) to obtain an expression for, say, dT/dx;. For 
initialization (to get an initial value for T), the implicit 
algebraic equation(s) must be solved. This approach has 
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several disadvantages in comparison to the controlled inte­
gration method. The differentiation of even moderately com­
plex equations is a very tedious and error-prone task. Fur­
thermore, it is often impossible to express the differential 
(say, dT/dx;) explicitly, as is required by most numerical 
software tools . The use of this method becomes especially 
complicated for disjunctive system of equations, where there 
is a need to use different sets of equations in different re­
gions (transition from laminar to turbulent flow, for ex­
ample). The transition from one region to another requires 
re-initialization of the system, while for the controlled inte­
gration method, such a re-initialization is not necessary. The 
use of differentiation for converting DAEs to ODEs, and the 
potential difficulties, will also be demonstrated in the ex­
amples that follow. 

EXAMPLEl 

Batch Distillation of an Ideal and a 
Non-Ideal Binary System 

la. Ideal System 

King[4J presents an example of batch distillation of ben­
zene (component #1) and toluene (component #2) mixture. 
Initially, there are 100 moles of liquid in the still, comprising 
60% benzene and 40% toluene (mole fraction). The amount 
of liquid remaining in the still when the concentration of 
toluene reaches 80% should be calculated. The distillation is 

TABLE 1 
Initial and Final Conditions in Batch Distillation of a 

Benzene (1) Toluene (2) Mixture 

Initial 0.6 0.4 95.5851 J .31 164 0.532535 2.46302 

Final 0.2 0.8 108.572 1.85674 0.785817 2.3628 1 

100 ---~~1o
3 

___________ 
------

10-2 r--
Kc= 1()5 

£ 10-4 
Kc=3x106 

10-6 

10-s I 

0.40 0.48 0.56 0.64 0.72 0.80 

Concentration, x2 

Figure 2. Variation of E while changing the value of Kc 
in Eq. (BJ. 
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carried out at a pressure of 1.2 atm. 

The mixture of toluene and benzene can be considered as 
an ideal mixture ( y1, y2 = 1 ), thus the liquid vapor equilib­

rium ratio can be calculated from ki = P/P. The vapor pres­
sure of the individual components can be calculated from the 
Antoine equation 

log(Pi ) = Ai +-B_i -
T+Ci 

(9) 

where Pi is the pressure in mmHg, and T is the temperature 
in °C. The Antoine equation constants for benzene are A 1 = 
6.90565, B 1 =-1211.033 , and C 1 = 220.79. For toluene they 
are A2 = 6.95464, B2 = -1344.8, and C2 = 219.482_[9

l 

Solving the algebraic Eq. (6) (when ki is calculated from 
Eqs. 7 and 9) to find the bubble point temperature at the 
initial and final composition of the liquid, yields the results 
shown in Table 1. 

It can be seen that the temperature increases during the 

2.75 
Ct.12 

2.25 

N 

if 1.75 
si 
:;;; 1.25 

0.75 

0.25 
0.40 0.48 0.56 0.64 0.72 0.80 

Concentration, X2 

Figure 3. Variation of k ,, k 2, and a 12 during distillation 
of the ideal benzene-toluene system. 

TABLE2 
Antoine Equation Constants191 for 

the Water-Ethanol System 

Water 

Ethanol 

A B C 

7.96681 -1668.21 228.0 

8.04499 -1554.3 222.65 

TABLE3 
Initial and Final Conditions in Batch Distillation of a 

Water (1) and Ethanol (2) Mixture 

x
1 

x
2 

T°C k, k2 

Initial 0.4 0.6 79.1685 0.757729 1.16151 

Final 0.95 0.05 90.9639 0.721619 6.28615 

Spring /997 

0.652364 

0.114795 

distillation by about 13°C, which causes approximately a 
40% increase in the value of k 1 but only about a 4% reduc­
tion in the value of a 12 • Thus, Eq. (5), with an average value 
of a 12 = 2.41 , can be used to calculate the amount of liquid 
remaining in the still. This calculation yields L = 14.031 
mol , which is identical to the result obtained by King_ l4J 

To check whether the results of the simplified model are 
accurate enough, numerical integration of Eq. (3) is carried 
out while the error is calculated using Eq. (6a). Since nu­
merical integration must proceed in the direction of increas­
ing x2 value, Eq. (3) is integrated from x2 = 0.4 up to x2 = 0.8. 
Figure 2 shows that various values of Kc yield solutions of 
different precision. For Kc = 0, £ increases from -3.6 x 10·7 

at the initial point to 0.31 I at the final point. With Kc = 1000, 
the maximal error is 3.7 x 10·2 and it reduces to 3.9 x 10-4 for 
Kc = 105. 

Finally, using Kc = 3 x 106 yields a solution with a maxi­
mal error £ = 1.3 x 10·5 at x2 = 0.8 , which matches the 
desired error tolerance ( Ed = 10-5 ) . The initial and final val­
ues for the other variables are exactly the same as shown in 
Table 1. The remaining liquid, L = 14.0423 mo), differs only 
in the fourth decimal digit from the simplified model results. 
The reason for the excellent fit in this case is that the relative 
volatility changes linearly over the entire range (see Figure 
3). Thus, an average value of a 12 provides a very good 

representation. 

In this example, the rigorous model is simple enough to 
obtain an analytical expression for dT/dx2• For an ideal bi­
nary mixture, where Yi = 1 and the vapor pressure is repre­

sented by the Antoine equation, differentiation of Eq. (6) 
yields 

dT 

dx 2 

(10) 

Simultaneous numerical integration of Eqs. (3) and (10) 
yields the same results as were obtained using the controlled 
integration method. 

lb. Non-Ideal System 

The batch distillation of the ideal-system example is re­
peated with the non-ideal mixture of water (component #1) 
and ethanol (component #2) . Initially, a liquid mixture of 
60% ethanol and 40% water is charged to a still pot. The 
distillation is carried out at a total pressure of 1 atm. The 
amount of liquid remaining in the still, when the mole frac­
tion of water reaches 0.95 , should be calculated. 

Since water and ethanol form a non-ideal mixture, Eq. (7) 
should be used to calculate the vapor-liquid equilibrium 
ratio. The Margules equations can be used to calculate the 
activity coefficients of the various components: 
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Iog(y 1) = xHa +2x 1 (b - a)] 

Iog(y2)= xf [b+2x2(a-b)] 

(!Ia) 

(I I b) 

where a=0.3781 and b = 0.6848 for this particular system. flOJ 

The respective Antoine equation constants are shown in 
Table 2. 

Solving the algebraic equations for bubble point tempera­
ture at the initial and final compositions of the liquid yields 
the results shown in Table 3. 

It can be seen that in this case changes in the values of the 
relative volatility and k2 are very significant. Using Eq. (5) 
with an average value of cx 12 =0.384 to calculate the remain­
ing amount of liquid yields L = 5.236 moles. 

The rigorous model is solved by the controlled integration 
method. Using the procedure described in Appendix A with 
an error tolerance of ed = 10-5 yields Kc = 2.56 x l 05

. The 
amount of liquid remaining in the still using the rigorous 
model is L = 8.329 moles, 60% greater than the value pre­
dicted by the simplified model. Figure 4 shows the variation 
of k, , k2, and cx 12 during distillation. It can be seen that the 
variation of cx 12 is nonlinear. This explains the large discrep­
ancy between the results of the simplified and rigorous mod­
els. 

For this non-ideal solution, Eq. (6) can be differentiated to 
yield . 

(k,-k2)+(~-~Jx,..!l+(dY2 _aY2 J x2 P2 
dT ax, ax2 P ax, ax2 P 
~ = y I dP1 y 2 dP2 

x1PdT+x2PctT 
(12) 

To carry out all the differentiations required in Eq. (12) 
can probably be a good exercise in mathematics, but it is 
clearly not a practical way to solve the rigorous model. Even 
when a symbolic manipulation package (such as Maple) is 
used to carry out the differentiations, the effort and the 
complexity involved are not reduced to such a level that 
makes this approach a practical one to be used in under­
graduate education. 

EXAMPLE2 

Draining a Cylindrical Tank 

Figure 5 shows a cylindrical tank of diameter D with a 
draining pipe arrangement. The initial height of the liquid 
level above the draining pipe exit is H0 and the final height is 
Hr, The draining pipe diameter is d and its length is L. The 
time required to drain the tank from the initial height of H0 to 
the final height Hr is to be calculated. 

The equations representing the tank during the draining 
are fairly simple and have been discussed widely in the 
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literature.c11
,121 The pertinent equations follow. 

The rate of change of the liquid level in the tank dH/dt is 

dH d 2 

-=--Y2 
dt D2 (I 3) 

where V2 is the exit velocity of the liquid from the draining 
pipe, 

V _ 2g(H + L) 
2 - I+ f0 L/d 

(14) 

In the laminar region (Re :"::: 2100), the friction factor, f0 , is 
given by 

fo = 64 
Re (I 5) 

where Re is the Reynold 's number, Re= V2d/u , and u is 
the kinematic viscosity. In the turbulent region (Re ~ 4000),, 
the Colebrook & White equation applies: 

1 ( e 2.s 1 1 
,Fr; =-

2
logl3.7d - Re -Jfr;) (16) 

where e is the pipe roughness. 

Assuming that f0 is constant during draining, the expres-

7.2 

5.6 
N 

€ 

~ 4.0 
,;; 

2.4 

0.8 

-0.8 
0.36 0.48 0.60 0.72 0.84 0.96 

Concentration, x1 

Figure 4. Variation of k ,, k2, and cx 12 during distillation 
for the non-ideal water-ethanol system. 

D 
21-----4--------------

Ho 

d L 

z2--------------

Figure 5. Tank with draining pipe. 
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sion for Y2 from Eq. (14) can be introduced into Eq. ( 13). 
Integration fro m H0 to Hr yields the expression for the total 
time required for draining, tr, 

tr= o; I (1+rd1 ) (.JH0 +1- .JHr+ L) (17) 
d g d 

The solution of the simplified model (Eq. 17) is compared 
with the rigorous solution for the case of turbulent draining 
(Example 2a) and for the case where transition from turbu­
lent to laminar flow takes place during the draining. 

2a. Tank Draining in the Turbulent Region 

The fo llowing numerical data was used for the calcula­
tions in the turbulent region: D = 3 ft, H0 = 3 ft, and Hr= 1 in . 
The draining pipe is a nominal 1/2" schedule 40 steel pipe 
with roughness e = 0.00015 ft. The liquid in the tank is water 
at 60°F (kinematic viscosity u = 1.22 x I 0-5 ft2/s). 

The initial and final conditions obtained by so lving the 
system of algebraic equations (comprising Eqs. 14 and 16) 
are shown in Table 4. 

It can be seen that although the exit velocity and the 
Reynolds number are significantly reduced (to about half of 
their initial value), the friction factor changes only by about 
6%. Using the average value off0 = 0.0291 in Eq. (17) yields 
a draining time of tr = 1000.58 s. 

To solve the rigorous model , Eq. (I 6) is rewritten as 

TABLE4 
Initial and Final Conditions in Turbulent Draining 

Initial 

Final 

5.6 

"' 0 ...... 4.8 
>< 
-..."' 
...:- 4.0 
§ 
~ 
i:: 

3.2 
0 ·c 
u ·c:: 

t.1-
2.4 

Liquid Level (ft) Exit Velocity (ft/s) 

3 

0.08333 

Hydraulic fluid 

Water 
-------- -------

12.9 157 

6.64831 

Re 

54873 .9 0.02821 

28246.2 0.02998 

1.6 L~--L-~-.l..-~~--'--~--'--~--:'1 0 
0 0.2 0.4 0.6 0.8 . 

-3 
Time, t•lO [sec] 

Figure 6. Friction factor variation during tank draining. 
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{ 
( e 2.s 1 1}-2 

E= -2 logl------J -f0 
3.7d Re -Jfr; 

with an additional differential equation 

df 
___Q_ = K cE 
dt 

( I 8) 

(I 9) 

Applying the same procedure used in the batch distillation 
example for calculating Kc yields the value of Kc = I. Solv­
ing the rigorous model by numerical integration yields a 
draining time of tr= 999.5 s. Thus, the difference between 
the values calculated by the simplified and rigorous models 
is insignificant (about 0.1 %). 

Figure 6 shows the change of the friction factor during 
draining. The almost linear and very moderate change of f0 

causes the simplified model to be very accurate in this ex­
ample. 

2b. Tank Draining in the Transitional 
and Laminar Regions 

The system geometry is the same as in Example 2a, but the 
liquid in the tank is now hydraulic fluid (MIL-M-5606) at 
60°F (kinematic viscosity u = 20.9 x 10-5 ft2/s) . 

The initial and fi nal conditions obtained by solving a 
system of algebraic equations (comprising Eqs. 14 and 15 or 
16) are shown in Table 5. It can be seen that initially the flow 
is in the transitional region (2100 <Re< 4000). There is no 
definite rule for the friction factor correlation that applies in 
thi s region. 1131 The equation for laminar flow (Eq. I 5) yields 
a friction factor smaller by a factor of about 2.5 than the 
Colebrook & White equation (Eq. 16) for turbulent flow. 
Consequently, the draining velocity and the Reynolds num­
ber are also considerably different. 

At the final stage of the drai ning, the flow is in the laminar 
region . In order to model this system, we used the Colebrook 
& White equation for f0 as long as Re > 2100, and Eq. ( 15) 
was used after the value of Re dropped for the first time 
below the value of 2100. 

TABLES 
Initial and Final Conditions During Tank Draining in the 

Transitional and Laminar Regions 

Liquid Level Exit Velocity 

(ft) ft/s Re ~ 

Init ial f
0 

from Eq. 15 3 13.7525 3410.77 0 .01876 

f
0 

from Eq. 16 3 11.6509 2889.5 0.04653 

Final 0.08333 6.2263 1544.18 0.0414459 
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Using an average value of f0 = 0.04399 in Eq. (17) yields a 
draining time of tr - 1088.76 s. Solving the rigorous model 
using the controlled integration method yields tr= 1057.9 s. 
Thus, there is only a 3% difference between the results 
obtained by the simplified and rigorous models. It is to be 
noted that the difference increases as the period of laminar 
draining extends. 

Figure 6 shows the change of the friction factor during 
draining. It can be seen that it increases gradually during 
draining until the Reynolds number reaches Re= 2100 for 
the first time. At this point, the friction factor calculation 
swi tches to the laminar flow equations. This causes the 
friction factor to drop to about half of the turbulent flow 
value. 

In Figure 7, a similar jump in the exit velocity is notice­
able at the point where the flow regime changes. From this 
point on, the friction factor starts increasing gradually as the 
flow stays in the laminar regime. 

If we attempt to solve this problem by differentiating Eq. 
(16) to obtain an expression for dfofdt for converting the 
original DAE system into an ODE system, the system must 
be reinitialized at the point of transition from turbulent to 
laminar flow. The controlled integration method automati­
cally adjusts to such a di scontinuity caused by switching 
between the two different correlations for the friction factor. 

ADV AN CED TOPICS 

The controlled integration method, as presented in the 
previous sections, enables students without any background 
in numerical analysis or control theory to solve simple DAE 
systems using interactive computational tools they are fa­
miliar with. For students who have been exposed to process 
control principles, the method can be extended to include 
more complex DAE systems using PID controllers. 

A DAE system can be written in general as 

and 

dx -=f(x,y, t) 
dt 

X = x0 at t = 1° 

g(x, y, t) = O 

(20a) 

(20b) 

For solving this system using the controlled integration 
method, Eq. (20b) is rewritten as 

E = g(x, y, t) (20c) 

and the following equations are added: 

dy -= q 
dt 

(20d) 

( 1 1 
q=Kcl E+__!_ J Edt + -r o dEj 

-r ; dt 
0 

(20e) 
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The set of algebraic equations (Eq. 20b) is solved at the 
initial point; thus y = y0 at t = t0 so that g(x0 , y° , o) = o. For 
rigorous solution of the DAE system, controller(s) are used 
to force y to follow the solution curve. The method for 
selecting the controller type and the tuning parameter values 
is discussed in detail by Shacham, et al. l 141 

Students who have access to large-scale dynamic simula­
tion programs (such as SPEEDUPl151

) can solve DAE sys­
tems directly, just like ODE systems. Unfortunately, these 
large-scale packages are sti ll too complex to be used in 
undergraduate education. 

SUMMARY AND CONCLUSIONS 

We have shown that application of closure laws in realistic 
modeling will often lead to the need to solve DAE systems. 
Educators in the past were reluctant to discuss such prob­
lems because there were no software tools available to en­
able students to solve DAEs. 

We have introduced the controlled integration method, 
which enables students without prior knowledge of numeri­
cal analysis or process control , to solve simple DAE systems 
using user-friendly popular software tools, such as MAPLE, 
MATLAB, and POLYMATH. 

The examples presented clearly demonstrate that without 
solving the rigorous model , the error introduced by certain 
simplifying assumptions often cannot be appreciated. There 
is no justification whatsoever to avoid classroom problems 
(where, say, the relative volatility is not constant) just be­
cause an elegant analytical solution does not exist. Just as 
user-friendly NLE solvers enable students to deal with real 
gases represented by various equations of state (in addition 
to the ideal gas), the method presented in thi s paper enables 
them to deal with non-ideal so lutions in addition to the 
traditional treatment of ideal solutions. 
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APPENDIX A -------------. 

Calculation of the Controlled Integration Kc for the Batch Distillation Problem 

The change of temperature in the batch still can be 
expressed by the differential equation 

dT aT aE (A-1) 

Both derivatives on the right-hand side of this equation 
can be easily estimated by integrating the simplified model , 
observing the change of E vs. xi while keeping T con­
stant. The slope of the curve l';E / ill< yields an estimation 
for aEI axi. Introducing a small change in the tempera­
ture, t,T, and measuring the resultant change in the error, 
l';E provides an estimate for aT I aE - t,T I L';E. In order to 
keep the error within a desired error tolerance, (lt,Ej ~ Ect) 
the integration step size, L',xi should be of the order of 
Ect f(t,Ef L',xi ). 

E 

0.36~-----------------, 

0.28 

0.20 

0.12 

0.04 ___ step change li.T= -1°C _________________________ _ 

-0.04L-_,__...J_~~-'---~--'-~--'--~-~ 
0.40 0.48 0.56 0.64 0.72 0.80 

Concentration, x2 

Figure A-1. Variation of the error in the bubble point 
equation for the constant temperature batch 

distillation model. 
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Comparing Eq. (8) with Eq. (A- 1) shows that 

K ,,, _ aT _I_ 
c aE l';.X j 

Thus, the value of t,xi and t,T I L';E can be used to obtain an 

appropriate value for Kc. 

It should be emphasized that only a rough estimate for 
Kc is needed. Most recent integration routines include step 
size control algorithms, whkh will change the value of 
ill<i to make Eq. (8) an accurate representation of dT/dxi. 

The calculation of Kc is demonstrated with reference to 
Figure A-1 , which shows the variation of E vs. x2, for the 
example of batch distillation of the benzene-toluene mix­
ture. The temperature is kept constant during the integra­
tion, except a step change of -1 °C, which is introduced at 
X2 = 0.4J. 

It can be seen that E increases linearly from an initial 
value close to Oto about 0.36 for x2 = 0.8. The slope of the 
straight line yields aE / ax 2 "' 0.76. Thus, in order to achieve 

a solution with a tolerance Ect = 10-5
, the controlled inte­

gration should use a step size 

10- 5 
t,.x 2 "' -- = l.3 x I0- 5 

0.76 

The step change introduced in the temperature (-1 °C) 
causes an increase in the error ( l';E = 0.028 ), hence 

aT "' _=.!..._ = -35.7 
aE 0.028 

An appropriate value for I<., is thus Kc = 35.7/l.3 x 10·5 = 
2.7 X 106
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