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The object of this column is to enhance our readers ' collections of interesting and novel 
problems in chemical engineering. Problems of the type that can be used to motivate the student 
by presenting a particular principle in class, or in a new light, or that can be assigned as a novel 
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elucidate difficult concepts. Manuscripts should not exceed ten double-spaced pages if possible 
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n-butane 

The Peng-Robinson equation of state and its close kin, 
the Soave-Redlich-Kwong equation, are simple yet 
very effective tools for solving phase equilibria prob

lems involving hydrocarbons and other nonpolar and slightly 
polar species. Being cubic equations, when solved for the 
compressibility factor, Z, they will either yield three real 
roots or a single real root and a complex pair. It would be 
most convenient and is sometimes believed that one single 
root implies a single phase while three real roots imply 
liquid and vapor phases are in equilibrium. Sadly, such is 
not the case. Care must always be taken to extract the 
correct root. Major blunders can be made, as we will show 
in the following problem. 

Figure 1. Throttling of n-butane to known final pressure. 

perature of the stream as it exits the valve? Use the Peng
Robinson equation of state to model the PVT behavior of n
butane. 

( PROBLEM STATEMENT) 

Pure n-butane at 430K and 60 bars is throttled to a final 
pressure of 10 bar, as shown in Figure 1. What is the tern-
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C SOLUTION) 

The Peng-Robinson equation is written as 

p = RT _ a 
v - b v( v + b) + b( v - b) 

where 

R universal gas constant 
T absolute temperature 
v molar volume 

a ac[1+m(l - .fT/Tc )]2 

a 0.45723553 R2T 2/P 
C C C 

(I) 
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m 0.37464 + 1.54226 ro-0.26992 ro2 

b 0.077796074 RT /P 
C C ( I ] 

Tc critical temperature = 425.1 K for n-butane 
Pc critical pressure= 37.96 bar for n-butane111 

ro pitzer acentric factor= 0.200 for n-butane111 

It is common to rewrite the Peng-Robinson equation as a 
cubic polynomial , 

f(Z) = z3 + az2 + pz + y = o 
where 

a = B-1 

p = A-2B-3B2 

y = B3 + B 2 
- AB 

and 

A= aP/(RT)2 

B = bP/RT 

(2) 

Since an energy balance written across the valve (assum
ing residence time of the fluid in the valve is so short that 
heat loss through the valve casing is negligible) states that 

~ = 0 , we therefore need to find the exit temperature, T2, 

that satisfies thi s condition. This requires that we be able to 
calculate the enthalpy change across the valve, L'1H. We will 

consider L'1H to be the sum of two parts, an ideal gas contri
bution and a residual correction for non-ideal behavior, 

(3) 

The ideal gas contribution is determined from ideal gas 
(low pressure) heat capacity data: 

(4) 

Heat capacities for gases in the ideal gas state are func
tions of temperature only and are usually given by correla
tions. A common correlation111 is 

(5) 

Table l shows the coefficients for n-butane in the ideal gas 
state. 

The residual contribution is calculated using standard equa
tions12·31 derived from the Peng-Robinson equation of state, 

(6) 

where 

R Ta' -a [z+s(1+✓2)] 
H = ----r,;- fn ( ) + RT(Z-1) 

b-v8 Z+Bl-✓2 
(7) 

and 
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TAB LE 1 TABLE2 
Ideal Gas State Heat Enthalpy Changes 
Capacity Coefficients 

for n-butane I / Kl ~H(.J/mole) 

n-butane 400 1810.13 

A 1.935 
375 5508.98 

B 36.9 15 X 10·3 350 2394.94 

C - 11.402 X 10·6 325 -683.42 

D 0 
330.53 1 0.00 

, da - ma 

a = dT = [ I + m( I - ✓T / Tc ) ]✓TTc 

HF and Hf are evaluated from Eq. (7) using the compress

ibility factors corresponding to the initial and final states, 
respectively . 

A temperature for the stream leaving the valve may be 
guessed and ~ calculated as indicated above. Proceeding 
by trial and error (the secant method141 could be used to 
impose self-consistency and avoid a trial-and-error solu
tion) , we obtain Table 2. We see that a value ofT2 = 330.53 lK 

gives a L'1H equal to zero (within two decimal places accu
racy). 

The "solution" is that the exit stream is n-butane vapor at 
330.53 lK. All done, right? Not quite. Everything seems well 
until one looks at a phase diagram for n-butane or notices 
that the temperature is well below its boiling point at 10 bar 
pressure (Tsa'=352.475K), and therefore at these exit condi
tions (10 bar, 330.531 K) n-butane is a subcooled liquid. This 
is shown in Figure 2. The actual state of n-butane at 10 bar 

Figure 2. Pressure-enthalpy diagram for n-butane. 
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and 330.531K is shown by them in Figure 2, obviously far 
from the correct solution (Point 2 in Figure 2), which indi
cates that the exit stream is a mixture of vapor and liquid. 

The calculation has been deceiving us with bogus quasi
vapor roots. Vapor roots can only be used for temperatures 
above the boiling point. Below this temperature, liquid roots 
must be used. Therefore, to proceed with the solution to this 
problem, we should first determine the boiling point, T'•1

, for 
n-butane at 10 bar. Since at the boiling point, liquid and 
vapor phases must be in equilibrium, we must find the tem
perature at which the chemical potentials of both phases are 
equal. For a pure component, this is equivalent to saying that 
the Gibbs free energies must be equal for the two phases. 
Since the ideal gas contribution to the Gibbs free energy is 
the same for each phase, we only need concern ourselves 
with the residual contribution. At the boiling point we re
quire that 

{8) 

The residual Gibbs free energies are calculated from the 
Peng-Robinson equation of state using the standard derived 
formuJa!2-3l 

R a [Z+ B(l+✓2)] 
G =--.en---- -RT{Z-B)+RT{Z-1) 

b✓8 Z + B( I - ✓2) 
{9) 

The vapor GR in Eq. (8) is computed from Eq. (9) using the 
largest compressibility factor root. Similarly, the liquid GR 
should be calculated using the smallest root. Different tem
perature values may be selected on a trial-and-error basis 
until the equivalence of Eq. (8) is satisfied to within some 
tolerance. (Again the secant method can be used to facilitate 
coding of this algorithm.) Proceeding in this manner, we 
find that at 352.475K, GR= GL = -540.28 J/mole, and there
fore T'•1 = 352.475K. 

For this problem, one will find that ~H is positive when 
using the vapor roots at r •1

, and m is large and negative 
when using the liquid root at r •1

• Therefore, the exit stream 
is a mixture of liquid and vapor in just the right combination 
to make ~H = 0. Equation (6) must be modified to include 
both a vapor and liquid contribution to the enthalpy of the 
exit stream, 

R R ( ) R R Aff = xH 2v + 1- x H2L - H 1 {10) 

TABLE3 

T 

280 

293 

352.475 

396 

600 
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Computed Compressibility Factors 

ZL Z middle Zv vL(m3/kmol) v middl,(m3/kmol) vy(m3/kmole) 

0.03982 none none 0.09270 none 

0.03907 0.4422 1 0.48898 0.09617 1.07724 

0.03880 0.13666 0.79982 0.11370 0.40048 

0.05482 0.05694 0.86624 0.1 8048 0.18746 

none none 0.96897 none none 

12 

11.5 T=Tc 

Satu:ated Liquid 
11 

10.5 Bogus 
... Bogus 

293K .. Good Ill 10 • a:- 293K 

9.5 
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Satt..raled Saturated I 

8.5 Liquidl\/clar Vaporl\/clar 
Vdure=0.1137 Vdurre = 23438
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Figure 3. Magnified pressure-volume diagram in the region 
P=lO bar for n-butane 

3 

none 

1.19116 

2.34383 

2.85197 

4.83360 
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where x is the quality or percent vapor in the two-phase exit 
stream. When the calculation is made using Eq. (7), the exit 
stream is found to have a quality of 0.8434. Therefore, the 
correct solution to the problem is that the exit stream is at its 
saturation temperature of 352.475K and consists of 84.34% 
vapor and 15.66% liquid (as shown in Figure 2). 

DISCUSSION 

To illustrate more clearly what has happened here, we will 
look at solutions of the Peng-Robinson equation for Z (and 
v) at 10 bar at various temperatures. Obviously, at 10 bar, n
butane exists as a superheated vapor above T'•' and as a 
subcooled liquid below T'•'. At various temperatures at P=l0 
bar, we obtain Table 3 from Eq. (2) . 

Which roots are valid? 
Certainly we can rule out 
all of the intermediate or 
middle values. (These in
termediate roots that lie 
within the saturation en
velope are of use in sta
bility analysis, 151 some
thing we are not con
cerned with here.) Also, 
any liquid roots above the 
boiling point must be 
ruled out, and any vapor 
roots below the boiling 
point must be eliminated. 
Only the values in bold 
print hold any physical 
significance for us. (The 

.;.Q.02 -1----- 

N 
;;:-

-0 .06 

0 0.1 0.2 0.3 0.4 

trated in Figure 4, which shows the cubic polynomial in Z 
(Eq. 2) as a function of Z. This area is marked "Danger!" in 
Figure 4. The polynomial crosses the zero horizontal axis 
three times within the danger region 293K:5:T:5:T'•'. There
fore, in our example above, at 330.531K, the Peng-Robinson 
equation cheerfully provided an erroneous vapor root that 
gave us a nonsense solution to the problem. 

A similar situation exists at temperatures above the boiling 
point. Between the boiling point and temperatures as high as 
396K (a 43K spread), bogus liquid roots are calculated. This 
dangerous region is also marked on Figure 4. At tempera
tures over 396K, only a single (vapor) root is calculated, and 
there is no danger of bogus roots. 

The key point is that before we can decide which roots are 

Danger! 

0.5 

z 

0.6 0.7 0.8 0.9 

valid and which are bo
gus, we must already 
know the boiling point. 
An equivalent procedure 
would be to select the 
value of Z that corre
sponds to the lowest re
sidual Gibbs free energy 
or fugacityl61 since the 
liquid and vapor free en
ergy curves cross at the 
boiling point. Without 
taking these steps, it is 
easy to end up in big 
trouble. 

CONCLUSION 

In conclusion, it is not 
Peng-Robinson equation 
is not recommended for 
calculating subcooled liq
uid values, but values are 
physically significant 

Figure 4. The Peng-Robinson polynomial 

f(Z) = z3 + aZ2 + ~z + y 

possible to assume sim
ply that large roots of Eq. 
(2) are vapor values and 
that small roots are for 

as a function of Z for n-butane at 10 bar for various temperatures. 

even if they are of low accuracy.) 

Figure 3 is a magnified PY diagram in the region of IO bar 
and shows the bogus liquid root at 396K (0. 18048 m3/kmol) 
and the bogus vapor root at 293K (1. 19116 m3/kmol). Their 
respective valid superheated vapor and subcooled liquid vol
ume roots are also shown. The saturated molar volumes are 
also indicated in Figure 3. Note that the bogus roots lie 
within the phase envelope. 

The danger is that we obtain what appear to be liquid and 
vapor roots in regions quite far from the boiling point. A 
value of 293K is the minimum temperature (rounded to a 
whole number) that will still yield a bogus vapor root. At 
temperatures lower than this, the Peng-Robinson equation 
will provide just one real (liquid) root, and there is no dan
ger. In this region between the boiling point and 293K (about 
a 60K spread), bogus vapor roots will appear. This is illus-
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the liquid. There is a large margin on both sides of the 
boiling point where bogus liquid or vapor roots are calcu
lated. Selection of the correct root requires additional infor
mation, and considerable care must be taken. 
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