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TEACHING PDE-BASED MODELING TO 
ChEUNDERGRADUATES 

Overcoming Conceptual and Computational Barriers 

KARSTEN E. THOMPSON 

Louisiana State University • Baton Rouge, LA 70803 

Introducing partial differential equations (PDEs) in the 
undergraduate engineering curriculum can be frustrat­
ing for both students and instructors. Many students 

gain a dislike of differential equations before the core engi­
neering curriculum even begins. As engineering instructors, 
we then face a number of challenging problems. We must 
help the students overcome conceptual barriers associated 
with the math and help them envision the physical phenom­
ena being described. Additionally, we must devise models 
for which we can obtain solutions in limited timeframes 
(i.e., class time or homework time). This latter constraint is 
imposed by computational barriers, which often restrict us 
to overly simplistic problems that have limited engineering 
relevance. Although these computational issues have been a 
stumbling block in the past, modern numerical packages 
prove to be very accessible , even to the undergraduate 
student, and have been shown to improve learning in a 
number of ways. [e.g., IJ 

This paper describes an instructional framework that was 
used for incorporating computational tools into a relatively 
short section on PDEs during an undergraduate modeling 
course. The rationale is that by allowing the students to 
jump headlong into the solution of real engineering prob­
lems, the emphasis in the classroom can change. Attention 
can be diverted away from arduous mathematical detail s 
(for the moment) and focused on broader conceptual issues 
such as the general behavior of classes of equations, or using 
a model for design considerations. This approach has a 
number of advantages. The students' concurrent, hands-on 
solution of problems is a powerful method for illustrating 
fundamentals (that otherwise seem abstract). More time can 
be committed to model development and general behavior 
(which remain with students longer than the details of solu­
tion techniques). And, the ability to solve real engineering 
problems illustrates to the students the true power of 
mathematical modeling. 
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A number of computational packages are avai lable and 
appropriate for undergraduate education. Mathcad, Maple, 
Mathematica, MATLAB , and Polymath are all common in 
chemical engineering education. 11 41 Fluent is especially ef­
fective for CFD applications.'51 We focus on MATLAB in 
this paper, largely because of its unique PDE Toolbox. At 
LSU , MATLAB is provided to the students via the 
department's PC network. (An academic unit can provide 
MATLAB on a number of PCs without a large investment 
by purchasing a classroom kit.) Additionally, Mathworks 
has recently released a student version of MATLAB (which 
is the professional version plus popular toolkits) that helps 
students who wish to work at home. 

In the remainder of this paper we will discuss the context 
for thi s approach and one possible strategy for breaking 
down conceptual barriers in the classroom. At the end, three 
example problems will be solved using MATLAB, illustrat­
ing the type of modeling exercises that can be assigned to 
complement conceptual discussions in the classroom. 

CONTEXT 

The ideas and examples described here were developed as 
part of a senior-level math-modeling course at LSU, which 
is described below. When beginning the PDE section of the 
course, it was helpful to consider the contexts in which our 
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students typicall y are introduced to PDEs. Unfortunately, these encounters are infrequent 
and generally presented as asides to the main material. 

Consider three of the most likely places that ChE undergraduates run into PDEs. First, 
they may arise at the end of an introductory numerical methods course. But using Chapra 
and Canaie161 as a guide, we see that PD Es are relegated to Chapter 29, suggesting that the 
topic probably receives a quick overview near the end of this type of class. PDEs are 
usually presented again in the undergraduate fluids course in the form of the Na vier-Stokes 
equations, but the emphasis here is placed on the flow phenomena rather than the math­
ematics (rightly so), and the solved examples are nearly always one-dimensional problems 
that reduce to ODEs. Hence, for chemical engineering students, the lasting impression of 
PDEs usually comes from dealing with the unsteady heat equation. While the equation and 
its application are fairly easy to grasp, the mathematics are not; the most common 
introductory solution is for a semi-infinite domain, which calls for abstract boundary 
conditions, a similarity transform, and an error-function solution. (Surely, the frequent 
appearance of erf on comical student-organi zation T-shirts should tell us something! ) 

While experiencing PDEs in a variety of contexts emphasizes their importance, it 
likewise seems to leave the students somewhat unsettled and without a firm foundation for 
the subject. These considerations helped formulate an approach that was used when given 
the luxury of spending three or four weeks on the topic of PD Es with senior-level chemical 
engineers. At LSU, the class in which this occurs is "Development of Mathematical 
Models." It affords a number of unique opportunities for the instructor. Being a math 
course among other more popular electives, it attracts some of the better undergraduates 
along with a few Masters students from our graduate program and from industry, and these 
students have more-or-less completed the 'principles' classes. Also, beyond the class's 
strong modeling emphasis, the topical coverage is left largely to the instructor's discretion 
(see Rice and Do'7l for a template of the course offered at LSU). Finally, at the point in the 
semester when PDEs are introduced, the students have themselves derived a number of 
PDEs governing transport and reaction engineering problems that subsequently were 
reduced to simpler form. Hence, their foundation for model development is strong, and 
they can clearly see the need to move beyond algebraic equations and ODEs in order to 
make full use of their models. 

APPROACH 

The educational objective is to allow the students to solve complex PDEs of real 
engineering interest, without sacrificing coverage of fundamental mathematical behavior. 
To realize thi s goal, an approach is used whereby classroom coverage includes topics such 
as the origin of the equations, visualization of the solution space, qualitative behavior, and 
ties between the physical phenomena and mathematics. These topics are potential concep­
tual barriers, and overcoming them can make the terminology and the detailed mathemat­
ics less intimidating. At the same time, to prevent excessive classroom time being devoted 
to numerical techniques or speciali zed software, the students are left mostly on their own 
to pursue numerical solutions to homework or modeling projects. This approach works 
well (given good numerical tools) because the solutions that the students have themselves 
worked out are highly effective illustrations of conceptual topics. In the past, it would have 
proved less feasible because, until the instructor covered solution techniques, the students 
lacked the tools to fully explore the mathematical models with which they were working. 

The intent is not to de-emphasize the crucial subject of solving PDEs. Rather, these 
issues are postponed until the foundation is stronger. If implemented properly, this ap­
proach shares many positive attributes of 'just-in-time learning' employed by Finlayson: l8l 

modeling projects evolve so that just as students identify the need for new mathematical 
tools, the relevant subjects are addressed. The benefit of incorporati ng software such as 
MATLAB is that topical coverage in the classroom can remain fundamental without 
slowing the students ' progress toward quantitative solutions. 
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CONCEPTUAL BARRIERS 

Conceptual barriers are never clear-cut, and they of course 
depend on background, learning style, and ability. But we 
will attempt to generalize a set of hurdles that stand between 
more easily conceptualized physical behavior and the corre­
sponding mathematics. An example is the categorization of 
PDEs; the mathematical definitions of parabolic versus hy­
perbolic PDEs probably seem abstract at first, but explaining 
the analogy to the synonymous heat and wave equations 
makes this classification more tangible. 

solution techniques and the problems were more often than 
not restricted to one spatial dimension. From a numerical 
perspective, innovative ideas have been presented for pro­
gramming solutions to PDEs at an introductory leve] ,l 10

-
11 1 

but these too are dimensionally restrictive. In contrast, mod­
ern numerical software gives the student more flexibility 
with respect to the type of problems that can be so lved 
and the way in which they can be explored. 

Software such as MATLAB's PDE Toolbox allows two­
dimensional problems of arbitrary geometry to be set up and 
solved in a matter of minutes. In MATLAB , the system 
geometry is entered using a graphical user interface (GUI) 
that strongly resembles familiar drawing programs. Equa­
tions and boundary conditions are chosen from radio-button 
menus , and clicking with the mouse results in mesh 
discretization, solution by the finite element method, and a 
wide range of three-dimensional color graphical output. Nu­
merical output is only slightly harder to manipulate, requir­
ing a review of MATLAB 's built-in ' pdetool ' scripts . The 
PDE toolbox can be used at an introductory level without 
extensive knowledge of the basic MATLAB software. 
Hence, the time spent in familiarizing students with the 
software can be kept relatively smal I. In 1997, the PDE 
toolbox was introduced to the students during a single-

This development of strong ties between analogous physi­
cal and mathematical behavior provides a basis for breaking 
down conceptual barriers. Emphasis is placed on the behav­
ior of general classes of PDEs, with concrete examples used 
to illustrate these ties. It is hoped that the foundation and 
comfort level that can be achieved by this approach offsets the 
' risk' of sending the students headlong into numerical solu­
tions (without much knowledge of the associated techniques). 

No single list of conceptual barriers is comprehensive. 
Table I shows a li st of topics that are addressed sequentially 
by the author during a three-week section covering PDEs. 
The first couple of points are general, but the latter part of 
the list applies to second-order PDEs, for two reasons. First, 
many second-order equations can be packaged neatly into 
elliptic, hyperbolic , and parabolic 
categories, which aids in general-
izing behavior. Second, these are 
the types of equations amenable 
to solution in MATLAB 's PDE 
Toolbox, which was an essential 
part of the approach. 

The in-class overview of second­
order PDEs was taken largely from 
Crandal1 ,l9l who does an excellent 
job of tying qualitative behavior of 
the equations to quantitative math­
ematics (numerical and analytic). 
The approach promotes picturing a 
PDE as a family of surfaces, the 
correct surface being pinned down 
by the appropriate boundary and ini­
tial conditions. Crandall explains the 
difference between equilibrium 
problems and propagation problems, 
which ties in nicely to a discussion 
of the characteristic curves for para­
bolic and hyperbolic equations. 

COMPUTATIONAL BARRIERS 

Effective use of a math model re­
quires, of course, a solution. In the 
past, a significant time investment 
was required to introduce analytic 
148 

TABLE 1 
Synopsis of Conceptual Topics Discussed During Classtime 

During the PDE Section of a Modeling Course. 

Topic used to address 
conceptual barrier 

Independent and 
dependent variab les 

Picturing the solution 
surface 

Second-order PDEs 

Equi librium versus 
propagation 

Characteristic lines 

Finite difference 
methods 

Stability and 
numerical diffusion 

Synopsis o{lhe classroom discussion 

Use a 'familiar' equation to emphasize independent/dependent and how 
they define a PDE. 

An ODE describes a family of curves; one or more boundary conditions 
pin down the curve of interest. 

Similarly, many PDEs can be pictured as a surface, pinned at the edges. 

These are categorized as elliptic, parabolic, or hyperbolic. It helps to 
understand physical behavior associated with each in the form of Poisson's 
equation, the heat equation, and the wave equation. 

Elliptic equations describe equilibrium or 'jury' problems191-the boundaries 
(which are fixed on all sides) wholly dictate the shape of the interior. 

Propagation problems have an open boundary. The surface evolves with time, 
pinned on the sides by boundary conditioins and at the front by initial conditions. 

Characteristic lines are sudden changes in the slope of the surface (like creases), 
brought about by changes in boundary conditions. 

Parabolic equations have one characteristic line; changes at the boundary are 
propagated instantly but weakly into the interior. 

Hyperbolic equations have two characteristic lines. Changes at the boundary are 
propagated into the interior at full strength but at a finite speed. 

There are analogous characteristic lines for the finite difference method. These 
partly dictate step size in propagation problems. 

When using numerical solutions, we must be wary of errors inherent to the solu­
tion technique. Many of these stability issues relate to the form of the governing 
equation . 
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class session held in the de­
partment computer lab. In 
1999, it was introduced via a 
step-by-step instruction set 
handed out to the students, 
thus requiring no class time. 

The use of software should 
not de-emphasize the impor­
tance of teaching analytic and 
numerical techniques for solv­
ing PDEs. Instead it should al­
low us to embrace the introduc­
tion of PD Es at the undergradu­
ate level (if their use enhances 
the fundamentals being taught) 
and encourage exploration and 
critical thinking early on. 

t 

0.5 

-0.5 

-1 

-1.5 
-1 .5 -1 -0.5 0 0.5 1.5 

Length 

domain (boundaries along the 
centerlines of two neighbor­
ing fins) or 1/32 of the do­
main ( one boundary along a 
fin and one along a fluid line 
of symmetry) . We show the 
former approach below. 

For unidirectional flow, the 
Navier-Stokes equations re­
duce to11 31 

(1) au 2 
p-=G(t)+µv' 2u at 

where u is the velocity in the 
direction of flow, G(t) is the 
pressure gradient in this di-

Three examples are given 
below. These were chosen to 
illustrate a number of points. 
First, they are indicative of the 

Figure 1. Velocity map in entire heat-exchanger domain taken 
from undergraduate students' solution. 

rection, and v'~ is the 

Laplacian for the two direc­
tions orthogonal to flow. 
Hence, for a steady flow, G is 
constant and the equation re-

types of problems easily solved by MATLAB (most impor­
tantly, those with arbitrarily complex boundary geometries). 
Second, one each of an elliptic, parabolic, and hyperbolic 
equation are shown. Third, and most important, they typify 
problems where the student clearly understands the engi­
neering relevance and the manner in which their models can 
be used in design. This last aspect becomes especially 
effective when a model can be tied to an experiment, as 
is shown in Example 1, or, for instance, in reference 12. 
The MATLAB scripts for these examples can be found 
on the web at <www.che.lsu .edu/faculty/thompson/ 
education.htm> 

Example 1 
Steady Laminar Flow in a Finned Heat Exchanger 

For parallel laminar flow through a duct, the Navier-Stokes 
equations reduce to Poisson ' s equation (a scalar equation 
since there is only one velocity component) . This example is 
for flow in the annulus of a heat exchanger in LSU' s ChE 
measurements laboratory. This example was of particular 
interest to students in the math modeling class because many 
of them had used this apparatus for a pressure-drop-versus­
flowrate experiment in which they calculated the friction 
factor for the annular region. Additionally, the complex ge­
ometry in the annulus makes the problem an excellent candi­
date for solution using MATLAB . 

The annular space in the heat exchanger is contained be­
tween r = 1.05 inches (OD of inner pipe) and r = 2.469 (ID of 
outer pipe) . It contains 16 symmetrically placed fins of width 
1/32 inch and length 1/2 inch, as shown in Figure 1. Symme­
try allows the solution to be performed in either 1/16 of the 
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duces to Poisson ' s equation 

v' ~u=-G/µ (2) 

Zero-velocity boundary conditions are used along all sur­
faces of the heat exchanger. Depending on how the FEM 
domain is chosen, lines of symmetry are likely to arise, in 

which case symmetry boundary conditions (n-v'u=0) are 

also used. In MATLAB , the elliptic equation is written as 

-div[ c * grad( u)] +a * u = f (3) 

where 'div ' and 'grad ' are the divergence and gradient op­
erators , respectively . Hence, one would specify c=l, a=0, 
and f=G/µ to perform the calculation. The solution using 
MATLAB ' s PDE Toolbox involves four steps: 

I. Map the domain using the GUI. (The geometry can be drawn 
crudely using the mouse, and then refined by double-clicking 
on the various polygons to type in precise vertex positions.) 

2. Select the governing equation and boundary conditions. The 
GUI contains a radio-button interface that allows the user to 
specify the type of equations and boundary conditions along 
with values of parameters. 

3. Solve the problem. After step two, the solution consists of 
clicking two buttons: one to generate and refine the FEM 
mesh and the second to solve the problem. A wide range of 
graphical output is available. 

4. Quantitative analysis. This last step requires slightly more 
user experience since the command-line interface must be 
used. For instance, values of velocity at each node in the mesh 
are contained in an array that can be exported to the 
MATLAB workspace. There are a series of 'pdetool' 
commands that can then be used to perform interpolation, 
integration, etc. Integration is used to calculate volumetric 
flowrate as a function of the pressure gradient that was 
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Figure 2. Geometry of 1116 of flow region in heat exchanger 
(top); z-direction (perpendicular to page) velocity contours 

(bottom). 
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Figure 3. Snapshots of temperature profiles during tran-
sient heating (t=7 sec, t=2.4 min, and t=l2 min). 
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imposed during specification of the PDE. 

Figure 2 shows how the annulus geometry (l/16 of the entire 
domain) is defined using various simple geometric shapes and 
shows contours of the z-direction velocity (i.e., velocity is perpen­
dicular to the page) . The contours have not been assigned numeri­
cal values in this figure because the velocity depends on one' s 
specific choice of viscosity and pressure gradient. Their shape 
remains fixed , however. 

Integration of the velocity profile to determine flowrate gives a 
fanning friction factor f=19.5/Re, whereas students typically ob­
tain values between f=20/Re and f=25/Re in the experiment (using 
an effective area approach). When quantitative analysis is used, 
one can introduce the students to issues of numerical accuracy. 
Grid refinement is trivial in MATLAB, requiring only the click of a 
button for successive refinements of the FEM mesh. Using various 
levels of grid refinement in this example (the standard mesh followed 
by two successive refinements), one obtains the following values for 
the friction factor: 20.12/Re, 19 .65/Re, and 19 .52/Re. 

Returning to Figure I , one can see the velocity profile for the 
entire annular region, where the lighter shading indicates higher 
velocities. While numerical solution over the entire annular region 
is less efficient than breaking it along lines of symmetry, the 
resulting graphic is more appealing than Figure 2. Figure I was 
taken directly from two students' homework;C 14l they were able to 
work the problem after only a short tour of MATLAB during one 
of the class periods. (The students used inches rather than cm, 
causing the discrepancy of scale with Figure 2.) 

Example 2 
Transient and Steady Heat Transfer in a 

Finned Heat Exchanger 

While the heat exchanger described in Example 1 is not used for 
heat-transfer experiments at LSU, the concept of heat transfer 
from a fin is both important and readily amenable to visualization. 
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Figure 4. Steady temperature profiles for high (top) and low (bottom) 
fin-side heat transfer coefficients. 
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The example shown here can illustrate the unsteady evolu­
tion of a temperature profile as well as the steady-state 
temperature profile for various heat-transfer coefficients. 
The transient problem underscores the behavior of parabolic 
PDEs, while the steady problem helps to illustrate engi­
neering fundamentals : the 
conditions under which fins 
are useful for increasing 
heat-transfer efficiency. 

Parameters are taken from 
Example 27-3 in Bennett and 
Myers,l1 51 and the fin dimen­
sions are based roughly on the 
elliptic example above. The ge­
ometry is made somewhat more 
complex to illustrate the versa­
tility ofMATLAB's GUI. 

SURFACE 

HIGH DENSITY REGION 

can produce wave-like behavior, MATLAB (to the author's 
knowledge) is not equipped to handle convective transport. 
One can, of course, simulate vibration problems or certain 
problems involving sound waves . Instead, the example 
shown here is a highly simplified illustration of seismic 

exploration . It was chosen 
because of its intuitive ap­
peal to an engineer of any 
discipline. 

Artificial seismic waves are 

Figure 3 shows the fin at 
t=7 sec, t=2.4 min, and t=12 

Figure 5. Geometry used f or wave propagation example. 

used in oil exploration or geo­
physical analysis to map sub­
surface structure. The wave 
source may be either on the 
surface or lowered into a well , 
and the responses to the wave 
at various detector locations 
are interpreted to give the 
mapping . On a simplis ti c 

min. The shading shows the evolution 
of the temperature profile in time (an 
effect that is much more dramatic in 
color) . Figure 4 shows two steady-state 
profiles , for a high external heat-trans­
fer coefficient [1500 Btu/(hr-ft-°F)] and 
a low external heat-transfer coefficient 
[1 Btu/(hr-ft-°F)]. The graphics shown 
here help students conceptualize the con­
ditions under which fins can significantly 
increase heat transfer. 

We make two final points. First, the 
evolution of the temperature profile (es­
pecially in color) is helpful for under­
scoring the behavior of a parabolic PDE: 
a change in the boundary condition has 
immediate but weak influence through­
out the fin , and the temperature evolu­
tion is smooth. Second, one can easily 
envision numerous exercises that could 
be performed to illustrate important be­
havior. For instance, a spatially varying 
heat-transfer coefficient (discussed in 
Bennett and Myers) is impossible to im­
pose for even simple analytic solutions, 
but can easily be incorporated into the 
MATLAB solution. 

Example3 
Wave Propagation in a 

Heterogeneous Material 

Applications of the basic wave equa­
tions are less frequent in chemical engi­
neering. While strong convection effects 
Spring 2000 

Figure 6. Wave propagation and reflection 
in a heterogeneous domain. White corre­

sponds to higher-pressure transients. 

level , the propagation of pres­
sure waves in the ground is described 
in the wave equation 11 61 

V2p _ __!_ a 2p = 0 
c2 at 2 

where c is the wave velocity, depen­
dent primarily on the material proper­
ties. A time-dependent pressure must 
be defined at the wave source. Along 
reflective boundaries of the domain, one 
specifies n -Vp = O. 

Figure 5 shows the geometry used 
for this simple example. The interest­
ing features are the slope of the lower 
boundary (which could be interpreted 
as a geologic bedding plane) and the 
inclusion of a material heterogeneity 
at the lower right. These two fea­
tures make the response more inter­
esting, but preclude solution by ana­
lytical means. 

To solve the problem, a pressure spike 
was induced (via a rapidly decaying 
exponential function) along the top 
boundary at t=0. Figure 6 is a qualita­
tive illustration of the resulting wave's 
behavior. The lighter shading (which 
represents the traveling high-pressure 
front) propagates downward, reflects 
off of the bottom boundary, and then 
returns to the surface (where it would 
be detected). Although length and time 
scales are not included since the ex-
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ample is qualitative, one can see the influence of the lower­
density inclusion where the wave gets held up, and one can 
envision how the surface response allows a map of the 
subsurface to be generated. From a mathematical viewpoint, 
this example helps illustrate typical hyperbolic behavior: the 
response of the interior to a change at the boundary is delayed, 
but then felt at full strength once the wave reaches a given 
point. Using this example in the classroom, an otherwise dry 
discussion of characteristic lines for a hyperbolic equation can 
become more captivating. 

CONCLUSIONS 

The use of PDEs in the undergraduate curriculum often 
has mixed results: Important topics cannot be modeled with­
out PDEs. On the other hand, the simplicity of solution do­
mains for analytic problems often makes for abstract relation­
ships to real engineering problems, and the mathematical de­
tails of an analytic solution can distance students from the 
original objectives. 

This paper presents effective uses of modem numerical 
software for solving real engineering problems at the under­
graduate level, which is an increasingly popular approach 
among chemical engineering educators. The quick learning 
curve for certain numerical software allows students to be­
gin exploring a model's behavior almost immediately. Class­
room time can then be used to break down conceptual 
barriers associated with PDEs. It is hoped that thi s ap­
proach lays a better foundation and better prepares stu­
dents for later material on solution techniques , either 
analytical or numerical. 
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RANDOM THOUGHTS 
Continued from page 145. 

The more types of assessment data collected for a specific 
component (column of the matrix) , the more reliable, valid, 
and fair the evaluation of that component. For explanatory 
notes and literature citations on the different assessment 
tools, see Reference 3. 

How might the scholarship of teaching be included in 
tenure and promotion decisions? 

Many academic institutions have begun to acknowledge 
the scholarship of teaching as a valid component of tenure 
and promotion (TIP) applications . An approach being taken 
by several of these institutions is to allow faculty members 
to allocate variable percentages of their total effort to teach­
ing, research, and service, with minimum percentages being 
specified for each area. If more than a certain percentage is 
allocated to teaching, educational scholarship must be in­
cluded in the faculty member's activities and a teaching 
portfolio containing a subset of the items in Table I must be 
included in the TIP dossier. A review committee assigns 
separate numerical performance ratings to each of the three 
areas and weights the ratings by the specified percentages to 
calculate a composite rating, which provides the basis for the 
deci sion on tenure or promotion. 

For ratings of the scholarship of teaching to be reliable and 
valid, the evaluating department should take the following 
steps: 

I] Formulate and announce an assessment and evaluation 
plan. Decide which items listed in Table 1 will be collected in 
the teaching portfolio, taking into account both institutional 
guidelines and considerations specific to the department. 
Choose a system to rate each of the items in the portfolio (e.g., 
rate each item on a scale from O to 10), weighting factors for 
each item, and weighted scores that serve as criteria for ad-
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