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W 
e have developed a mathematical methods course 
for seniors and first-year chemical engineering 
graduate students that uses the matrix exponen­

tial and Maple[ '! to solve initial value problems, boundary 
value problems, and partial differential equations. [2•

31 We 
give here a brief description of some of what we cover in our 
course. 

INITIAL VALUE PROBLEMS: 

ORDINARY DIFFERENTIAL EQUATIONS 

The matrix exponential (exp[At]) arises in the solution of 
a system of linear, ordinary differential equations (ODEs). 
For example, the time dependent concentration of species in 

a series reaction141 (A�B�c) can be obtained by writ­

ing the material balance equations in matrix form,l21 

�� =AY+b(t) (1) 

and solving Eq. (1) by using the matrix exponential [3l 

t 

Y = exp(At)Yo + J exp[-A(t- t)]b(t)dt (2) 
0 

where A has been assumed to be a constant and Y0 is the 
initial condition vector. Equation 2 can be thought of as an 
extension of the integrating factor approach for solving a 
single, first-order linear differential equation. Equation 2 
allows one to solve coupled linear, first-order differential 
equations symbolically as a function of time, the initial 
conditions, and the parameters (k, and k2 in this case). 

In the Appendix, we show how to use Maple to solve for 
the concentration profiles for this series reaction. Note that 
Maple is capable of finding the exponential matrix, exp[At] 
(mat in the Appendix) with t as the independent variable and 
k1 and k2 as parameters. Alternatively, one can program an 

328 

algorithm in Maple to determine the matrix exponential. 
When the coefficient matrix A is a function of time, t, the 
solution can be obtained by using the matrizant15

·
71 and not 

by the matrix exponential. Linear systems of OD Es can also 
be solved using Maple's Laplace transform commands or by 
using Maple's dsolve command. 

Nonlinear, first-order ODEs can also be solved symboli­
cally with Maple's dsolve command. Maple will provide 
either an explicit solution or an implicit solution, depending 
on the degree of non-linearity of the equations. In addition, 
one can use Maple's dsolve (type = series) command to 
obtain a series solution in terms of the independent variable 
and parameters for both linear and nonlinear initial value 
problems. Also, systems of nonlinear first-order ODEs can 
be solved numerically by using Maple's dsolve (type = 
numeric) command. For nonlinear systems of differential 
and algebraic equations (DAEs)/81 Taylor's BESIRK 191 

can be used with Maple. 

PARAMETER ESTIMATION 

Given a set of data and the model equations, Maple can be 
used to estimate parameters such as k1 and k2 by nonlinear 
parameter estimation. The procedure consists of writing the 
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a mathematical methods course for seniors and 
first-year chemical engineering graduate students that 

uses the matrix exponential and Maple to solve 
initial value problems, boundary value 

problems, and partial differential 
equations. 

sensitivity equations1101 or equivalently, the Jacobian ele­
mentsY 11 and solving them simultaneously with the model 
equations. The matrix exponential method (Eq. 2) can be 
used easily for linear systems, and dsolve(numeric) or 
BESIRK can be used for nonlinear systems. Also, Maple can 
be used to find the Jacobians symbolically. 

BOUNDARY VALUE PROBLEMS: 

ORDINARY DIFFERENTIAL EQUATIONS 

Linear, two-point boundary value problems, which consist 
of a second-order differential equation subject to two bound­
ary conditions at different points, can be solved by using the 
matrix exponential (Eq. 2) and Maple. One simply changes 
the second-order differential equation into a system of first­
order ODEs and solves the system with an unknown condi­
tion at x=0. This unknown condition at x=0 is then deter­
mined directly by applying the outer boundary condition at 
x=l to the solution, as illustrated by the solution of the heat 
transfer from a rectangular fin1121 in the Appendix. 

The direct method we have developed has apparently been 
overlooked as a method for solving two-point boundary 
value problems. Perhaps the reason for this is that chemical 
engineers are not familiar with the matrix exponential (as a 
function of the independent variable, t) and do not use Eq. 2 
to solve equations. Also, before we had software such as 
Maple, evaluation of the matix exponential was difficult and 
time consuming. In addition, for problems that yield a coef­
ficient matrix A that depends on the independent variable, 
one must use the matrizant,r5-

7
I which is difficult to do with­

out software such as Maple. It is important to note that this 
direct method (Eq. 2) can be used instead of the method of 
undetermined coefficient, variations of parameters, etc., that 
are commonly used for solving second-order linear BVPs. 

Maple can also be used to obtain approximate solutions in 
symbolic form for linear, second-order BVPs. The process 
for doing this consists of using finite difference expressions 
to represent the derivatives in the governing equation and 
the boundary conditions, which results in an equation of the 
form1131 

AX=b (3) 

The solution to Eq. 3 can be found by using Maple to find 
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the inverse of A symbolically, so that the solution is then 

(4) 

This method has been applied to the heat transfer from a 
rectangular fin example in the Appendix, where it is shown 
that the solution consists of expressions for the values of the 
dependent variables at the node points in terms of the param­
eters of the problem (H in this case). Alternatively, Maple's 
fsolve command can be used to solve linear/nonlinear alge­
braic equations arising during discretization of linear/non­
linear ODEs. Alternatively, one can use NEWTON, devel­
oped by Taylor,r91 to solve a system of nonlinear equations. 
The efficiency of fsolve compared with NEWTON depends 
on the problem. 

PARTIAL DIFFERENTIAL EQUATIONS (PDEs) 

Time dependent heat/mass transfer in a semi-infinite do­
main occurs frequently in chemical engineering. 1 14

•
161 The 

parabolic PDEs that describe these processes are often solved 
by a similarity variable transformation. The solutions ob­
tained usually involve error functions or complimentary er­
ror functionsY·3·

15
·
161 Instead of using a similarity variable 

approach, one can apply the Laplace transformation tech­
nique for the time variable and solve the resulting ODE in 
the Laplace domain using Eqs. ( 1) and (2). The solution once 
obtained in the Laplace domain can be inverted back to the 
time domain. We illustrate (in the Appendix) how this can 
be done by using Maple's built-in Laplace transformation 
commands. We used this method to solve many of the 
problems given in References 15 and 16 for various 
boundary/initial conditions and source terms in the gov­
erning equation. 

Linear, parabolic PDEs in a finite domain can also be 
solved by this method by applying the Laplace transforma­
tion in time, solving the resulting second-order differential 
equation with the boundary conditions in the Laplace do 
main, using the matrix exponential approach presented above, 
followed by using the Heaviside expansion theorem131 to 
invert the solution back into the time domain. Maple is 
especially useful for this purpose when multiple poles are 
involved in the inversion13•

17
•

181 because Maple's limit com­
mand can be used to find the residues. 
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Parabolic PDEs in a finite domain can also be solved by 
separation of variables. Maple can be used to separate the 
variables and integrate the resulting ODEs in time and x 
variable. Oftentimes, the eigenvalues are given by a nonlin­
ear transcendental equation. If one were using FORTRAN, 
one would have to find the eigenvalues by writing a Newton­
Raphson code, or refer to tables. 115•16l Maple can be used to
find the eigenvalues and store them in an array. The solution 
obtained from this method is usually in the form of an 
infinite series 13

.4·
17

•
18

J whose coefficients are found out by 
applying the Sturm-Louivelle theorem. Maple is extremely 
useful in evaluating the definite integrals involved in this 
tedious process. Since the final solution is stored symboli­
cally by Maple, many case studies can be done for different 
parameters and the results can be plotted easily by using 
Maple. This method can be extended to treat Laplace's equa­
tion in two spatial coordiantes (x and y). This type of equa­
tion occurs in steady-state heat/mass transfer in a rectangular 
plate/cylinder115•16 l and potential distributions in electrochemi­
cal cells. ll9,20J 

Linear parabolic PDEs (e.g., heat transfer in a rod) can be 
solved by method of lines. 121

•
22J The derivatives in x are

replaced by finite differences. The resulting set of coupled 
linear first-order ODEs are usually numerically integrated in 
time. 121

·22
J We represent the resulting first-order ODEs in the

matrix form (Eq. 1) and the solution is given by Eq. 2. This 
allows one to solve for the dependent variable (e.g., tem­
perature, concentration) as a function of time, as shown in 
the Appendix. We call this the semi-analytical methodY31 

We have found it to be an extremely useful method for 
solving linear PDEs. Nonlinear PDEs can also be solved this 
way, by quasi-linearizing the nonlinear term and iterating 
for convergence_l24l Another important aspect is that it al­
lows us to solve Laplace's equation (two dimensions in x 
and y), which involves solving simultaneously coupled lin­
ear BVPs. 118

J 

Finally, for coupled nonlinear PDEs (parabolic, elliptic,l25l
or any kind), finite differences can be used in both x and y 
(or t) and solved simultaneously using Maple's fsolve com­
mand. 

In summary, we have found that it is possible to solve old 
problems in new ways by using the power of Maple. We 
suggest that the readers consider trying Maple and contact us 
for help with their problems if necessary. We are planning to 
write a book based on the Maple worksheets that one of us 
(YRS) has prepared for our course and this paper. 
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[ Appendix 

[ lntial Value Problems (Series Reactions, reference 4) 
[ > restart:with(linalg):[ The governing equations for the concentrations of species involved in a series reaction can be written as (rercrence 4)> eql:=diff(Ca(t),t)=-kl*Ca(t);eq2:=diff(Cb(t),t)=kl*Ca(t)-k2*Cb(t);

[ with the initial conditions 
[ 

> ca (0 ) .-cao, Cb < o) , =O, 

eql :=arCa(t)=-kl Ca(t)

eq2 := at Cb(t) = kl Ca(t) - k2 Cb(t)

Ca(O) := CaO Cb(O) := 0 [ These two equations can be written in matrix form (see equation I in the text, note that in this case bis zero). 
> A:=matrix(2,2, [coeff(rhs(eql),Ca(t)),coeff(rhs(eql),Cb(t)),coeff(rhs(eq2),Ca(t))

, coef f (rhs ( eq2), Cb ( t) ) ] ) ; YO: =matrix ( 2, 1, [CaO, 0] ) ;

A := [��l -�
2
] 

ro 
:=[ c;o] 

[ The solution is given by equation 2 with b = 0. 
> mat:=exponential(A,t);sol:=evalm(mat&*YO);

l 

> ca,=sol{ l , 1 J,cb,•sol{2,l]l

[ From a material balance 
Cc:=simplify(CaO-Ca-Cb); 

mat :=[kl (e1 _�;�:�>eH'•>) e(�2,,] 
-k2 + kl

[ eH'•> Cao l sol:= kl ( e(-ki 
t) - e(-k/ I) ) Cao 

-k2 + kl

Ca := el -k/ I) Cao

kl (e(-klt) _ e(-k/l)) Cao Cb:=--------­
-k2 + kl

[ 

>

Cao (k2 - kl -el -kl I) k2 + kl eHll)) Cc:= - --------------
-k2 + kl

[ Boundary Value Problems-ODEs (Heat transfer in a Rectangular Fin, reference 12) [ > restart:with(linalg):[ Consider the heat transfer in a rectangular fin (see references 7, 12, 13)
a

2 

2 

[ > eq:=diff(theta(x),x$2)=H A2*theta(x);

eq:=-,0(:x)=H 0(x) 
ax· [ where H is the dimensionless heat transfer coefficient and 0 is the dimensionless temperature.are 

[ 

> bcl:=theta(O)=l; bc2:=D(theta) (1)=0; 

bcl := 0( 0) = I 
bc2 := D(0 )(I)= 0

The boundary conditions 

I We can solve this BVP by using the matrix exponential method (equations 1,2) by first converting the second order ODE 
Fall 2000 331 
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L into a system of first order ODEs. 
[ > y[l] =theta(x) :y[2] =diff (theta(x) ,x) :Y(x)=matrix(2, 1, [y[l] ,y[2]]):

[ 

> A:=matrix(2,2) :A[l,1] :=0:A[l,2] :=1:A[2,1] :=H A 2:A[2,2] :=0:A:=evalm(A);

A :=[i2 �] [ The initial condition vector is [ > YO•=•trix(2,1, (1,y[20)]); 
[ I ] YO:= Y20 [ The solution for the matrix differential equation is (equation 2 with b = 0). > mat:=evalm(exponential(A,x)):mat:=map(convert,mat,trig):Y:=evalm(mat&*YO);[ cosh(Hx)+ 

sinh(:x)y
20 

1
Y:= 

1 I 

2 
H ( cosh(H x) + sinh(H x))-

2 
H (cosh(H x)- sinh(H x)) + cosh(H x) y20 [ The unknown constant y

20 
can be obtained by using the boundary condition at x = 1 (equate the second row in the aboveequation for Y to with x = 1). > Yl:=evalm(subs(x=l,evalm(Y)));y[20]:=solve(Y1[2,1]=0,y[20]);

[ cosh(H) + sinh(;) Y20
1YI:= I I 

2 
H tcosh(H) + sinh(H))-

2 
H (cosh(H)- sinh(H)) + cosh(H) y

20 

H sinh(H) Yw := - cosh(H)[ Substitution of y
20 

back into the solution followed by simplification yields the desired solution. > Y:=simplify(evalm(Y));Ym:=combine(Y[l,l]);l cosh(H x) cosh(H)- sinh(H x) sinh(H) 1Y·= cosh(H) · 
H ( cosh(H) sinh( H x) - cosh(H x) sinh(H)) cosh( H) 

cosh(Hx-H) Ym:=--'----� cosh(H) [ The solution to this ODE can also be obtained easily by using Maple's dsolve command. 
[ 

> Ya:=rhs(dsolve({eq,bcl,bc2},theta(x))); sinh(H) sinh(H x) 
Ya:= cosh(H x)- cosh( H)[ Maple solves the given ODE subject to the boundary conditions . However, it does not give the solution in the desired (more familiar) form. Fortunately, Maple's combine command can be used to obtain the desired form (see reference 12, p. 73). 

[ 

> Yao=combine (Ya>, cosh( -H + H x) 
Ya:=-----­cosh(H) This solution can be plotted easily vs x for particular values of H. 

with(plots):p[l]:=plot(subs(H=O,Ym),x=O .. l,thickness=4,color=red,axes=boxed):p[2 
]:=plot(subs(H=l,Ym),x=O .. l,thickness=4,color=red):p[3]:=plot(subs(H=2,Ym),x=O .. 
l,thickness=4,color=red): 

I> display(seq(p[i],i=l •. 3),labels=[x,theta]); 

Chemical Engineering Education 



( ____________________________ G_l"<_a_d_u_a_te_E_ d_u_c_a_ti_._o_n_) 
APPENDIX: Solving Differential Equations with Maple

1-========== 0.9 
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[ The same problem can be solved symbolically by applying finite differences in x. For illustrations two interior node pointsare used here. 
[ 

> N:=2:Eq[O] :=y[O]=l:for i from 1 to N do 
Eq[i]:=subs{diff{theta(x),x$2)=(y[i+l]-2*y[i]+y[i-1])/hA 2,theta(x)=y[i],eq)=O;od 
:Eq[N+l]:=(y[i-2]-4*y[i-1]+3*y[i])/2/h=O: 

eqns:=[seq((Eq[j]),j=O .. N+l)];Y:=[seq(y[i],i=O .. N+l)]; 

[ Yz - 2 Y1 + Yo 2 YJ - 2 Yz + Y1 2 I Y1 - 4 Yz + 3 YJ ] eqns:= y0
= 1, 1,z -H y 1

= 0,
h2 

-H )'2 = 0,2 h
=0 

Y := [Yo, Y i , Y2, )'3 ) [ Maple is used to generate the A matrix and b (equations 3 and 4). 
[ > h:=eval(l/(N+l)):A:=genmatrix(eqns,Y,'b'):evalm(b):

[ > sol:=evalm{inverse(A

[

)&*b); 6+H2 I -l8+H2 ] sol:= I, 9 , , ,-1, 54 2 ,,-1' -3 , 54 + 24 H" + t1 54 + 24 H + t1 54 + 24 H-+ It
[ 

[ 

which shows that linear ODEs can be solved symbolically. For more details see reference 13. For a particular value of H, these 4 equations can be solved using Maple's fsolve command 
fsolve({seq(subs(H=l.,h=l./(N+l),Eq[i]),i=O .. N+l)},{seq(y[i]=0 .. 1.0,i=O .. N+l)}); 

[ 

> (Yo= I., y1 = .7974683557, .>'J = .6455696221, Y1 = .6835443055 J [ > fsolve({seq(subs(H=2.,h=l./(N+l),Eq[i]),i=O .. N+l)),{seq(y[i]=0 .. 1.0,i=O .. N+l)));(Yo= I., y 1 = .5421686749, y1 = .2530120485, y2 = .3253012050 J [ Note that same command can be used for nonlinear ODEs with non-linear boundary conditions. 
[ Partial Differential Equations (Heat conduction in a semi-infinite domain) 
[ > restart :with(linalg):[ Consider the transient state heat conduction equation (references 2,3, 14-16)
[ 

> eq:=diff(u(x,t),t)-alpha*diff(u(x,t),x$2)=0; 

eq := (� u(x, t) )- a (:�
2 

u(x, t) )= 0
[ where a is the thermal diffusivity (�) and u is the dimensionless temperature. The initial and boundary conditions are sec r > u(x,O):=l;bcl:=u(O,t)=O;bc2:=u(infinity,t)=defined;

u(x, 0) := I 
be I := u( 0, t) = 0 

bc2 := u( oo, t) = defined[ Now the Laplace transformation package is called and the governing equation is converted into Laplace domain. 
I> with(inttrans):eqs:=laplace(eq,t,s);
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l eqs := s laplace( u( x, t ), t, s) -I -u � laplacc( u(x, t ), t, s) = 0 
( ,)2 

J ik 

[ Note that the initial condition is included. For brevity let's use the variable U. 

[ 

> eqs:=subs{laplace{u{x,t),t,s)=U{x),eqs); 

eqs := s U(x)- I -u(:;
2 

U(x) )= 0 

[ Next transform the boundary conditions into the Laplace domain 
[ > bcl:=laplace(bcl,t,s):bcl:=subs(laplace(u{O,t),t,s)=U(O),bcl);

be/ := U(O) = 0 

[ 
Next, the eqs equation given above is solved by using the matrix exponential method with x as the independent variable 
instead of t (s is a parameter in this case). 

[ 
> A:=matrix{2, 2, [O, 1, s/alpha, OJ) :b:=matrix(2, 1, [O, -1/alpha]) :yO: =matrix{2, 1, [0,c2]

) :

[ 

> mat:=exponential(A,x):invmat:=evalm{subs(x=x-xl,evalm(mat))):matl:=evalm(invmat&
*evalm(subs(x=x1,evalm(b)))):mat2:=map{int,mat1,xl=O .• x):mat3:=evalm{subs(xl=x,m
at2)) :

> sol:=evalm{evalm{mat&*yO)+mat3);

( (�) (-�) (-�) (2�) (-r«;·) 
I a -e + e c2 I -2 + e e + e 

2 r;;; 2 s 
sol:= 

( 

l-�) (&.!.)) (2� )) (-ra:•) 
I a I a I -I + e e 

- e + - e c2 ---'----==----
2 2 2 .r;;; 

[ Our solution is given by the first row of sol 
> uu:=expand(sol[l,1]);

(�) 
1 a c2 e 

uu:= 
2 r;;; 

(�) 
J a c2 1 I e I 

2 (ra;•(�
-

2-s
--

2-(�ra;
�,,) 

.f-;;;e se 

(fu) [ 

Since we are dealing with the semi-infinite domain, from the boundary condition at the infinity (bc2), the solution has to be 

finite when x goes to oo, Consequently, the coefficient of e 
a 

in the equation uu above must be zero. This requirement 
yields an expression for c2 and a simplified uu equation. 
> eqc:=coeff{uu,exp(sqrt(s*alpha)*x/alpha));c2:=solve(eqc,c2);

I ac2 I I 
eqc :=------

2 .f-;;; 2 s

r;;; c2:=-­
as 

I 

(�(� 
se 

[ Now inverting uu back to time domain yields a solution. 

[ 

> Uta •invlapl=• 
(

uu
, s,

: :
= 
{/!:� ,,{ Lr. G, )- «{ Lr.:r.- l )+ 

1

[ Maple does not give the simplified solution since we haven't specified the signs of x and a. We just have to specify that
they are positive. We use dummy variables (xi and al) for this purpose. 

Chemical Engineering Education 



(.._ ___________________________ G_n_wl_u_ a_ t_e_E_d_u_c_a_ti_·o_n___,) 
APPENDIX: Solving Differential Equations with Maple 

[ 

> uu:=subs{alpha=alphal,x=xl,uu):assurne{xl>O,alphal>O);Ut:=invlaplace{uu,s,t);

Ut := -erfc( 
1 la2 

.[,
}+I 

2 al- t 

[ Once the inverse is obtained, the dummy variables can be changed back to the original variables. 
> Ut:=subs{xl=x,alphal=alpha,Ut);Ut:=convert{Ut,erf);

Ur:= -err{� .r,i )+ I 

{l x J
Ut := er 

2 
.[, .Ja 

[ Ut is the expected solution (reference 2,3, 14-16). For a given value of a, a three dimensional plot of Ut as a function of x 
and t can be obtained. 

> with{plots):plot3d{subs{alpha=0.001,Ut),x=l .. 0,t=SOO._O,axes=boxed,labels=[x,t,"
Ut II] ) ;

1;-,5'fi;i,�� 

0.8 

0.6 
Ut 
0.4 

0.2 

0 
T'1 ��::,-::.--...,.,..............,.-....::'.!;0.8 0.6x0.4 0.2 0 

[ Analytic method of lines for PDEs (Heat tranfer in a finite medium) 
[ > restart;with{linalg):
[ Consider heat transfer in a finite medium (references 14, 21, 22)
[ > ge:•diff{T(x,t),t)=alpha*diff{T{x,t),x$2):
[ The boundary and initial conditions are 

> bcl:=H*{TO-T{O,t))=-k*Diff(T(O,t),x);bc2:=Diff{T(l,t),x)=O;IC:=T(x,0)=100;

bcl := H ( TO - T( 0, t)) = -k Ux T( 0, t) J 
bc2 :=-T( I, t)=O

ax 

IC:= T(x, 0) = 100 

[ The governing equation is discretized along the x-axis from i = I to N interior node points. N = 2 node points are used for 
illustration 

[ 
> N:=2:eq[OJ:=H*(TO-y[O]) = -k*(-y[2]+4*y[l]-3*y[0])/(2*h):

eq[N+l]:=(3*y[N+l]-4*y[N]+y[N-1])/(2*h)=O:

[
>for i from 1 to N do eq[i]:=Diff{y[i],t)= subs(diff(T(x,t),x$2) =

{y[i+l]-2*y[i]+y[i-1])/(hA2),rhs(ge));od:
[ Now the boundary conditions are used to eliminate the end values r> y[O]:=solve(eq[O],y[O]);y[N+l]:=solve(eq[N+l],y[N+l]);

2 H TOh-ky
1 

+ 4 k y, 
Yo:= 

2 H h+ 3 k 
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APPENDIX: Solving Differential Equations with Maple 

l 
4 

YJ :=-y2--Y13 3 
> for i from 1 to N do eq[i]:=eval(eq[i]);od;

( 

2 H TO h - k y
2 

+ 4 k y, 
a >• -2y· + 

a 
2 ' 

2Hh+3k 
eqi := at Yi = h2 

a (-� y, +� v
a 3 - 3. I 

eq2 := at Y2 = h2 

[ The governing equations at the interior node points ( i = I .. N) can be expressed in matrix form (equation I) and solved
using equation 2. 

[ > eqns:=[seq(rhs(eq[j]),j=l .. N)]:Y:=[seq(y[i],i=l .. N)]:A:=genmatrix(eqns,Y,'bl'):

[ > b:=matrix(N,1):for i from 1 to N do b[i,1]:=-bl[i];od:evalm(b):
[ Note that the matrix is not printed for saving space. The parameters are entered here.
[ > L:=1.00:h:=evalf(L/(N+l)):alpha:=2*10.A(-5):H:=25.0:k:=10.0:TO:=O:
[ > A:=map(eval,A) :b:=map(eval,b):
[ The initial condition is entered now
[ > YO:=matrix(N,1):for i from 1 to N do YO[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:
[ The solution is found out now (equation 2) r > mat:=exponential(A,t):invmat:=evalm(subs(t=t-tl,evalm(mat))):matl:=evalm(invmat&

*evalm(subs(t=tl,evalm(b)))):mat2:=map(int,mat1,tl=O .. t):mat3:=evalm(subs(tl=t,m

at2)):Y:=evalm(evalm(mat&*YO)+mat3);

Y 
·-[14.06250002 ei-.1ww,Jcxm,o<oJ1) + 85.93749998 e1-.rm,m,mmt1

] .- 109.3750000 e(-.fNKNl2S7142RS76t) - 9.37500002 el-.lMN13'NNUNMNXlt) 
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[ Note that we obtain the temperature at different node points as a function of time (analytical in time and numerical in x).
The values at the node points can be plotted. 

[ > with(plots):for i from 1 to N do y[i]:=simplify(eval(Y[i,l]));od:
[> for i from O to N+l do p[i]:=plot(y[i],t=0 •• 6000,thickness=3);od:

> display({seq(p[i],i=O .. N+l)},axes=boxed,labels=[t,T]); 

90 

80 

T 
70 

60 

50 

0 1000 2000 3000 4000 5000 6000 

[ By increasing N, more accurate solutoins can be obtained. N = 6 is found to be sufficient for this case.
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