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A common example in chemical engineering textbooks 
on dynamic modeling and control is the stirred-tank 
heater illustrated in Figure 1. If the tank is treated as 

perfectly mixed, it represents a simple process that allows 
for a straightforward derivation of the governing equations, 
and it helps to illustrate the use of constitutive equations in 
developing dynamic process models. The assumptions in
volved in the analysis are typically justified by common 
sense and practical insight. With them, one arrives at a 
model that can be used for demonstrating dynamic be
havior through simulations and for testing feedback con
trol concepts. 

This problem has found its way into the majority of dy
namics and control textbooks, and in these textbooks we 
observe three different approaches to the analysis. The first 
approach is represented by the assumption of constant flow 
rates (thus constant holdup), which simplifies the problem 
considerably.c1

-71 Seborg, et al., 181 derive the model equations 
but also focus on the constant holdup problem in the text. 
The second approach is by HarriotC9J and by Pollard,l' 01 who 
consider flow variations but still assume constant holdup. 
The book by Stephanopoulos1111 provides a third approach in 
whkh the holdup is not constant and perturbations are 
present in both inlet and outlet flowrates. This leads to 
the multi variable control of both the holdup and the tem
perature in the tank. 

If the volume of fluid in the tank is allowed to vary (in 
response to variations in the outlet flowrate), the coupling 
between the mass and energy balances generates a curious, 
non-trivial problem that has not been fully recognized in the 
literature. Specifically, the dynamic behavior of the stirred 
tank heater appears to contradict, at least initially, our intui
tive reasoning, leading to an incorrect interpretation of the 
expected behavior. 
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Figure 1. Stirred-tank heater. 
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In the next section, we first define the problem and offer 
an intuitive description of the dynamic behavior of the pro
cess. Next, in an effort to provide a rigorous explanation of 
why we should expect a dynamjc response contrary to our 
intuition, we derive the dynamjc model of the stirred-tank 
heater process, carefully delineating all the steps and the 
assumptions involved. Finally, we offer some insight into 
the correct intuitive interpretation of the analytical result. 

PROBLEM DEFINITION 

Figure 1 depicts a stirred-tank heat process. The purpose 
of trus unit is to provide heating for a process stream, thereby 
increasing its temperature before being supplied to a down
stream unit. The heat provided is denoted by Q. In the 
schematic diagram, F and T represent a stream flowrate and 
a stream temperature, respectively, and the subscripts "in" 
and "out" refer to the inlet and outlet streams. We assume 
that there is a valve placed at the outlet flow stream, which 
can be adjusted to affect the tank level. 

• Intuition 

Now, let us perform the following thought experiment. 
Assuming that the system is initially at steady state, we shall 
increase the outlet stream flow rate, thereby creating a tran
sient process in wruch the level in the tank decreases, as 
illustrated in Figure 2. The heat supplied to the system, Q, 
remains constant, and we want to know how the temperature 
of the outlet stream responds to trus change. Typically, intu
ition leads to the suggestion that the outlet stream tempera
ture will increase since less mass is now being heated in the 
tank. If we decrease the outlet stream flow rate, the level in 
the tank will increase, as illustrated in Figure 3. The typical 
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Figure 2. Increasing the outlet stream flowrate. 

Figure 3. Decreasing the outlet stream flowrate . 
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intuitive interpretation of trus transient process is that the 
outlet stream temperature will decrease because more mass 
is now being heated in the tank. 

Both these intuitive interpretations of the dynamic re
sponse of the stirred-tank heater are incorrect, as can be 
shown by a careful analysis of the system. We must note that 
if one changes the inlet flowrate instead of the outlet flowrate, 
the above reasoning leads to the correct answer, and thus 
there is a fundamental difference in the way each flowrate 
affects the temperature in the tank. 

To summarize our survey of intuitive judgments concern
ing the influence of changing the outlet flowrate, we note 
that almost everyone believes that changing the outlet flowrate 
will change the outlet temperature. In addition, most believe 
that increasing the flowrate will cause an increase in the 
temperature, while decreasing the flowrate will cause a de
crease in the temperature. 

ANALYSIS 

• Modeling 

To develop the dynamic model of the stirred-tank heater, 
we make use of the macroscopic mass and thermal energy 
balances1121 for a moving control volume. These are given by 

Jt J pdV + J p( v - w) · ndA = 0 (I) 
V(t) A(t) 

Jt f pcp(T-Tref )ctv+ J pcp(T-Trer)(v-w) -ndA 
V(t) A(t) 

=- J (q+qR) ·ndA+ J (T~~~+-r:Vv}v (2) 
A(t) V(t) 

in wruch the moving control volume, V(t), contains the fluid 
in the stirred tank as illustrated in Figure l. In terms of the 
liquid depth, h(t), and the cross-sectional area of the tank, A, 
the control volume can be expressed as 

V(t) = Ah(t) (3) 
At the gas-liquid interface, the kinematic condition requires 
that 

V·D=W·ll (4) 
whjle at the liquid solid interface we have 

v-n=w •n=O (5) 
Use of these two conditions, and the assumption that the 
density can be treated as a constant, allows us to express the 
macroscopic mass balance as 

dh 
A dt = Fin - Fout (6) 

in whkh F;0 and F0 u1 represent the volumetric flow rates 
entering and leaving the system. To be explicit, we express 
F0 u1 according to 

Fout= J v-ndA 
A exit 

(7) 
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In our treatment of the thermal energy balance, we neglect 

the reversible work, TP Op/ Dt, and the viscous dissipation, 

1:: Vv , so that Eq. 2 takes the form 

Jt f pep(T-T,er)dV + f pep(T-T,er)(v-w)-ndA 
V(t ) A(t) 

=- f (q+qR) · ndA (8) 
A(t) 

If the only significant heat transfer to the system is caused by 
the heater, the heat-transfer term on the right-hand side of 
this result can be expressed as 

- f ( q + q R ) · ndA = Q (9) 
A(t ) 

in which Q is positive when heat is transferred to the system. 
Assuming that the variations of p and cP are negligible, and 
making use of Eqs. 3 through 5, allows us to write Eq. 8 in 
the form 

Jt[pepAh(t)((T)-Tref )] 

= pepFin (Tin -Tref )-pepFoul (Tout -T,ef )+ Q (10) 

Here the volume averaged temperature, (T), is defined by 

(T) = V(t) f TdV 
V(t) 

(1 1) 

and since pep can be treated as a constant, Eq. 10 can be 

rearranged as 

Jt[Ah(t)((T) -Tref )] 

= Fin (Tin -Tref )- Foul (Tout -T,ef ) + _Q___ (12) pep 

Carrying out the differentiation on the left-hand side leads to 

d(T) dh 
Ab( t )cit+ ( (T) - T,ef )A dt 

= Fin (Tin -T,er)-Fout (Tout -T,er )+l (13) pep 

Equation 6 can be multiplied by (T) - T,ef , leading to 

A~~ ((T)-Tref )= Fin ((T) -Tref )-Fout((T) -Tref) (14) 

and when this result is subtracted from Eq . 13, we obtain a 
simplified form of the macroscopic thermal energy balance. 
The macroscopic mass and thermal energy balances repre
sent the governing differential equations for the fluid depth 
and the volume-averaged temperature in the stirred tank. We 
list these two results and the initial conditions as 

Mass 
dh 

Adt = Fin - Fout (15) 

Thermal Energy 

d(T) Q 
Ah(t)-=F (T - (T))+-dt m m pep (16) 
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Initial Conditions 

h = h0 (T) = (T)° Fout= Fin t = 0 (17) 

The driving force for the dynamic behavior is the outlet 
stream flowrate, which is a function of time, i. e. , 

Fout=Fin+t>F(t) t:::C:0 (18) 
At this point, we identify the state variables and constant 
parameters as 

State Variables: h and (T) 

Constant Parameters: A, pep, Q, F;n, and T;n 

It may not be obvious on the basis ofEqs. (15) through (18), 
but the solution for the volume-averaged temperature for 
this process is given by 

(T) = (T)0 t :::>: 0 (19) 

• Solution 

In practice, the change in the outlet stream flowrate, ~, is 
a function of h0 -h(t), and thus the outlet stream flowrate can 
be expressed by 

F0 uc=Fin+t.F[h0 -h(t)] t~O (20) 

Use of this result in the macroscopic mass balance given by 
Eq. (15) leads to 

A~~ = - M[h 0 -h(t)] (21) 

and this can be solved subject to the initial condition 

LC. h=h 0 t = 0 (22) 

in order to determine h(t). The solution for the fluid depth as 
a function of time can then be used with Eq. (16) to deter
mine the volume-averaged temperature in the tank. The ini
tial steady-state condition of the stirred tank must satisfy the 
following form of the macroscopic thermal energy balance 

0=Fin(Tin - (T)0)+l 
pep 

This result can be subtracted from Eq. (16) to obtain 

Ah(t)d~~) =-Fin((T) - (T)0
) 

If we identify the temperature difference according to 

0 = (T)-(T)0 

the initial value problem for 0 takes the form 

f(t) dd~ = -0 

I.C. 0=0 t = 0 

Here the time dependent function, f(t) , is given by 

f(t) = Ah(t) 
Fin 

and the solution to Eqs. (26a) and (26b) is 

(23) 

(24) 

(25) 

(26a) 

(26b) 

(27) 

0 = 0 t :::>: 0 (28) 

This leads to the result listed earlier as Eq. (19), which is 
often considered to be counter-intuitive. 

The forms of Eqs. (26a,b) and the solution given by Eq. 
(28) usually create a little skepticism; however, we can 
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transform the initial value problem to a more familiar form 
in order to make the solution more appealing. We begin by 
letting t be a function of time defined by 

f\ = l 

t = J f(ri r
1 

dTj f(t ) ;,=0 (29) 
n=O 

This transformation leads to 

d0 = d0 dt = d0 f(trl 
dt dt dt dt 

(30) 

and the initial-value problem given by Eqs. (26a,b) takes the 
form 

I.C. 

d0 =-0 
dt 

0=0 t=0 

(3 la) 

(3 lb) 

Clearly, the solution to this initial-value problem is given by 
Eq. (28) . 

DISCUSSION OF DYNAMIC BEHAVIOR 

The source of the seemingly counter-intuitive behavior of 
the tank temperature when the outlet stream flowrate is 
changed lies in the key assumption of complete mixing in the 
tank. To provide a purely intuitive confirmation of either Eq. 
( 19) or Eq. (28) , we construct special processes in which the 
fluid depth in the tank either decreases or increases. 

Case of Outlet Stream Flowrate Increasing • This situation can be best 
visualized as illustrated in Figure 4 where the tank height is decreas ing as a 
secondary stream removes fluid from the tank while the primary outlet 
flowrate remains equal to the inlet flowrate. Note that the secondary stream 

Figure 4. Increasing the outlet stream flowrate 

Figure 5. Decreasing the outlet stream flowrate. 
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fl owrate is time-dependent and will vani sh as time increases and a new 
steady state is established. In thi s case, removing additional fluid from the 
tank will only decrease the fluid level in the tank without changing the 
temperature of the fluid in the tank . The temperature of the fluid in the tank 
is determined by the rate of heat transfer, Q, that is delivered to the 
incoming fluid. 

Case of Outlet Stream Flow rate Decreasing • This situation can be visual
ized as in Figure 5, where the tank height is increasing as the flow is 
diverted back to the tank. Again , the diverted stream is time dependent and 
will vani sh as time increases and a new steady state is achieved . Returning 
some of the outlet stream to the tank will increase the fluid depth in the tank; 
however, the temperature of the outlet stream is identical to the temperature 
in the tank and returning a portion of thi s fluid to the tank will have no 
influence on the temperature in the tank. 

Rather than use the constructions illustrated in Figures 4 
and 5 to enhance our intuition, we could simply observe that 
the energy delivered to the system, Q, is used to raise the 

temperature of the inlet stream from Tin to (T)0
, and the 

disposition of the outlet stream has no influence on this 
energy-transport process. Thus, the heated fluid in the tank 
can be disposed of more or less rapidly , giving rise to a 
change in the fluid depth in the tank, without influencing the 
temperature in the tank. 

CONCLUSIONS 

The dynamic behavior of a stirred-tank heater challenges 
our intuition when mass and energy balances are considered 
simultaneously. The perfect mixing assumption creates a 
decoupled dynamic response when changes in the outlet 
flowrate are considered. We have presented a rigorous model 
of the process and have offered an explanation as to why we 
should expect this seemingly counter-intuitive phenomenon 
to occur. 
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