no mixing losses yields COP values not much less than the
Carnot values. Once mixing losses are allowed to affect the
results, using either an ideal gas model or a real gas model,
the COP values drop markedly due to the internal
irreversibilities or lost work. Hamner also reports experi-
mental data on such an ejector-operated refrigeration cycle,
rated at approximately one ton of refrigeration and em-
ploying R-11 as the refrigerant. Experimental COP val-
ues of about 0.10 to 0.25 were obtained for pressure
ratios (Py/P.) of 5.0 to 7.5.

CONCLUSIONS

This article has demonstrated the applicability of the
HYSYS computer-aided process design system to the simu-
lation and analysis of a solar-powered refrigeration cycle.
While such a cycle consists of a number of standard chemi-
cal process equipment items such as heat exchangers, a
pump, and an expansion valve, the key hardware element in
this cycle is a thermal compressor or jet ejector. Models of
the latter item, while a relatively common piece of process-
ing equipment in the chemical and allied industries, are not
that extant in computer-aided process design systems such
as HYSYS or comparable software packages. The em-
ployment of an adjust or control module to balance the
work of a compressor and an expander in a cycle was
illustrated in this work.

The coefficient of performance (COP) values for refrig-
eration cycles driven by a solar collector and jet ejector are
admittedly much smaller than those of conventional cycles
employing mechanical compressors. As numerous authors'"”
' have pointed out, however, applications of the former may
be economical in cases wherein the required input heat is
very inexpensive (e.g., solar energy) or it would be other-
wise wasted, as from the cooling system of an automobile
engine. And there are certainly more than just technological
factors operative in this arena.'*! Lastly, it should be remem-
bered that the energy input to a mechanical vapor-compres-
sion refrigeration cycle generally originates from an electri-
cal power plant. This power often derives from the combus-
tion of a fuel with a process efficiency of about 33%. Thus,
the ultimate
amount of

TABLE 8
Influence of Heat Rejection Temperature enf:rgy r?'
(T,) on COP and Efficiency Values quired in
(T, =40°F, T, =200°F) such a me-
chanical
Rejection ' ' Efficiency Overall cycle is
Temperature Refrigeration of heat cycle COP roughly

(T.), °F Cycle (COP).  engine (E) [=(COP) (E )] .
- 4 - - —" | three times

125 5.882 0.1136 0.6684
110 7.143 0.1364 09740 | the amount
100 8.333 0.1515 12626 | actually sup-
90 10.000 0.1667 16667 | plied to the
77 13.514 0.1864 25184 | compressor.
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[ have written a little book especially designed for the first
engineering thermo course. It is called

Understanding Engineering Thermo I

and it uses a radically different teaching approach. Students like
it.

The OSU Bookstore (Box 489, Corvallis OR 97339) is dis-
tributing it at $20 plus mailing cost. If you are a thermo teacher
and want a desk copy, contact me at

Chemical Engineering Department
Gleeson 103

Oregon State University

Corvallis OR 97331

Octave Levenspiel
octave @che.orst.edu

Perhaps the major contribution of this work is of a peda-
gogical nature. Thus, this study of a solar-powered refrigera-
tion cycle, exploring different refrigerants, efficiencies,
operating conditions, etc., could represent an excellent
computer-aided design project in an introductory engi-
neering thermodynamics course. It is in this spirit that
this study was formulated.
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