
no mixing losses yields COP values not much less than the 
Carnot values. Once mixing losses are allowed to affect the 
results, using either an ideal gas model or a real gas model , 
the COP values drop markedl y due to the internal 
irreversibilities or lost work. Hamner also reports experi­
mental data on such an ejector-operated refrigeration cycle, 
rated at approximately one ton of refrigeration and em­
ploying R-11 as the refrigerant. Experimental COP val­
ues of about 0.10 to 0.25 were obtained for pressure 
ratios (PsfPc) of 5.0 to 7.5 . 

CONCLUSIONS 

This article has demonstrated the applicability of the 
HYSYS computer-aided process design system to the simu­
lation and analysis of a solar-powered refrigeration cycle. 
While such a cycle consists of a number of standard chemi­
cal process equipment items such as heat exchangers, a 
pump, and an expansion valve, the key hardware element in 
this cycle is a thermal compressor or jet ejector. Models of 
the latter item, while a relatively common piece of process­
ing equipment in the chemical and allied industries, are not 
that extant in computer-aided process design systems such 
as HYSYS or comparable software packages . The em­
ployment of an adjust or control module to balance the 
work of a compressor and an expander in a cycle was 
illustrated in thi s work. 

The coefficient of performance (COP) values for refrig­
eration cycles driven by a solar collector and jet ejector are 
admittedly much smaller than those of conventional cycles 
employing mechanical compressors. As numerous authors1 ,_ 
31 have pointed out, however, applications of the former may 
be economical in cases wherein the required input heat is 
very inexpensive (e.g., solar energy) or it would be other­
wise wasted, as from the cooling system of an automobile 
engine. And there are certainly more than just technological 
factors operative in this arena. 141 Lastly, it should be remem­
bered that the energy input to a mechanical vapor-compres­
sion refrigeration cycle generally originates from an electri ­
cal power plant. This power often derives from the combus­
tion of a fuel with a process efficiency of about 33%. Thus, 

the ultimate 

TAB LE S amount of 

Influence of Heat Rejection Temperature e nergy re-

(T
0
) on COP and Efficiency Values quired in 

(TR= 40°F, Ts = 200°F) such a me-
chanical 

Rejection Efficiency Overall cycle is 
Temperature Refrigeration of heat cycle COP roughly 

(T,), "F Cycle (COP)c engine (Ee) [=(COP)c(Ec)I 
three times 

125 5.882 0.1136 0.6684 the amount 110 7. 143 0.1364 0.9740 
100 8.333 0.1515 1.2626 actually sup-
90 10.000 0.1667 1.6667 plied to the 
77 13.5 14 0.1864 2.5 184 compressor. 
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NOTE FROM OCTA VE LEVENSPIEL 

I have written a little book especially designed for the first 

engineering thermo course. It is called 

Understanding Engineering Thermo 

and it uses a radically different teaching approach. Students like 
it. 

The OSU Bookstore (Box 489, Corvallis OR 97339) is dis­
tributing it at $20 plus mailing cost. If you are a thermo teacher 

and want a desk copy, contact me at 

Chemical Engineering Department 
Gleeson 103 
Oregon State Uni versity 
Corvallis OR 9733 1 

Octave Levenspiel 
octave@che.orst. edu 

Perhaps the major contribution of this work is of a peda­
gogical nature. Thus, this study of a solar-powered refrigera­
tion cycle, exploring different refrigerants , efficiencies , 
operating conditions, etc. , could represent an excellent 
computer-aided des ign project in an introductory engi­
neering thermodynamics course. It is in this spirit that 
thi s study was formulated . 
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