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The object of this column is to enhance our readers' collections of interesting and novel 
problems in chemical engineering. Problems of the type that can be used to motivate the student 
by presenting a particular principle in class, or in a new Jjght, or that can be assigned as a novel 
home problem, are requested, as well as those that are more traditional in nature and that 
elucidate difficult concepts. Manuscripts should not exceed ten double-spaced pages if possible 
and should be accompanied by the originals of any figures or photographs. Please submit them to 
Professor James 0. Wilkes (e-mail: wilkes@engin.umich.edu), Chemical Engineering Depart­
ment, University of Michigan, Ann Arbor, MI 48109-2136. 
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C hemical engineers are quite familiar with the use of 
the Laplace transform method for solving linear or­
dinary differential equations. Usually, the differen­

tial equation is converted to an equivalent algebraic equa­
tion, then the appropriate injtial conditions are applied, and 
the resulting algebraic equation is prepared for inversion in 
order to recover the sought-after solution. 

Frequently, the techniques to invert the resulting algebraic 
equation involve the use of a table of Laplace transforms. 
Most practitioners of this approach develop devices to ex­
tend their table of Laplace transforms when their particular 
inversion is not listed. 

There is an alternate technique, however, that is especially 
useful when a difficult inversion is to be performed. This 
method employs a concept that is fundamental in the theory of 
functions of a complex variable-namely the residue theorem. 

Following Mickley, Sherwood, and Reed,c11 Churchill and 
Brown,l21 and Dettrnan,l31 the variable s in 

F(s)= J e-st f(t)dt (1) 
0 

can be interpreted as a complex number. Here, F(s) is the 
Laplace transform of f(t). Further, except for singularities, 
F(s) is usually analytic (has a Taylor series expansion). 

A frequently encountered class of problems in chemical 
engineering are the Sturm-Liouville problems, and it is use­
ful to know that the transform of a solution to a Sturm­
Liouville equation is analytic for all finite s except at the 
singularities (poles) of the system. 

When F(s) is analytic, except for poles, the inverse trans­
form is given by 
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= 
f(t)=L- 1{F(s)}= L,Pn(t) (2) 

n=O 

where Pn (t) is the residue of F(s) at the pole Sn . Even though 
this concept is firmly grounded in the theory of functions of 
a complex variable, direct use of complex variables is not 
always required. A procedure is given below that avoids the 
direct use of complex variables. 

PROCEDURE 
Rewrite F(s) as a quotient 

F(s)= P(s) 
Q(s) 

(3) 

which enables us to quickly identify the singular points 
(poles) of F(s) and to determine if the degree of Q(s) is at 
least one greater than that of P(s). This procedure may re­
quire power series expansions of both P(s) and Q(s). If the 
degree of the denominator is at least one greater than that of 
the numerator, and the poles are simple (singularities of 
order one), then 

(4) 

where Q'(sn) is the derivative of Q(s) evaluated at the 
simple pole Sn. 
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If the poles are of order m (multiple pole), then 

[ 
t2 tm- lA ] m tj-1 

Pn(t) =eSnt A1 +tA2 +-A3 + ... + ( m =eSn l L,A j-(. - ) 
2! m-1)! j=I J-1 ! 

(5) 

The A's are defined by 

1 dm- j [ m ] 
A j =--. ni7 (s- s0 ) F(s) 

(m- J)! ds J s=s n 
j=l,2, ... ,m (6) 

Three examples are presented below. Examples 1 and 2 
are elementary problems that can be quickly inverted by use 
of tables; they are presented here to illustrate the concept of 
the residue method. The third example demonstrates a more 
appropriate application of the method. 

( ____ e_xA_M_P_LE_P_R_o_B_L_E_M_s __ ) 

1. Simple Poles 

Suppose we need to invert 
2 

F(s)= Ss - 7s+ l7 
(s -l)(s2 +4) 

Here, 

P(s) 
Q(s) 

(7) 

P(s)=5s2 -7s+ 17, Q(s)=(s- l)(s2 +4), Q'(s) = s2 +4+(s -1 )2s 

(8) 

The roots of Q(s) are the simple poles ofF(s). Therefore, Eq . 
(4) is the appropriate form with which to evaluate the resi­
dues since the poles are not repeated; that is 

P (t)= P(l) =3et 
I Q'(l) 

P(2i) 2· ( Si \ 2· 
P ·(t)=--e u = I+- le u 2' Q'(2i) l 4 J 
·(t)= P(-2i) e-2 it ) 1_ 5i \-2i1 

P-2, Q'(- 2i) l 4 ) 

so that use of Eq. (2) results in 

f(t) = P1 (t) + P2i (t)+ P-2i (t) 
That is 

f(t)= 3e1 +2cos2t-2.sin2t 
2 

2. Multiple Poles 

Suppose we wish to invert 

F(s)=( 2 )2 
s +l 

s 

for which 

P( s) = s and Q( s) = ( s 2 + 1 )2 
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(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Q(s) has repeated roots at ±i,±i, so that the multiplicity, m, of 
each root is two. Therefore, as singularities of F(s), these are 
poles of order 2. Then using Eq. (5) with s=-i , 

P-i(t) = e-i1(A1 + tA 2) (16) 
since m = 2. Also, 

(s+ i)2 s s 
(s- i)2(s+ i)2 (s-i)2 (17) 

Application of Eq. (6) gives 

A1 = (2~1)! : s[(s~i)2 ] =½[(~~~)s3 l =-i =0 (18) 

and 

(19) 

Therefore 

( ) it - it 
P · t =-e - , 4 (20) 

Similarly 

( ) 
it it 

Pi t =-4e (2 1) 

such that Eq. (2) results in 

t (eit _e- itJ I 
f(t) = P-i(t)+P i(t)=z l 2i j=zt sint (22) 

in which use of the identities 

ei0 +e-i0 ei0 -e-i0 
cos 0 = - -- and sin 0 = --- (23) 

2 2i 
are employed to express the final results of both examples. 

3. Diffusivities of Gases in Polymers 

Consider a model of diffusion through a membrane that 
separates two compartments of a continuous-flow permeation 
chamber. Then, following Felder, Spence, and Ferrell/ 41 at 
time t=O, a penetrant is introduced into one compartment (the 
upstream compartment) and permeates through the membrane 
into a stream flowing through the other (downstream) com­
partment. Further, this model includes the following assump­
tions: 

• Diffusion of the penetrant in the gas phase and absorption at 
the membrane surface are instantaneous processes. 

• Diffusion in the membrane is Fickian with a constant 
diffusivity. 

• The concentration of dissolved gas at the downstream 
surface of the membrane is always sufficiently low compared 
to that at the upstream surface, such that the downstream 
surface concentration may be set equal to zero. 

Then, diffusion through a flat membrane of thickness h is 
described by 

_oC_(_t, x_) = D _cl 2_C--'-( t~, x-'-) 
clt ox 2 

(24) 

subject to 
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C(O,x)=O 

C(t,O)=C 1 

C(t,h) = 0 

(25) 

(26) 

(27) 

Application of Eq. ( 1) to transform Eqs. (24 - 27) results in 
the second-order constant-coefficient homogeneous differ­
ential equation 

O=d
2
y(s,x) sy 

(28) 
dx 2 D 

subject to 

C 
y(s,O) = ----1.. (29) 

s 
and 

y(s,h) = 0 (30) 

The solution to the boundary-value problem described by 
Eqs. (28-30) is 

y(s,x)=C1 

Then, applying Eqs. (2-4) to invert y(s,x), we get 

- I[ ] ~ P(s 0 ,s) ( ) L y(s,x) =C(t,x)=C1£,..--;--(s )exps 0 t = 
n=O Q n 

Recall that 

such that for s0=0 

Then for 

where 

p (t)= P(O) = lim s P(s) 
o Q'(O) s• O Q(s) 

( )
- P(s, x) 

y S, X - Q(s) 

P(s,x) = sinh(h- x)R; 

and 
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(31) 

(32) 

(34) 

(35) 

(36) 

(37) 

. P(s) . sinh(h-x)R; h-x 
p0 (t)=hms-()=hms ( 1 =- (38) 

s• O Q s s• O /S h 
s sinhl \loh j 

gives the residue at s=O using l'Hospital's rule. for s
0 

:;t:O, 

(rs1 [ h (rs1] 
Q'(sn)=sinhl \loh rs 2~coshl \loh j 

The simplifying substitution iA = ✓sm results in 

A = n ~, n = 1, 2, · · 

S0 = -A~D 

(39) 

(40) 

( 41) 

That is, when Eq. (37) is set equal to zero, either s=O or 
sinh ,Js ID h = O. The case s=O results in the residue p0 ( t) 
given above (Eq. 38), while the case s:;t:O gives sinh iA = O, a 
condition that is satisfied for the values of A as given in Eq. 
(40) . Finally, after performing the necessary algebra, we get 
the result 

( ) P( s0 , x) s 1 2 . ( n1tx l -:i..2 Dt 

Pn t,x = Q'(sn) en=- n1tsml-h-f n (42) 

and the concentration profile is 

[
h-x 2~1 ( n2

tt
2tD l . ( n1tx j ] 

C(t,x)=C1 ----L..-expl--jsm1-) 
h 1t n=I n h 2 \ h 

(43) 

Then, the rate of penetrant across the surface x=h is given by 

J(t)=-DA(ac) = DAC1 [1+2I,(-1)" expl( _ n21t:Dt lj] (44) 
ax x=h h n=I h 

for a flat membrane with a surface area A. Also notice that 
the steady-state rate, J

55
, is given by 

J =D AC1 
ss h (45) 

For an example involving cylindrical geometry, the reader 
is directed to the recent literature where a model based on 
membrane separation is treated by Ramraj, Farrell, and 
Loney.151 Also, a model involving membrane separation with 
chemical reaction in a flowing system is treated by Loney.l61 

Inversion by the residue method is not a new concept; 
however, it can be very useful in efficiently solving systems 
of non-homogeneous linear partial differential equations. 
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