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UNDERGRADUATE 
PROCESS CONTROL 

Clarification of Some Concepts 

R.RAVI* 
Indian Institute of Technology Kanpur • Kanpur 208 016, India 

Teaching undergraduate process control can be an en
joyable experience for an instructor given the wide 
range of quality chemical engineering textbooks that 

are now available. C1
·
61 After teaching the course a couple of 

times, however, I felt there was still a need for clarification 
of some fundamental concepts, especially in the areas of 
frequency response and stability. In this article I hope to 
achieve such a clarification through some simple, yet illus
trative, examples. 

FREQUENCY RESPONSE: 
ONLY FOR STABLE SYSTEMS? 

In the context of process control, the frequency response is 
usually associated with the response of a linear, time invari
ant (constant coefficient) system to a sinusoidal input. In the 
most common way of "deriving" the frequency response 
result, the output response is shown to be a sinusoidal func
tion of the same frequency ( m) as the input, once the tran
sients have died out. Further, the ratio of the amplitude of the 
output to that of the input, called the amplitude ratio (AR), is 
shown to be equal to IG(jm )I, while the phase difference ( (j>) 
between the output and the input is shown to be arg(G(jw)] , 
where G(s) is the transfer function representation of the 
system of interest and jd-1. 

Thus, the frequency response calculation is reduced to the 
calculation of the magnitude and phase of the complex num
ber, G(jw), as a function of the frequency. This information 
is usually represented in the form of a Bode diagram or a 
Nyquist plot. 

The key point of our discussion is the condition 

"once the transients have died out. " 

Clearly, this happens if the system is stable, i.e., if all the 
poles of the transfer function G(s) lie in the left half (of the 
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complex) plane (LHP). Thus it might appear that frequency 
response makes sense only for stable systems. But we do 
find Bode diagrams and Nyquist plots for the pure capacity 
(G(s)=A/s) and the PI controller, G(s) = [ Kc(-r 1s + t)]/-r 1s , both 
of which are (open-loop) unstable. 

Do these diagrams mean anything then? In the case of the 
pure capacity system, one can show that the response to a 
sinusoidal input is bounded and is a superposition of a con
stant and a sinusoidal function whose amplitude and phase 
are in fact provided by G(jm), as for a stable system. (It 
should be noted that a system with a zero pole is to be 
regarded as unstable in spite of a bounded response to a 
sinusoidal input. Recall that the step response of such a 
system grows with time.) 

But what about a system with a pole in the right half plane 
(RHP) for which the response to a (bounded) sinusoidal 
input will have a time-growing component arising out of the 
unstable pole? Does the Bode diagram (or the Nyquist plot) 
for such a system obtained from the corresponding G(jm) 

have any meaning? 

The answer to the last question is "yes." 

The common way of deriving the frequency response re
sult is only a method of measuring the frequency response 
for stable systems and does not constitute a fundamental 
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definition of it. The fundamental definjtion is provided by a 
basic result of linear systems theoryP 1 There exists a peri
odic solution for a linear time invariant system subjected to a 
periodic forcing; this periodic solution has the same fre
quency as that of the input forcing , and its amplitude and 
phase at the particular frequency are determined (as ex
plained above) from the complex number G(jro) . Thjs result 

holds whether the system is stable or not. 

In general, the response of a linear system to a periodic 
forcing will be the superposition of the periodic solution and 
a non-periodic component, and the frequency response is 
defined with respect to the periodic component. Thus, the 
Bode diagram for an unstable system makes sense in that it 
represents the same relationship between the periodic com
ponent of the (output) response and the input periodic forc
ing as it does for a stable system. 

This point is not of minor significance as it gives unjversal 
status to Bode diagrams or Nyquist plots as signatures of 
systems they represent, be they-stable or unstable. The open
loop method of measuring the frequency response (after 
waiting for the transient to die out) will not work for un
stable systems (pure capacity being an exception). 

In the next section, we point out two possible methods of 
measuring the freq uency response of unstable systems-one 
an open-loop method and the other a closed-loop method. 
Although both methods are valid in principle, the latter is 
more practicable. The reasons are outlined below. 

Frequency Response of Unstable Systems 

We illustrate the procedures through a simple system with 
one unstable pole 

Open-Loop Method 

K 
G 0 (s)= -( -) s-a 

(I) 

For the Open-Loop Method we consider a sinusoidal input 

u(t) = Au sin(rot +<!>u) (2) 

The response of the system to thi s input can be shown (for 
instance, by a straightforward Laplace inversion) to be 
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() 
KA 0 (rocos<)> 0 +asin<)> 0 )ea1 

y t = ---~----
a2 +w2 

+Au IG 0 (jro)lsin{rot +cp 0 +arg[G0 (jro))} (3) 

This suggests a way of "stabilizing" the response by choos
ing <!>u such that 

rocos<)> 0 +a sin<)> 0 =0 (4) 

so that only the stable periodic component of the solution 
remains, enabling the determjnation of its amplitude and 
phase. In practice, thus, one is left to choose a unique value 
of <!>u (between O and 21t) for each w; thls can be problem
atic given that the value of the unstable pole, a, is not known 
a priori. Hence, we discuss a more practicable method in
volving closed-loop stabilization. 

Closed-Loop Method 

We consider the same first-order unstable system. It is 
easy to show that the system can be stabilized in a feedback 
loop using a proportional controller of gain Kc greater than 
a/K (Figure 1 illustrates the scheme). In fact 

y(s) _ KcK = G (s) 
r( s) - s + b - CL 

where b=KcK-a > 0. 

(5) 

If a sinusoidal variation is given in the reference signal , r, 
i.e. , 

r(t) = Ar sin rot (6) 

then we can show that (by Laplace inversion, for instance) 

y 

j 
.. Figure 1. 

An open-loop unstable system 
in a feedback loop with a 
proportional controller. 
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(7) 

where 

C1 = ~ 2~;:; AY =ArlocL(jro)I; <l> y =arg[ocL(jro)) (8) 

The signal u(t) = Kc[r(t)-y(t)] can be expressed as 

u(t) = -KcC1e- bl + Au sin (rot+ <!>u) 

It is possible to show that 

(9) 

i.e. , the amplitudes and the phases of the "input" and the 
"output" signals of the unstable system, Go(s), are related as 
before by the complex number G

0
(jro). The stabilization 

effect is noted in the e·b• term (note: b > 0) in both y and u in 
contrast to the open-loop case where we get the time-grow
ing term, e", in the output (for the same input Ar sin rot). For 
concreteness and simplicity, we illustrate the above result 
with a numerical example_csi We choose 

2 
G 0 (s)=-

1 s-
(! 1) 

It is easy to see that a unity gain (~ = 1) proportional 
controller stabilizes the above system in a feedback loop. In 
fact 

y(s) 2 

r(s) =s+T 

If we choose the input to be 

r(t) = 0.5 sin 2t 

then we can show that 

y(t)=¾e- 1 +(0.2)112 sin [2t-1.ll(rad)] 

Further 

u(t)= r(t)-y(t)= ~2 e- 1 +0.5 sin [2t+0.93(rad)] 

and 

IG 0 (2j)I= F5 and arg[G 0 (2j)]=-2.04rad 

Thus, we see that 

and 

(12) 

(13) 

(14) 

(15) 

(16) 

(I 7) 

Of course, the above analysis is based on a given system 
transfer function. This is not known a priori and, in fact, the 
purpose of the frequency response experiment is to deter
mine the transfer function. But what one has to do is to tune 
the proportional controller to obtain a stable system. Then, 
for a known sinusoidal input, r(t), at various frequencies , 
one would have to measure the amplitude and phase of both 
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u(t) and y(t) (after the transients die out) to construct the 
transfer function, Go(s). 

FREQUENCY RESPONSE 
AND STABILITY CRITERIA 

We now turn to another aspect of frequency response and 
stability, the famous Nyquist stability criterion. The Nyquist 
criterion helps one to infer the stability of a feedback control 
system from the Nyquist (polar) plot of the loop transfer 
function , GL(s), which is the product of the transfer functions 
of all the elements in the control loop. The advantage of 
stability criteria based on frequency response is their ability 
to deal with non-polynomial GL(s) that the Routh-Hurwitz 
criteria cannot treat rigorously. This advantage is particu
larly relevant to chemical engineering systems that often 
contain a time-delay element. 

Most chemical engineering textbooks on process control 
do not give as much prominence to the Nyquist criterion as 
they do to the Bode stability criterion, which is easier to use. 
An exception is the Luybenr21 book where a detailed discus
sion with illustrative examples can be found . It is to be noted 
that the Bode criterion is not general and specifically cannot 
be applied in cases where the Bode diagram for GL(s) is not 
monotonically decreasing. It is our objective here to high
light the potential sources of error in the application of the 
Nyquist criterion. It is not uncommon to find special state
ments of the criterion that might work in many cases but 
fail to yield the correct result for at least some systems. 
Often, these special statements are not accompanied by 
the conditions under which they hold. Thus it is desirable 
to always use the general form of the criterion that is 
given below. 

Let N be the number of net rotations of the Nyquist plot of 
GL(s) (- 00 < ro < oo) about the point (-1 ,0). This is the net angle 
traced out by the line segment from (-1 ,0) to the Nyquist plot 
as the frequency changes from -oo to oo. The sign convention 
is a positive value for N if the net rotation is in the counter~ 
clockwise direction and negative if it is in the clockwise 
direction. Let PR be the number of poles of 1 +GL(s) (note that 
this is the same as the number of poles of GL(s)) in the RHP. 
Then 

(18) 

where ZR is the number of zeros of I +GL(s) in the RHP. 
Hence, ZR is the number of roots of the characteristic equa
tion l+GL(s)=0 that lie in the RHP. Clearly, ZR must be zero 
for a stable system. 

It is not our objective here to give a proof of the above 
statement (see, for instance, Ref. 9), but we illustrate its 
proper use through a simple example. In our opinion, the 
following points are crucial: 

• While the portion of the Nyquist plot from -00 to 0 is 
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simply the mirror image (about the real axis) of the 
portion from O to =, not using the full plot can lead to 
erroneous conclusions. 

• The precise meaning of the commonly used notion of 
"encirclement" about the (-1,0) point must be under
stood. It is not uncommon 16•91 to have cases where the 
(-1,0) point is entirely within Nyquist plot and hence 
appears "encircled," but the net encirclement is, in 
fact, zero. Further, the direction of encirclement is 
crucial. Encirclement in itself does not necessarily 
mean that the closed-loop system is unstable. 

• The number of RHP poles of GL(s) must be known. 

We demonstrate the above points by choosing a simple 
system-the same one we chose in the previous section 

2 
G0 (s)=-

1 s - (I 9) 

in a feedback loop with a proportional controller of gain 
Kc1= I /4 and Kc2= I. It is easy to see that the first control system 
is unstable, while the second is stable, by considering the 
characteristic equations 1 +Gu (s)=O and 1 +GLi(s)=O, respec
tively. But our objective here is in the application of the 
Nyquist criterion. 

Figure 2a shows the Nyquist plot of 

2Kc1 I 
Gu (s) =""'s=l= 2(s -l) (20) 

The figure clearly shows that N=O as the net angle traced out 
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by the full yquist plot (with reference to the (-1,0) point) is 
zero. Since PR=! , we get 

(21) 

Thus the closed-loop system is unstable with one root of the 
characteristic equation in the RHP. Note here that even 
though the Nyquist plot does not encircle the (-1 ,0) point, the 
closed-loop system is unstable. 

Figure 2b shows the Nyquist plot for 

2 2 
GL2 (s)=-1 Kc2 =-1 s - s - (22) 

Here the Nyquist plot encircles (-1 ,0) once. Note that the net 
angle traced is 2n, but this is in the counterclockwise direc
tion, implying that N=l. Again, since PR=I, we obtain 

(23) 

Thus the closed-loop system is stable, even though the Nyquist 
plot encircles the (-1 ,0) point. Note further that if we restrict 
ourselves to the Oto = segment, we will not see any encircle
ment. 

Thus, we have highlighted the aspects we set out to illus
trate-the importance of considering the entire frequency 
range (-00 to 00), the importance of the direction of encircle
ment, and the necessity of knowing the number of unstable 
poles of GL(s). 

CONCLUSIONS 

We have clarified the concept of frequency response for 
linear time-invariant systems, demonstrating its validity for 
unstable systems as well. We have also highlighted some 
pitfaJls in the use of the Nyquist criterion and pointed out 
how to avoid them. 
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