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E quations of state are among the marvels of chemical 
engineering. Though simple and convenient, they 
may be used to model both liquid and vapor behavior 

for non-polar and low-polar mixtures.11•21 Consequently, such 
methods are the preferred tools of the hydrocarbon process­
ing industry. It is not often, especially in thermodynamics, 
that you can do so much with so little. In this article, we 
calculate thermodynamic properties that contain derivatives, 
a topic not normally found in textbooks. 

There are two motivations for presenting this material. 
First, the calculations are simple, requiring no iteration or 
trial-and-error solutions. They are, however, useful items to 
add to the engineer's toolkit, and they require only critical 
property and ideal-gas heat-capacity data. Second, it enables 
the student to use some seemingly abstract equations of 
thermodynamics to directly make numerical calculations. 
It is rewarding to see these relationships used to make 
actual calculations and to observe relative magnitudes of 
various quantities. 

To illustrate the methods, we use the Peng-Robinson equa­
tion of state applied to a binary vapor hydrocarbon mixture. 
There is an almost endless number of derivatives that can be 
calculated-we will consider only a few of the more com­
monly encountered ones. It is trivial to simplify the ensuing 
equations for the special case of a pure component or to 
apply the equations to any number of components. The 
equations are valid for both liquid and vapor phases. 

112 

PROBLEM STATEMENT 

Using the Peng-Robinson equation of state, calculate the 

J = (aTJ 
1) Joule-Thompson coefficient, -lap )H 

ttaPI 
2) Fluid sonic velocity, c = vl ap Js 

for a binary vapor mixture of n-butane and n-pentane at 
390K and 11 bar that consists of 35.630 mole % n-butane. 
Take k;j for this binary pair to be zero. 

SOLUTION 

We will solve this problem in three steps. First, we will 
use the Peng-Robinson equation of state to evaluate the three 
derivatives involving P, v, and T, i.e., (aP I av )T' (aT I aP)v, 
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and (av/ aT)p. Then we will find the real fluid heat capaci­
ties, Cv and CP, and finally we will apply these results to 
calculate the two thermodynamic derivatives indicated above. 

Solution of the Peng-Robinson Equation of State for 

(aP / clv)T, (aT I aPt, and (clv / aT)p 

The Peng-Robinson equation is written as 

P = RT _ a 
V - b v( v + b) + b( v - b) 

where 

R universal gas constant 
T absolute temperature 
v molar volume 

a ac[1+m[1-,jTtTc ]] 

ac 0.45723553 R2T/ /Pc 
m 0.37464 + 1.54226 m - 0.26992 m2 

b 0.077796074 RTC/PC 
Tc critical temperature TABLE 1 

(1) 

Pc critical pressure 
m pitzer acentric factor 

Critical Property Data for 
a-butane and n-pentane 

The critical properties for the 
two components of our sys­
tem are taken from Smith and 
Van Ness (Table 1):131 

n-butane n-pentane 

For convenience, the Peng­
Robinson equation is often 

Tc(K) 425. 1 469.7 

Pc(bar) 37.96 33 .7 

0) 0.200 0.252 

written in a cubic polynomial form for the compressibility 
factor z = Pv / RT 

f(Z)=Z 3 +az2 + ~z +y=0 
where 

CX=B-1 
~ = A-28-382 

Y=B3 +82 -AB 

and 

A= aP / (RT)2 

B = bP I RT 

(2) 

For an N-component fluid with composition, {w;} , we 
calculate the mixture parameters, a and b, from the empirical 
relations: 

N N 

a= LL w;wj,ja;aj (1-k;j) and 
i= l j=I 

N 

b=Lw;b; 
i = I 

(3) 

The binary interaction coefficient, k;j, is exactly zero for i=j ; 
for i;tj , k;j is close to zero for hydrocarbons. Values of k;j for 
many component pairs are available in the literature, 141 al­
though for most hydrocarbon pairs it is safe to take kij=O. We 
will henceforth use values without subscripts to refer to 
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quantities applied to the mixture as a whole, and subscripted 
values for pure component quantities. From Eq. (1), we 
calculate the pure component parameters using R=83 .14 
cm3-bar/mol-K: 

a1 = 1591 1115 cm6-bar/mol2 a2 = 23522595 cm6-bar/mo!2 
b1 = 72.43235 cm3/mol b2 = 90.14847 cm3/mol 

and then, from Eq. (3), we find that 

a = 2063 1852 cm6-bar/mo!2 b = 83.836216 cm3/mol 

We now solve Eq. (2) for the compressibility factor, Z. 
This equation is easily solved using Newton-Raphson itera­
tion l5l or by using the cubic formu la. [IJ In either case we 
calculate the vapor phase compressibility factor (largest 
of the three real roots) to be 0. 7794 for the vapor. Conse­
quently, the molar volume, v , of the vapor mixture is 
ZRT/P = 2297.54 cm 3/mol. 

With knowledge of the molar volume and compressibility, 
we now calculate the three PVT derivatives, which follow 
directly from the equation of state. Knowledge of these 
quantities is prerequisite to finding most any derivative ther­
modynamic property. We know that these three derivatives 
must satisfy the "cyclical rule," which may be written as 

(t~ )Jt;JJ~~ t =-l (4) 

Therefore, once we have values for any two of the three PVT 
deri vatives, the third may be calculated from Eq. (4) . We 
will evaluate each derivative independently, however, and 
use Eq. (4) to check our work. 

The first derivative in Eq. (4) is found by direct differen­
tiation ofEq. (1), 

(
aP) - RT 2a(v+b) 
av T = ( V - b )2 + [ v( v + b) + b( V - b) ]2 

(5) 

Substituting in the values determined above, we find that 

( t~ )T = -0.0035459 bar/ ( cm3 /mo!) 

The second derivati ve in Eq. (4) is also found by direct 
differentiation of Eq. (1), 

( 
ap I R a' 
aT) v v - b - v( v + b) + b( v - b) 

and is found to be 0.0434866 bar/K. Therefore, 

( t! l = 22.99558 KI bar 

(6) 

The third derivative in Eq. (4) is a bit trickier since Eq. (1) 
is not readily explicit in volume or temperature. It is there­
fore found implicitly, using Eq. (2), 

(7) 
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where 

( az 1 ( ~ J/a-z)+(~ l (6Bz+2z-3B
2
-2B+A-z

2
) 

l aT Jr= 3z2 +2(B-1)z+(A-2B-3B2 ) 

(
aB) = -bP 
aT p RT2 

The derivative term, a'=da/dT, may be evaluated directly 
from Eq. (3) as 

, da 1 ~ ~ ( )(j¥j , fifi , I 
a =dT=zL.,.L.,WjWj 1-kij l ~ai + a,""aj) (8) 

1= IJ = l J 

where 

(9) 

The pure component parameters are found from Eq. (9) as 

a1, =-25547.0 cm6-bar/mol2-K 
a/ =-38460.2 cm6-bar/mo12-K 

and da/dT for the mixture is found from Eq. (8) to be 

a'=-33543 .8 cm6-bar/mol2-K. 

Substituting known values in to Eq. (7), we find that 

( ~~ l = 12.26396 cm 3 
/ mo!- K 

If we multiply the three numbers together we will see that 
we have satisfied Eq. (4). 

Calculation of the Heat Capacities 
Cv and CP 

We first find Cv · We will consider this real fluid property 
to be a sum of an ideal gas contribution and a residual 
correction for non-ideal behavior: 

(10) 

The ideal-gas contribution is found using heat-capacity data 
applicable to gases at very low pressures, which are avail­
able in many thermodynamics textbooks. We will use the 
simple correlation in Smith and Van NessC3l 

c~ = R(A+BT+CT2 +oT-2 - 1) . (11) 

which is not recom-
mended for temperatures 
below 298K nor valid for 
temperatures over 1500K. 
For n-butane and n-pen­
tane, the coefficients are 
given in Table 2. 

The ideal gas contribu-
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A 

B 

C 

D 

TABLE2 

n-pentane 

1.935 2.464 

36.915 X 10-3 45.351 X 10-3 

- [1.402 X 10-6 -14. 111 X 10-6 

0 0 

tion for the mixture is a mole fraction weighted average of 
the pure component values, i. e., 

N 
C10 =I_w .C10 

V I V , 
i=l I 

(12) 

Inserting the known temperature of 390K into the above 
equations, we calculate for each component 

CID= 113.050J/mol-K 
vi 

and for the mixture 

cID =141.376J/mol-K 
v 2 

c~D 131.283 J / mol-K 

To calculate the residual contribution to Eq. (10), we use 
the standard equation found in many textbooksr4•

6l for the 
residual internal energy derived from the Peng-Robinson 
equation of state 

UR = _Ta_' -_a fn[-z _+ B-c( 1_+---=✓2=-2 )] 
b✓S Z+B(1 -✓2) 

(13) 

The value of c~ is calculated from its definition 

c~ =( a~TR l 
Evaluation of the partial derivative of Eq. (13) with respect 
to temperature yields 

CR = -- £n --,----=c;-
Ta" (l z + a(1 + .fi)lj 

v - b✓S Z + a( I - .fi) (14) 

with the temperature derivative of Eq. (8) yielding 

where 

(16) 

These equations appear complicated, but the calculation is 
straightforward, albeit tedious. Pure component parameters 
for a" are found from Eq. (16) to be 

a['= 53.2619cm6 -bar/ mo1 2 -K2 

a2 =80.7496cm 6 -bar/mo1 2 -K2 

and a" for the mixture is found from Eq. (15) to be 

a"= 70.2732 cm 6 -bar/ mo1 2 -K2 
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If doing hand calculations, very little error (usually less than 
2%) is introduced by using the mole fraction weighted aver­
age in calculating a". In this case, we would calculate a" to 
be 70.9557 cm6-bar/mol2-K2

. Substituting the above mixture 
quantities into Eq. (14) (using ZL =0.779438) gives c~=l.152 
J/mol-K. 

Using Eq. (10), we now obtain Cv=l32.436 J/mol-K. 

We will use an equation analogous to Eq. (10) to calculate 
Cr, 

(17) 

and since cJP =C~ +R, we readily calculate cJP to be 
139.597 J/mol-K. The residual contribution may be calcu­
lated from the general relationship between Cv and Cr, 

C~=C~+T(~;)Ji;t-R (I 8) 

The two partial derivatives are already calculated above and 

can be substituted into Eq. (18); we find that C~ =C~+124.85 

cm3-bar/mol-K and therefore C~=l36.37 cm3-bar/mol-K, or 

13.637 J/mol-K. Adding the ideal gas and residua] contribu­
tions according to Eq. (17) yields 

CP = 153.235 J / mol- K 

Calculation of Thermodynamic Properties 
J andc 

Now that we have values for the three PvT derivatives as 
well as the two heat capacities, Cv and Cp, we can calculate 
a large number of thermodynamic derivatives. We will only 
evaluate two of the more commonly encountered ones, the 
Joule-Thompson coefficient, J, and the speed of sound in a 
fluid, c. 

It is simple to calculate the Joule-Thompson coefficient,(clT/ 
clP)H, using the working equationl61 

1 =-1 [T( av ) -v] 
Cp aT p 

(I 9) 

since all the required values have been calculated. Substitut­
ing into Eq. (19), we obtain 

J = 1.62195 Kl bar 

The fluid sonic velocity -J(aP / ap )
8 

is calculated from the 

working equationl61 

Cp aP 
C = V -Cvl av T 

(20) 

All the required values have been calculated. Substituting 
into Eq. (20) yields c=l47.164 (cm 3-bar/mol)°-5

. Since these 
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are unusual velocity units, some units conversion is in order. 
The average molecular weight of the vapor mixture is 67 .152 
g/mol and we find that the sonic velocity is 

( kg-.!!!. I 
c2 = 21657 cm 3 -bar I00000 l s2

) _m_ 1000g lmol 
mo! bar 100cm kg 67.152g 

or 

? 

3.225l x !08 c~­
s 

c=l 79.586m/ s=646.5km /hr 

We can compare this result with the low pressure (ideal gas) 
limiting value 

CID 05 
cm= f0 RT =185.683(cm 3 -bar/mol) · =226.590m/s 

CV 

DISCUSSION 

Calculation of derivative properties is easy if there is an 
equation of state available to model the PVT behavior of the 
fluid. Two such properties have been evaluated here using 
the Peng-Robinson equation of state. It is trivial to evaluate a 
large number of other derivative properties once we know 
the three PVT derivatives and the two heat capacities. In this 
age of computers, it is worthwhile for the student to develop 
a spreadsheet or set of computer subroutines to calculate 
thermodynamic properties of hydrocarbons and hydrocar­
bon rnixtures .L71 Including these and other thermodynamic 
derivatives would be very easy, indeed. 

It is interesting to estimate some of these derivatives by 
using their finite-difference approximations and to compare 
these estimates with results using the equations discussed 
above. For example, Cr is approximated by evaluating the 
enthalpy H=Hm+UR+RT(Z-1) at two nearby temperatures at 
11 bar (and same composition) 

cP =( ~~ 1 = 
30012·1!~=;:;o5

.
977 

153.2361 /mol-K 

which is essentially the same as the result obtained above, 
with any error due to the finite-difference approximation. 
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