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Editorial Note: The "Class and Home Problems" section on pages 366-368 of the Fall 2000 issue of CEE 
presented Erich A. Muller's article, "A Thermodynamics Problem with Two Conflicting Solutions." In it, tanks 
A (isothermal) and B (adiabatic) are filled with an ideal gas and connected by pipes and a valve. Initially, PA> 
p8 . If the valve is opened and equilibrium attained, will it have been necessary to add ( or remove) heat from 
tank A? Professor Muller 's article has elicited the following two letters. His reply is also appended. 

We appreciate the interest that Professor Muller 's problem has generated, and request that any further 
correspondence on this problem be e-mailed to him at 

emuller@usb.ve 

To the Editor: 

The recent article by MUller(1J presents an interesting dis
cussion of pedagogically important issues. We wish to com
ment on two aspects of the article. First, we believe that it is 
pedagogically more sound to treat MUiler's "two conflicting 
solutions" as (non-conflicting) solutions to different prob
lems that arise from two different equilibrium models of the 
situation, as implied in hi s comments. Second, we believe 
that his "Comments on the Equation for the Uniform State, 
Uniform Flow Model" can be improved regarding the basic 
assumptions underlying use of the unsteady-state energy
balance equation for a control volume and its general appli
cation in first-law analysis. We elaborate on both these points 
in the following. 

Concerning the analysis of the situation described in the 
article, we note that his "Solution # l " relates to a model in 
which it is stated that "tank B is adiabatic"; that is, there is 
no heat transfer to or from tank B ( Q = 0) at any time to any 
other body, although this does not preclude exchange of 
energy via flow of matter through the connecting line and 
valve. Practically speaking, the equilibrium state for the 
contents of tank B is a partial equilibrium state with respect 
to the contents of tank A: mechanical , but not thermal , 
equilibrium. Regardless of where the control surface is placed 
(around tank A alone or around tanks A and B together), the 
conclusion reached is as MUiler states: QA> 0. Solution# l is 
the solution to the problem arising from one particular model 
of the situation. 

His "Solution #2" relates to a different model of the si tua
tion, in which it is stated that there is "a heat transfer be
tween the tanks" (presumably through the connecting line 
and valve) . In this case, tank B evidently has an adiabatic 
enclosure with a (small?) diathermal hole in it. This changes 
the equilibrium aspect of the model to be addressed, to one 
allowing for both mechanical and thermal equilibrium with 
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respect to the contents of both tanks . This also changes the 
conclusion reached for the resulting problem to, as MUiler 
also states, QA = 0. 

We thus believe that it is pedagogically better to treat the 
two cases as two different models of the situation and to 
compare the results of a first-law analysis of the resulting 
problems, rather than to present the results as two conflicting 
solutions of the same problem. MUiler cannot on the one 
hand state that "tank B is adiabatic" and on the other state 
that there is "a heat transfer between the tanks ." Thermody
namics requires precise, rather than "shrewd," statements of 
models and systematic analysis of resulting problems. 

Concerning hi s "Comments on the Equation for the Uni
form State, Uniform Flow Model," we feel that MUiler's 
justification of his starting point for solution #1 , as a conse
quence of a general first-law analysis for a control volume, 
can be strengthened. This strengthening is pedagogically 
important, to enable students to appreciate points at which 
approximations are made to exact equations. 

His "generalized energy balance," Eq. (7), should be re
placed by (we also change the sign of W, in accordance with 
recommended practice) 

d [ (- - - )] - m u +e +e = dt sys sys k,sys p,sys 

Q+w+I, m(t)[h(t)+e k(t)+i\(t)] 
inlets 

- I m(t)[ii(t)+ ek(t)+ ep(t)] (A) 
exus 

In Eq. (A), u, ek, er, and h deote specific internal energy, 
kinetic energy, potential energy, and enthalpy, respectively, 
and a tilde C) denotes an appropriately defined intensive 
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quantity. Thus, for a property within the control volume 
(sys) 

( ) 
J u(z,t)p(z,t)dY 

- ( ) U sys t V 
Usys 1 =-m-sy-s(-t) =--'--~J-p(~z-,t~)d_V_ (B) 

V 

and similarly for ek,sys and ep,sys. In Eq. (B), dV is a vol
ume element, p is density, and z denotes a point within the 
control volume. Correspondingly, for a property at an inlet 
or exit 

. f h(x,t)p(x,t)un(x,t)dA 
h t = H(t) = A 

() m(t) f p(x,t)u0 (x,t)dA 
A 

(C) 

and similarly for ek(t)and ep(t). In Eq. (C), dA is an area 

element of an inlet or exit area, x denotes a point on the area, 
and un is the flow velocity normal to dA. Eqs. (A) to (C) 
must be supplemented with the mass-conservation equation 

dm sys 
-d -= I 111(1)- I 111(1) 

t inlets exits 
(D) 

The validity of Eq. (A) rests on two generally accepted 
concepts not introduced by Mi.iller: the continuum hypoth
esis and a local equilibrium hypothesis. The former allows 
integration of point properties over volumes and areas, as in 
Eqs. (B) and (C), and the latter allows calculations using 
macroscopically based property relationships. 

Equations (A) and (D) are differential equations. As in 
some introductory texts, l2-31 it is tempting to deal instead with 
their integrated forms, between times t1 and t2, say, 

m2(u2 + ek,2 +ep,2)-m1(u1 +ek,I +ep,1) 

t2 
=Q 12 + w12 + . I f 111(1)[ii(1)+ek(t)+ eP(t)]ct1-

m1ets 1
1 

12 
- I f 111(1)[ii(1)+ek(1)+ ep(1)]ct1 (E) 

ex its t
1 

m2 - m1 = L mi - L me (F) 
inlets exits 

Equations { (A),(D)} and { (E),(F)} are exact. Equation (E) is 
only a formal result and may not always be useful , however. 
This form is deceiving since it implies neglect of any inter
dependence of the left and right sides of Eq. (A). 

Simplification of Eqs. { (A),(D)} or { (E),(F)} involves 
invoking appropriate approximations for special cases of the 
spatial and temporal dependence of the properties at the 
inlets and exits and of the system. Important special cases 
are 
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• uniform flow, for which the properties at an inlet or exit 
are independent of position x (giving ii(t)= h(t)) (or for 
each phase of the flow) 

• uniform state, for which the properties of the system are 
independent of position z (giving iisys (t)= Usys (t)) (or 
for each phase within the system) 

• steady-property flow, for which the properties at an 
inlet or exit are independent of time t 

• steady flow, for which m at an inlet or exit is indepen
dent of time t (steady flow usually implies steady
property flow, but the converse is not necessarily true) 

• steady state, for which the properties of the system are 
independent of time t; this entails the vanishing of the 
left side of Eq. (A) (steady state usually implies steady 
flow and steady-property flow) 

The uniform flow (UF) assumption at inlets and exits 
(incorporated without comment by Miiller in his Eq. 7) and 
the uniform state (US) assumption for the system are often 
used in the absence of any information concerning spatial 
dependence of the properties. (The former is consistent with 
a plug-flow assumption and the latter with a well-stirred 
vessel assumption.) Together, they form part of the basis for 
an unsteady-state flow model referred to by Miiller as the 
"Uniform-State Uniform-Flow (USUF) model." This desig
nation by itself is misleading, however, since this model 
includes a third assumption that corresponds to the steady
property flow assumption defined above. As essentially 
pointed out by Miiller, these three assumptions (together 
with neglect of kinetic and potential energy terms) allow Eq. 
(E) to be simplified to MUiler's Eq. (1), hi s "working equa
tion" of the USUF model. 

More generally, for unsteady-state flow processes, the 
steady-property flow assumption does not hold, and the USUF 
model is invalid. We do not believe that it should be empha
sized pedagogically since it severely restricts the first-law 
analysis to rather special cases, such as the discharge situa
tion described by MUiler in his solution #1 and filling a 
vessel from a constant-property source/reservoir. We recom
mend instead that a first-law analysis deal directly with the 
differential equations (A) and (D) as such. This approach 
handles all situations (including the USUF model as a spe
cial case), and is consistent with the approch of some intro
ductory textsr4

•
51 and recent pedagogical articles.l6

•
71 
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To The Editor: 

In the Fall 2000 Class and Home Problems Column, E.A. 
Mtillerl1l proposes a thermodynamics problem designed to 
demonstrate that two seemingly correct but incompatible 
solutions can be found from the thermodynamic analysis of 
a particular process, and furthermore that such incompatible 
solutions provide an opportunity to improve one' s under
standing of thermodynamic analysis. 

Millier proposes the following: Consider two tanks, A and 
B, connected with a valve and initially filled with (ideal) gas 
at the same temperature, but the pressure in A is greater than 
the pressure in B. Tank B is well insulated (adiabatic) , but 
tank A is maintained at constant temperature by thermal 
contact with a heat source or sink. 

Mtiller asks: "If the valve that connects both tanks is 
opened and equilibrium is attained, will it have been neces
sary to add (or to remove) heat from tank A?" (Denoted as 
QA.) 

For this problem, it is clear that tanks A and B will be at 
the same pressure at the end of the process. But Mi.iller 
clearly intends that tanks A and B are also at the same 
temperature when equilibrium is attained. For tanks A and B 
to reach the same temperature at equilibrium would require 
that tanks A and B be in thermal contact. Clearly, the contra
diction is that tank B cannot be well insultated (adiabatic) 
and in thermal contact with tank A. This contradiction ap
pears in both solutions presented in the paper. 

Solution #1 is obtained by considering an energy balance 
on a control volume around tank A and shows that QA > 0. 
Muller subsequently argues that this solution is incorrect by 
considering an energy balance on a control volume around 
tank B; for this system, the paper (correctly) shows that 
energy must be removed from tank B if the temperature of 
tank B is unchanged. Since Mtiller is treating the tempera
ture of tank B to be the same as tank A (and the temperature 
of tank A is unchanged), energy must be removed from tank 
B, which violates the requirement that tank B be adiabatic. 
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In fact, since tank B is well insulated, the energy balance on 
tank B in the paper correctly shows that the temperature in 
tank B will increase at equilibrium. 

Solution #2 is obtained by considering an energy balance 
on a control volume around both tanks and the connecting 
piping, so that the change in internal energy must equal the 
heat transfer to tank A (QA). Since Mtiller intends the tem
peratures in the two tanks to be equal at equilibrium, the 
internal energy is unchanged, and QA = 0. As discussed 
earlier, the temperature in tank B actually increases during 
the process, so the internal energy of the system increases, 
andAA>0. 

Another way to show QA ,;: 0 is to consider a system such 
as the contents of tank A after equilibrium is attained. Now, 
suppose QA = 0. The contents of such a system could then be 
considered to undergo an adiabatic reversible expansion (since 
QA= 0). Note however that (oT/oP)s > 0 for all gases (real 
and ideal). Therefore, when the pressure in tank A decreases, 
the temperature in tank A also decreases-but this is a con
tradiction since tank A must be maintained at a constant 
temperature. Therefore, QA cannot equal 0. 

Irrespective of the difficulties expressed above, Muller's 
point is well made that one' s understanding is improved by 
resolving the dispute between seemingly incompatible ther
modynamic analyses. 
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University of Arkansas 
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Author's Response to Letters to the Editor 

I have received many comments, personally and publicly, 
on the problem I presented in the Fall 2000 issue of CEE. As 
with Levenspiel's original thermo problem, each and every 
comment is different, ranging from "You chose the wrong 
answer" to "Send me another one of these problems." 

The main message of the paper is that if you use equations 
straight out of a book and apply them to a problem without 
fully understanding the assumptions behind the equations, 
you have a chance of coming to a false conclusion. Never
theless, I think some readers "missed the point," and I be
lieve further discussion is in order. 

The initial problem is clearly stated, especially with regard 
to the final state: "equilibrium is attained." In a simple 
system such as this, thermodynamic equilibrium requires the 

109 



simultaneous achievement of three conditions: homogeneity 
of pressures (mechanical equilibrium), homogeneity of tem
perature (thermal equilibrium), and homogeneity in chemi
cal potential (diffusive equilibrium); i.e. , only if all three 
conditions (PA = P 8

, TA = T 8
, and µ A = µ 8

) are simulta
neously met can we affirm that the system will not change in 
time if left alone. 

Solution #1, as Missen and Smith note, pertains to the 
achievement of mechanical equilibria, but as is also noted in 
the original article, leaves a temperature gradient among 
tanks A and B. Given enough time, mass diffusion must take 
place, transferring energy from tank B to tank A. So, even 
though tank B has adiabatic walls and thus no heat transfer 
to the surroundings, it does transfer energy due to a tempera
ture difference. 

In hindsight, the phrase "Given enough time, this tempera
ture gradient will produce a transfer between the tanks" 
should read, "Given enough time, this temperature gradient 
will produce a mass transfer and consequent energy transfer 
between the tanks" in order to be unambiguous . 

It is clear, however, that there are not two solutions to the 
problem, even if the catchy title implies so. Only one solu-

t.A.-61111113._b_o_o_k_re_v_ie_w ________ ) 

Advanced Transport Phenomena 
by John C. Slattery 
Published by Cambridge University Press, The Edinburgh Building, Cam

bridge, UK; 734 pages; available in paperback and hardcover 

Reviewed by 
David C. Venerus 
Illinois Institute of Technology 

Advanced Transport Phenomena is a new textbook writ
ten by Professor J.C. Slattery that represents a revision of an 
earlier text by the same author: Momentum, Energy and 
Mass Transfer in Continua (1981 ). Transport phenomena is 
a fascinating and interdisciplinary subject that is covered by 
at least one required course in all graduate chemical engi
neering programs and remains an active area of research. 
Like its predecessor, the new book is intended for graduate 
students in engineering. 

The text is organized into three topics according to the 
main subjects of transport phenomena: momentum, energy, 
and mass transfer. In addition, there are two shorter topics 
that are covered; kinematics (coming before the three main 
topics) and tensor analysis (an appendix) . Each of the three 
main topics is divided into three sub-topics that can roughly 
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tion is possible. Any argument attempting to set solution #1 
as the correct one must first disprove solution #2-an im
possible task. 

Many students and teachers (and Spicer' s note is a clear 
example) apply the textbook equations directly to a problem 
without further thought on the problem. It is in this sense that 
I totally agree with the second point noted by Missen and 
Smith. I believe that one should teach the general energy 
balance, and for each particular case simplify it accordingly. 

The point of the original class problem is that if one starts 
directly with Eq. (2), one may elude some of the assump
tions behind its derivation. One should always start with a 
generalized equation such as Eq. (7)* and integrate it accord
ing to the given problem. Categorizing systems as steady 
state, uniform flow, etc. , and stating formal equations in 
each case only entices the student to learn a myriad of 
equations, making things more difficult and prone to errors. 

Erich A. Miiller 
Universidad Simon Bolivar 

• Equation (7) is identical (with the exception of the arbitrary sign 
given to the work) to Eq. (A) ofMi ssen and Smith, not to Eq. (E) as 
stated in their comment. 

be described as the formulation, application, and reduction 
of transport balance equations. This matrix style of organi
zation, where the columns are the main topics (momentum, 
heat, and mass) of transport phenomena and the rows pro
vide the components and applications for each topic, is simi
lar to that used in the classic text Transport Phenomena by 
Bird, Stewart, and Lightfoot (BSL), and allows the instructor/ 
reader the flexibility to cover the topics by column or by row. 

The style and teaching philosophy of the author are re
vealed in Chapter 1 (kinematics) where concepts such as 
motion, velocity, and phase interfaces are introduced. Vari
ous transport theorems are developed and used to derive the 
differential mass balance, or continuity equation, and the 
jump mass balance from the mass conservation postulate. 
Hence, the approach taken here and throughout the book is 
to start from general postulates about the physical world 
and to convert these postulates into useful conservation 
equations using formal mathematical tools . 

The sub-topic structure is itself instructional in that the 
reader is forced to recognize the similarities (and differ
ences) between momentum, heat, and mass transfer. In Chap
ters 2, 5, and 8 (Foundations for ... ), differential forms of the 
conservation equations and their corresponding two-dimen
sional forms Uump balances) are derived simultaneously. 
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