
f9ij§ class and home problems ) 

The object of this column is to enhance our readers' collections of interesting and novel prob
lems in chemical engineering. Problems of the type that can be used to motivate the student by 
presenting a particular principle in class, or in a new light, or that can be assigned as a novel home 
problem, are requested, as well as those that are more traditional in nature and that elucidate 
difficult concepts. Manuscripts should not exceed ten double-spaced pages if possible and should 
be accompanied by the originals of any figures or photographs. Please submit them to Professor 
James 0 . Wilkes (e-mail: wilkes@umich.edu), Chemical Engineering Department, University of 
Michigan, Ann Arbor, MI 48109-2136. 
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This paper illustrates two useful pedagogical techniques 
for motivating and teaching students that can be eas
ily applied to teaching process dynamics. The two 

basic ideas are: 1) use situations that are not chemical engi
neering and 2) use different versions of the same problem 
sequentially throughout the duration of the course. 

The first helps to motivate students because they can see 
that the basic principles of developing dynamic mathemati
cal models have wide application in many aspects of life. 
The second provides the "creative redundancy" that is needed 
to really understand a subject. 

One example of this approach is presented here. There are 
four similar problems that have slightly different mathemati
cal models and/or boundary conditions: 

lJ The 1805 Battle of Trafalgar (Version 1) 

lJ The Battle of Trafalgar (Version 2) 

lJ The Battle of the North Atlantic (l 940) 

lJ The 2200 battle between the Federation fleet of starships, 
led by Captain Kirk, and the evil Klingon fleet 

The originator in chemical engineeri ng of the idea of mo
tivating students by using non-chemical engineer-ing ex
amples was Octave Levenspiel. In his pioneering textbook, 
Chemical Reaction Engineering, 111 he presented a number of 

problems that were outside the chemical engineering field . 
As a graduate student studying this book, I found these prob
lems very refreshing. The typical textbook back in those days 
(and still true for many books today) was dry as dust. The 
language was very stiff and formal. The use of the first per
son was unheard of, as was any attempt to inject humor. All 
the material was straight-line chemical engineering. 

Levenspiel changed all that and produced a very "user
friendly" book. His "reactor design" problems included the 
Battle of Trafalgar, Snake-Eyes Magoo betting habits, inves
tigation of the missing operator by Sherlock Holmes and Dr. 
Watson, etc. These problems were a great help in letting stu
dents understand that the basic principles could be applied to 
a wide spectrum of life situations. In my own writing over the 
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last forty years, I have tried to foUow Levenspiel 's example by 
using problems drawn from such diverse areas as farming, whis
key making, mechanical and aerospace systems, etc. 

In the following sections, I will show how the "Battle of 
Trafalgar" problem can be extended to teach students the prin
ciples of dynamic mathematical modeling and the use of 
Laplace transforms. 

SEQUENTIAL PROBLEMS 

The second idea has grown out of over three decades of un
dergraduate teaching. The approach is to assign a homework 
problem and go over its solution in class. Then in the first ex
amination give a similar problem that is a slight extension of the 
first, and in the second examination given another similar problem 
that adds different features to the mathematical model that must be 
derived and solved. By the time the students get to the end of the 
course, they have figured out that there will be a similar problem 
on the final examination, and they all know how to solve it. 

The principle behind thi s approach is "creative redundancy." 
How many times have you heard the remark "I really didn ' t un
derstand thermodynamics until I took the third thermo course." 
Repetition is a fundamental approach to learning. The idea is to 
make sure it is not boring. 

This paper presents one example of thi s sequential, non-disci
plinary problem approach. The problems are published in Luyben 
and Luyben.121 

( HOMEWORK PROBLEM) 

This problem is assigned early in the course after the funda-
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Figure 1. Battle of Tafalgar No. 1. 
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mentals of dynamic modeling have been reviewed and il 
lustrated with several chemical engineering processes. 

• Problem Statement 

Solve the following problem, which is part of a problem 
given in Levenspiel 's Chemical Reaction Engineering, 
using Laplace transform techniques. Find an analytical 
expression for the number of Nelson 's ships, N<•> and the 
number of Vi lleneuve's ships, Ve,> as functions of time. 

The great naval battle, to be known to history as the 
Battle of Trafalgar ( 1805), was soon to be joined. 
Admiral Villeneuve proudly surveyed his powe,fulfleet of 
33 ships stately sailing in single file in the light breeze. 
The British fleet under Lord Nelson was now in sight, 27 
ships strong. Estimating that it would still be two hours 
before the battle, Villeneuve popped open another bottle 
of burgundy and point-by-point reviewed his carefully 
thought-out battle strategy. As was the custom of naval 
battles at that time, the two fleets would sail in single file 
parallel to each other and in the same direction, firing 
their cannons madly. Now, by long experience in battles 
of this kind, it was a well-known fact that the rate of 
destruction of a fleet was proportional to the firepower of 
the opposing fleet. Considering his ships to be on a par, 
one-for-one, with the British, Villeneuve was confident of 
victory. Looking at his sundial, Villeneuve sighed and 
cursed the light wind; he 'd never get it over with in time 
for his favorite television western. "Oh, well," he sighed, 
"C'est la vie. " He could see the headlines next morn-
ing-"British Fleet annihilated, Villeneuve's losses 
are .... " Villeneuve stopped short. How many ships would 
he lose ? He called over his chief bottle-cork poppe1; 
Monsieur Dubois, and asked this question. What answer 
did he get ? 

• Problem Solution 

The mathematical model of this problem consists of two 
linear ordinary differential equations: 

dN = -kV 
dt 

dV = -kN 
dt 

(I) 

(2) 

with the initial conditions Nc,=0> =27 and Vc,=o> = 33, and k 
is a constant equal to the rate of destruction per ship. This 
rate constant is analogous to the rate constant in a chemi
cal reaction. Note that the actual variables in this problem 
are discrete (integers), but we are approximating the sys
tem with continuous variables to keep the mathematics 
simple. For reasonably large values (>10), thi s approxi
mation is probably fairly accurate. 

Laplace transforming gives the two algebraic equations 
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sN(s) - 27 = -kY(s) 

sV(s) - 33 = -kN(s) 

(3) 

(4) 

where s is the Laplace transform variable. Combining these 
equations gives expressions for N(,J and V(,J' which can be 
inverted back into the time domain to obtain N(t> and V(lr 

N = 27s -33k 
(s) s2 _ k2 

y = 33s-27k 
(s) s2-k2 

N = 3Oe-k1 - 3ekt 
( l) 

V = 3ekl + 3oe-kt 
( t} 

(5) 

(6) 

(7) 

(8) 

Note that there are positive eigenvalues. This does not mean 
that variables become infinite because the solution is limited 
to finite values of time. The battle ends at tF when the number 

of Nelson 's ships goes to zero, N(tF) = O, 

N (tf) = 0 = 3oe-klf - 3eklf 

Solving for tF gives 

f n 10 
I F = ~ 

The number of Villeneuve's ships left is 

y( ) = 3ek( fn 10)/2k _ 3Oe-k( fn 10)/2k = l8 95 lf . 

(9) 

(10) 

(11) 

Therefore, Villeneuve has lost 33-19 = 14 ships. Figure 1 
shows the dynamic changes in the number of ships in each 
fleet. 

This problem is assigned and its solution is discussed care
fully in class before the first examination. 

( EXAMINATION 1 PROBLEM ) 

Now we modify the problem by breaking it into two differ
ent battles. The model is the same, but there are two time 
periods with different initial conditions. Note that some of 
the characters are personalized to increase the interest level 
of the class (Bethany Steadman was the student who asked to 
review the original homework problem). 

• Problem Statement 
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While Adminral Villeneuve was doing his calculations about 
the outcome of the Battle of Trafalgar, Admiral Nelson was 
also doing some thinking. His fleet was outnumbered 33 to 
27, so it didn 't take a rocket scientist to predict the outcome 
of the battle if the normal battle plan was followed (the 
opposing fleets sailing parallel to each other). So Admiral 

Nelson turned for help to his trusty young Lt. Steadman, 
who fortunately was an innovative Lehigh graduate in 
chemical engineering (class of 1796). Steadman opened up 
her textbook on Laplace transforms and did some back-of
the-envelope calculations to evaluate alternative battle 
strategies. 

After several minutes of brainstorming and calculations 
(she had her PC on board, so she could use MATI.AB to aid 
in the numerical calculations), Lt. Steadman devised the 
following plan: The British fleet would split the French 
fleet, taking on 17 ships first and then attacking the other 16 
French ships with the remaining British ships. Admiral 
Nelson approved the plan, and the battle began. 

Solve quantitatively for the dynamic changes in the number 
of British and French ships as functions of time during the 
battle. Assume the rate of destruction of a fleet is propor
tional to the firepowe r of the opposing fleet and that the 
ships are on a par with each other in firepower. 

• Problem Solution 

The ordinary differential equations are exactly the same as 
in the homework problem, but the initial conditions are dif
ferent. Generalizing the solution for arbitrary initial numbers 
of ships in each fleet, let N(,=0J = N

0 
and V(,=0i=V

0
• The solu

tion is 

(
V + N J (V -N J N (t} = 0 2 0 e-kt - 0 2 0 ekt (12) 

y = o o e-kt + o o ekt 
(
V +N J (V -N J 

(t) 2 2 (13) 

During the first battle when Nelson takes on half the French 
fleet, the initial conditions are N(t=OJ = 27 and V(,=OJ = 17. The 
end of this initial battle occurs at ~

1 
when V

1
(tl = 0, or 
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Figure 2. Battle of Tafalgar No . 2. 
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v, (l) =0= ( 4; )e-kl FJ + ( -~o )eklFJ (14) 

fn (4.4) 
tF1 = ~ = 0.7408 I k (15) 

and the remaining number of British ships is 

N = ( 44 )e-0.7408 + ( .!Q)e0.7408 = 21 (lFJ) 2 2 (16) 

Now the second phase of the battle begins with the initial 
conditions Nc,=0> = 21 and Vc,=0> = 16. The dynamic changes in 
the number of French ships is 

V - ( 37 ) -kl (-5) kl (l) - 2 e + 2 e (17) 

The time it takes Nelson to completely demolish the French 
fleet is 

Jin (37 I 5) 1.0007 
t F2 = 2k =-k- (I 8) 

The remaining number of British ships is 

N(lFJ) = (327 }-1.0007 +(~} 1.0007 = 13.5 (19) 

Figure 2 shows the dynamic changes in the number of ships 
in each fleet during the two phases of the battle. 

So Nelson and the British fleet win the day (with a little 
help from a Lehigh chemical engineer)! 

( EXAMINATION 2 PROBLEM ) 

On the next test the problem is modified to include genera
tion terms in the differential equations in addition to the deple
tion terms. 
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Figure 3. Battle of the North Atlantic. 
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• Problem Statement 

The 1940 Battle of the North Atlantic is about to begin. Th e 
German submarine fleet consists of 200 U-boats at the 
beginning of the battle. The British destroyer fle et, under 
the command of Admiral Steadman ( a direct descendant of 
the intelligence officer responsible for the British victory at 
the Battle of Trafalgar), consists of 150 ships at the 
beginning of the battle. The rate of destruction of subma
rines by destroyers is equal to the rate of destruction of 
destroyers by submarines: 0.25 ships/week/ship. 

Germany is launching two new submarines per week and 
adding them to its flee t. President Roosevelt is trying to 
decide how many new destroyers per week must be sent to 
the British fleet under the l end-lease Program in order to 
win the battle. Admiral Steadman claims she needs 15 ships 
added to her fleet per week to defeat the U-boatfleet. The 
Secretary of the Na vy, William Gustus, claims she only 
needs 5 ships per week. Who is correct? 

• Problem Solution 

The dynamic mathematical model describing the number 
of destroyers, D<•>- and the number of U-boats, U<I) ' is 

dD dt =-kU +Po (20) 

dU dt = -kD+ Pu (21) 

where k is the rate of destruction (0.25 ships destroyed per 
week for each ship in the opposing fleet), P

O 
and Pu are the 

weekly rate of addition of destroyers and U-boats to the fleets , 
and time, t, is in weeks. The initial conditions are Dc,=0> = D

0 
= 

150 and Uc,=0> = U
0 

= 200. Laplace transforming and combin
ing gives 

U0 s2 +(Pu -kD 0 )s -kPo 
U (s) = ---,s(~s +-k ),....,.(s- --k'-c)--

Inverting to the time domain gives 

u (tl = 

(22) 

Po [ k(U 0 +D 0 )-(Pu +Po)] - kt [k(U 0 -D 0 )+(Pu -Po)] kt 
k+ 2k e + 2k e 

(23) 

If destroyers are added at a rate P
O

= 15, the number of U
boats goes to zero at tF = 16.5 weeks, and the number of re
maining destroyers is D = 71.8. If, however, destroyers are 
added at a slightly reduced rate P

O
= 14, the number of de

stroyers goes to zero at tF = 11 .2 weeks, and the number of 
remaining U-boats is U = 81.2. Figure 3 shows the dynamic 
changes in the number of vessels in each fleet for the two 
cases. Thus, Admiral Steadman's claim that 15 ships are 
needed per week is correct, and the Secretary of the Navy 's 
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claim of 5 ships per week is a gross underestimate. 

( FINAL EXAMINATION PROBLEM ) 

The final sequential problem moves into future star wars. 
The battle is between Captain Kirk's fleet of starships and 
the evil Klingon fleet in the year 2200. Now there are two 
types of starships: some have better defensive shields and 
some have more firepower than the Klingon ships. The math
ematical model now has three ordinary differential equations 
with different coefficients in the destruction-rate term. 

• Problem Statement 

Captain James Kirk is in command of a fleet of 16 stars hips 
of the Enterprise class. A Klingon fleet of20 ships has been 
spotted approaching. The legendary Lt. Spock has recently 
retired, so Captain Kirk turns to his new intelligence officer, 
Lt. Steadman (Lehigh Class of 2196 in chemical engineer
ing) for a prediction of the outcome of the upcoming battle. 
Steadman has been working with the new engineering 
officers in the fleet, Lt. Moquin and Lt. Walsh, who have 
replaced the retired Lt. Scott. These innovative officers have 
been able to increase the firepower of half of the vessels in 
Kirk's fleet by a factor of two over the firepower of the 
Klingon vessels, which all have the same firepower. The 
firepower of the rest of Kirk 's fleet is on a par with that of 
the Klingons. But these officers have also been able to 
improve the defensive shields on the second half of the fleet. 
The more effective shields reduce by 50% the destruction 
rate of these vessels by the Klingon firepower. 

Thus, there are two classes of starships: eight vessels are 
Class E,, with increased firepower, and eight vessels are 
Class E

2
, with improved defensive shields. Assume that half 

of the Klingon fleet is firing at each class at any point in 
time. 

Calculate who wins the battle and how many vessels of each 
type survive. 

• Problem Solution 

The dynamk model of the system is 

~=-k(K) dt 2 
(24) 

(25) 

(26) 

with the initial conditions E 1c,=0J = 8, E2c,=0> = 8, and Kc,=0J = 20. 
Laplace transforming and combining give 
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K = 20s-24k 
(s) s2 _ 1_ k2 

4 

20.73 
s+ l.118k 
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s-1.118k 

(27) 
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Figure 4. Star Trek Battle. 

8- kK(s) / 2 
El(s) = s (28) 

E = 8 - kK(s) / 4 
2(s) s (29) 

Inverting to the time domain gives 

K(t) = 20.73e-l.l lBkt -0.7335el. 118k1 (30) 

El(t) = 9.27 le -I. I IBkt + 0.328el. I I Bkt -1.599 (31) 

E2(1) = 4.636e- l.l ISkt -0.164el.l lBkl +3 .528 (32) 

The end of the battle occurs when K(tF) =0 . Solving the 

first Eq. 30 yields tF = 1.494/k. The number of surviving 

starships is E, c,= i.494/kJ = 1.889 and E2<•=L4941k> = 3.528. So it is 
better to be on a ship with better shields than on a ship with 
more firepower in this matchup. Figure 4 shows the dynamic 
changes in the number of vessels in each fleet. 

CONCLUSION 

This sequential non-chemical engineering problem illus
trates the basic ideas of the teaching methods proposed in 
this paper. Students respond when you show them how they 
can apply the fundamental principles they are learning about 
chemical engineering processes to many other real-life situa
tions. "Variations-on-a-theme" problems help students learn 
the basic principles of dynamic modeling in a variety of situ
ations. They learn how to think and how to derive models 
instead of trying to find a formula in a book. 
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