
[ej 5 =i classroom) --------------
AN INTEGRATED, REAL-TIME
COMPUTING ENVIRONMENT

For Advanced Process Control Development

JAMES H. VAN DER LEE, DONALD G. OLSEN, BRENT R. YOUNG, WILLIAM Y. SVRCEK

University of Calgary • Calgary, Alberta, Canada T2N JN4

Today's process control field is such that control tech­
niques that were considered advanced even ten to
twenty years ago are now becoming commonplace.r11

Model predictive control (MPC) in all it 's incarnations is a
good example-today there are well over two thousand MPC
controllers reported to be in operation industrially.L21 Despite
this abundance of MPC technology, however, commercial
simulation software packages have been slow to incorporate
MPC algorithms. Even when they are included, the algorithms
are prescribed and the · software does not allow for
customization of the algorithm(s) by users such as process
engineers. This can be attributed to the fact that there are
many MPC algorithms and it would take large develop­
ment teams to incorporate them all; but even if this were
possible, it would not be particularly useful for the test­
ing of a new algorithm.

This limitation must be accepted unless you decide to pro­
gram your own code to simulate your own process and con­
trol algorithm, using a programming language such as C++
or Visual Basic for Applications (VBA). This approach is
time-consuming, however, and is typically attempted only by
process engineers with prior experience in such an exercise.

This lack of both the flexibility of commercial packages
and the experience or education required to build one's own
simulator and control algorithm can cause process engineers
to steer clear of MPC, even though it may provide the solu­
tion they are looking for and despite its relative abundance
and growing acceptance in a number of industries. This bar­
rier to understanding and implementation also exists for many
other related advanced process control (APC) technologies
that are not as widespread as MPC.

From an educational perspective, this barrier to implemen­
tation has also largely prevented the facile inclusion of MPC

11 Hysys I ¢=i I Excel I ¢=i I Matlab 11

Figure 1. Software communication pathways.

and other APC technologies even in senior, advanced under­
graduate process control technical electives, e.g. , as advo­
cated by Edgar. 13.4 1 Even some excellent graduate courses
emphasize the fundamentals and steer clear of APC,151

leaving those students who wish to enter the field of pro­
cess control devoid of practical experience with MPC and
APC algorithmns .

This paper presents a simulation environment, composed
of three readily available commercial software packages, that
allows for quick and easy development of custom APC
schemes on a wide variety of processes. This effectively re­
moves the implementation barriers described above and
allows the advanced undergraduate and graduate student
an opportunity to study and implement APC schemes of

James van der Lee is a full-time graduate student in Chemical and Pe­
troleum Engineering at the University of Calgary. He received his BS
(1999) in chemical engineering from the University of Calgary. His re­
search focuses on the model predictive control of a pilot amine absorp­
tion/stripping plant.
Don Olsen is a part-time graduate student in Chemical and Petroleum
Engineering at the University of Calgary and an applications engineer
with Hyprotech Ltd. in Calgary. He received his BS in chemical engineer­
ing from the University of British Columbia, and his research focuses on
model predictive control within the framework of a vinyl acetate process
design.
Brent Young is Associate Professor of Chemical and Petroleum Engi­
neering at the University of Calgary. He received his BE (1986) and his
PhD (1993) degrees in chemical and process engineering from the Uni­
versity of Canterbury in New Zealand. His teaching and research inter­
ests center on process control and design.
William Svrcek is Professor of Chemical and Petroleum Engineering at
the University_of Calgary. He received his BSc (1962) and his PhD (1967)
degrees in chemical engineering from the University of Alberta. His teach­
ing and research interests center on process control and design.

© Copyright ChE Division of ASEE 2001

172 Chemical Engineering Education

varying complexity, thus allowing for a level of under­
standing of APC that only a "learning-by-doing" ap­
proach can provide.

METHODOLOGY
The methodology behind thi s project is similar to that

used by an ever-increasing number of chemical process
control authors and educators in that it uses commercial
software in order to perform tasks that, while important,
would to a certain extent impede specific control educa­
tion objectives. There are several successful examples of
this approach16·71 that quite effectively use Matlab to handle
modeling and solution methods to clearly demonstrate a
variety of fundamental control concepts. But given the
nature of the problem of being able to overcome the imple­
mentation issues associated with APC for educational pur­
poses in a way that would provide easy implementation in
advanced technical elective or graduate classrooms, the
following characteristics were determined to be important:

• The need for an interactive dynamic simulation
environment capable of using a wide variety of
process models.

• A means for interacting with this environment so
that custom algorithms can be implemented.

• An ability to be able to see what steps are
occurring as they happen, while the simulation is
running.

• Tools that contain many of the standard opera­
tions required for APC applications.

Any software package(s) that meets these requirements
has the potential to remove the implementation barrier. We
found that Hyprotech 's Hysys, Microsoft 's Excel , and
Mathwork 's Matlab could be configured in such a manner
that all these requirements were met. Excel is the industry
standard for spreadsheets, and as a result many programs
include provisions for two-way communication with Ex­
cel. Both Hysys and Matlab contain such links, and it is
possible to use both links simultaneously in order to ex­
ploit the strengths of all three programs for use in APC
applications. Figure l illustrates the basic communication
pathway when the three programs are linked.

The benefits of this type of system are rigorous steady
state and dynamic plant simulation (e .g., Hysys), a large
library of functions useful for APC applications (e.g.,
Matlab), and powerful data handling and visualization tools
(e.g ., Excel) in software packages that are already familiar
to many chemical engineers. The steps involved in creat­
ing a simulation using these three programs in conjunc­
tion with each other are:

• A dynamic simulation case of the process required.
It is necessary to make note of the values that will

S11111111er 2001

need to be read from and written to the process for the
algorithm to work effectively.

• Add the necessa,y read/write variable on the variable page
of the 'data book. ' Create a new 'Process Data Table' (PDT)
by pressing add on the PDT page in the 'data book,' and
then add the desired variables by checking the showbox on
the PDT page. Then press the view button, add 'tag names,'
and select the 'access mode ' (read, write, or read/write) for
each variable. It should be noted that the order in which the
show boxes are selected is the order in which the variables
appear in the 'PDT set up' page (accessed by pressing the
view button). Because of this property, it has been our
experience that it is easiest to group read, write, and read/
write variables and add them to the PDT in blocks, making
note of the order in which each variable is added.

• Save the updated simulation case and make note of its file
name and location.

• Start Excel and open the Visual Basic for Applications (VEA)
Editor. Make sure the Excel link, Matlab Automation Server
Type Library, and Hysys Type Library references are selected
by selecting References in the Tools menu list in the VBA
editor. This ensures that VBA will recognize the Matlab and
Hysys object types.

• Insert a 'Module' into VBA and add the code as the numeri­
cal order of the following steps indicate.

• Step 1. Variable declaration (see Figure 2).

Option Explicit 'Ensures that undefined variables are not allowed in code
'Objects required 10 bind Hysys/Process Data Table(PDT) 10 ExcelNBA
Publ ic Hy App As HYSYS.AppLication
Public SimCase As SimulationCase
Public dt As HYSYS.DataTable

'Variables that are used in communicating information from the PDT 10 Exce!NBA
Public Wtags As Variant
Public Wvalues() As Double
Public Rtags As Variant
Public Rvalues As Variant
Public RWtags As Variant
Public RWvalues As Variant

'Special Flags used for error checking, in regards to establishment of
HYSYS/'Exce!N BA
Public d1Valid As Boolean
Public simCaseValid As Boolean
Public hyAppValid As Boolean

'counter variable used to keep track of when the control algorithm should execute
Public i As Integer

'Excel worksheet Initialization
Public x!Sheet As Excel.Worksheet

'Variables used in Registering of HYSYS/ExcelNBA Interface
Public notifyevent I as EventSink

'used to control the integrator from Exce!NBA
Public integrator As Variant

Figure 2. Step 1 - Variable declaration.

173

Sub Main()
'lines of code in italic type are used for error handling
'and will allow easier debugging a11d to ensure the HYSYS/
'Excel/VBA is terminated in the event of an error
On Envr Go To mainerror
' Initialization
!nit
'Binds ExceINBA to the PDT
BindData Table

Form.Show 'Shows Form
Exit Sub

main error:
MsgBox "Error in Main" & En:Description
Cleanup
End Sub

Figure 3. Step 2 - Main function.

Sub lnit()
On Error Go To /nit Error
'Regular HYSYS case Initialisation
Set Hy App= CreateObject("HYSYS.Application")
Hy App.Visible= True
hyAppYalid = True
Set SimCase = GetObject("c:\your Hysyscase.hsc")
SimCase.Yisible = True
simCaseValid = True
'initialises the acti ve Excel worksheet
Set xlSheet = Sheets("Sheet I")
'the following space could be used to initialised other VBA variables,
'transfer data to or from Matlab or perform initialisation using Matlab functions
i = 0 'sets itegrator step counter to zero

Exit Sub
/nit Error:
MsgBox "Error initializing" & En:Description
End Sub

Sub BindData Table()
On Envr Go To Bind Error
Dim result as Boolean
'Bind datatable to object
Set dt = SimCase.DataTables.ltem(0)
'Bind object to EBSink class
Set notifyevent I = New EventSink
'register instance with datatable
result= dt.AddNotifyEventSink("LBSink", notifyevent I)
'Enable Data Transfer
dtYalid = True
dt.StartTransfer

Wtags = dt.WriteTags
Rtags = dt.ReadTags
RWtags = dt.ReadWriteTags

Exit Sub
Bind Error:

'object linked to write only variables in PDT
'object linked to read only variables in PDT
'object linked to read/write variables in PDT

MsgBox "Error in Bindi11g Data Table" & Err.Description
Cleanup
End Sub

Figure 4. Step 3.

174

Sub APC_Algorithm()
011 Error Go To APC_AlgorithmError

'Place Advanced Process Control Algorithm here

Rvalues = dt.GetValues(Rtags) 'reads data from read tags in PDT
dt.SetYalues Wtags, Wvalues'writes to write tags in PDT

Exit Sub

APC_AlgorithmError
MsgBox "Error in APC_Algorithm " & Err.Description
End Sub

Sub Cleanup()
On Error GoTo CleanupError
'This procedure terminates the HYSYS/Excel/VBA
lf dtYalid = True then
'Clean up code for Notify Event
Dim result As Boolean
result= dt.RemoveNotifyEventSink(notifyevent I)
Set notifyevent I = Nothing

dt.EndTransfer
Set dt = Nothing
End If

If simCaseYalid = True Then
SimCase.Close
Set SimCase = Nothing
End If
If hyAppYalid = True Then
Hy App.Quit
Set Hy App= Nothing
End

Exit Sub
Cleanup Error:
MsgBox "Error in Quit" & En:Description
End Sub

Figure 5. Step 4.

'Dispatch Interface
Dim instanceName As Variant

Pri vate Sub Class_lnitialize()
' Initiation Steps related to notify event interface if needed are placed
'here

End Sub

Public Function AdviseEvent()

' increments time counter with every solver event
i =i+ I

'!lashes counter to Excel worksheet
x1Sheet.Range("b22") = i

'after a predetermined# of integrator steps the contents of the if
'statement are implemented

If i = Switch Then

End If

APC_Algorithm
i =0

End Function

Figure 6. Event Sink Class Module.

Chemical Engineering Education

Public Sub QuilBttn_Click()
On Error Go To QuitError
'allows user to terminate transfer using VBA GUI
Cleanup
Exit Sub
QuitError:
MsgBox "Error in Quit" & En:Description
End Sub

Public Sub lntegratorStart_Click()
On Error Go To StartError
'allows user to start Hysys integrator using VBA GUI
Set integrator= SimCase.Solver.lntegrator
integrator.JsRunning = True

Exit Sub
Start Error
MsgBox "Error in Start" & Err. Description
End Sub

Public Sub IntegratorStop_Click()
On Envr GoTo StopEnvr
'allows user to stop Hysys integrator using VBA GUI
Set integrator= SimCase.Solver.integrator
integrator.JsRunning = False
Exit Sub
StopEnvr:
MsgBox "Er,vr in Stop " & En: Description
End Sub

Figure 7. MPG control form .

MPC Conlrol
- - ---- -~- ----- - -

Quit 1: :::: :::: ::

Start I
Stop I:·:::: :::::: :

Figure 8. Visual Basic button code.

TABLE 1
Summary of the Excel-Matlab Link Commands

Matlab F1111ctio11 Syntax

mlevalstring"Matlab command"

mlputmatrix ml var
"worksheet Range"

mlgetmatrix ml var
"worksheetCell"

mlputvar mlvar, VB var

Mlgetvar ml var, VB var

Summer 2001

F11nctio11

Pe1for111s the string of Matlab enclosed in
the quotes

Copies the 111a1rix defined by 'worksheet­
Range' in the Excel worksheet to Matlab
variable 'mlvar'

Copies the co111e111s of the Matlab variable
'111/var' to the Excel worksheet. 'work­
sheetce/1' represents the location of the
upper left-hand cell of the matrix.

Copies the colllents of the Visual Basic
variable 'VBvar ' 10 the Matlab variable
'111/var'

Copies the contents of the Matlab variable
'111/var' to the Visual Basic variable
'VBvar'

• Step 2.

Main function (see Figure 3). This function calls func­
tions that initialize the Hysys-Excel link, binds the PDT
to Excel variables, and causes the 'Form' GUI to be
shown.

• Step 3.

Functions that initialize the Hysys Excel/VBA link and
bind the PDT to VBA variables (see Figure 4).

• Step 4.

Functions that contain the APC algorithm and terminate
the Hysys-Excel link (see Figure 5).

• Step 5.

Insert a 'Class Module,' change its name to 'Event Sink, '
and add the following code (see Figure 6).

• Step 6.

Insert and create a 'Form' of similar structure to that in
Figure 7 and insert the code in Figure 8 for the appropri­
ate buttons.

The previous steps result in the basic structure of a Hysys­
to-Excel link that will recognize when the simulation case un­
dergoes a solver event, which may be either the steady-state
solver updating the solution for a change in operating condi­
tions or when the dynamics solver completes a time step.

At this point it would be possible to fill areas as indicated
in the code in Figure 8 with an APC algorithm, using VBA
and Excel alone, and then run an APC-enabled simulation
case. But thi s would typically involve writing a substantial
amount of code for routine matrix manipulation procedures
and data handling, etc., effectively overshadowing the APC
algorithms if the user is inexperienced. This is where the
"power" of the Excel-Matlab link is most apparent. By al­
lowing direct access to all of Matlab 's functions and the abil­
ity to read and write values to both the Excel worksheet and
VBA variables through function calls (summarized in Table
1) in the VBA code, the majority of the student 's time can be
spent developing and testing various APC algorithms. In fact,
Matlab's toolbox function s, such as those from the MPC
toolbox could also be used in thi s environment if one
wished to implement Matlab 's algorithms for APC on a
case-study plant.

The following case study is an example of how to fill in
some of the blanks in the code above to obtain a useful algo­
rithm. It also is provided to give examples of PDT format,
Matlab calls via the Excel link, and the associated VBA code.

The example details one way of implementing a series of
pseudo random-binary sequences (PRBS) used in the
indentification of a distillation column. The distillation is one
column of the Dimethyl Ether production described in Turton,
et a l. 181 The column separates a stream primarily composed
of methanol (25-40 wt%) and water (75-60 wt%) ranging in

175

V'>1':REIN

.&. Figure 9. Format of Excel worksheet
used in PRES example.

• Figure 11. Additions/modifications to
the variable declarations and init()

for the PRES example.

flow from 6000 to 12000 lb/h. The distillation
is performed at 35-40 psia and produces high­
purity water of lower than 220 ppm methanol
in a column of 17 theoretical stages. The best
conventional PI control configuration was
determined to be LV[9l using reflux (L) to con­
trol for top-tray temperature and boil-up (V)
via reboiler duty to control for bottoms metha­
nol composition in water.

Figure 9 shows the Excel workbook that is
used to hold the data that is necessary to con­
figure the individual PRBS signals, the delay
between the two signals, the starting "b" value
that allows the indentification process to start
at any desired pont, the means to display the
link status, and the progress of the number of
steps since the last data exchange. Figure 10
shows what the PDT should look like for this
case. Figures 11 , 12, and 13 show the neces­
sary additions/modification to the VBA code.

Figure 14 shows a typical result when the
above additions/modifications are made and
the simulation is run .

Although the environment is extremely flex­
ible and provides easy set up, these benefits
would be negated if this environment proved
to dramatically slow the speed of the integra­
tor. The performance of the simulation can be
measured by comparing the real-time factor
(RTF) [whkh is defined by (simulated time
interval)/(actual time required to compute
simulated time interval)] of a simulation us-

176

integrator step size (SI
0.5

'The following changes should be made to the variable declarations
'remove variables associated with read tags and modify lhe Wvalues as fo llows
Public Wvalues (2) As Double
'add the following variables
Public b As Integer 'variable that allows identification to stan at given point

deur; between prbs (rri deur; I
60 7200

Public comptime As Double ' variable that holds number of integrator steps for time in comp PRBS
Public temptime As Double ' variable that holds number of integrator steps for time in temp PRBS

Public delayi As Double ' variable that holds number of integralor steps for time delay between PRBS signals

'The following should replace Sub init()
Sub !nit()
On Error Go To InitError
'Regular Initialization
Set Hy App= Create Object("HYSYS.Application")
Hy App. Visible= True
hyAppValid = True
Set SimCase = GetObject("c:\yourdirectories\yourfilename")
SimCase. Visible = True
simCase Valid = True
Set xi Sheet = Sheets("Sheet I")
'initialization of counter and staning variables
i= I
b = x.!Sheet.Range ("b2")
inputs necessary values into Matlab
mlputmatrix "compchar", x!Sheet.Range ("a6:f6")
mlputmatrix "tempchar", x!Sheet.Range("a8:f8")
mlputmatrix "delaytime", x!Sheet.Range ('j6")
mlputmatrix "integerstep", x!Sheet.Range ("e2")
calculates PRES signals, and number of integration steps to for delay and time to next move(in terms of i)
mlevalstring " compdist = idinput(compchar(I),' prbs' ,[compchar(2) l],[compchar(4) compchar(3)])"
mlevalstring " tempdist = idinput(tempchar(I),' prbs' ,[tempchar(2) l],[tempchar(4) tempchar(3)])
mlevalstring " comptime = round((60*compchar(6)/integerstep))"
mlevalstring " temptime = round((60*tempchar(6)/integerstep))"
mlevalstring" delayi = round((60*delaytime/integerstep))"
'the following prints the above results to screen
mlgetmatrix "comptime", "h6"
Matlabrequest 'forces data transfer to occur between vba/Excel and matlab
rnlgetmatrix "temptime", "h8"
Matlabrequest
rnlgetmatrix "delayi", "k6"
Matlabrequest
Exit Sub
InitError:
MsgBox "Error initializing" & Err.Description

End Sub

Figure 11. Additions/modification to the variable declarations and init()
for the PRES example.

Chemical Engineering Education

~ PRBS Dala l!!lliJl3

•b·ect Variable Value
Reflux Rate flow controller

Reboiler Dut_y Flow Controller

View QataBook ..

'The following procedures need to be added to the module
Sub WriteOPcomp()
On Error Go To WriteOPcomperror

SP
OP

'Procedure that writes values to PDT when prbs signal is on temperature is activated
'the following transfer Matlab data to Excel worksheet
mlevalstring "comp= compdist(a)"
mlgetmatrix "comp", "g6" 'calculated prbs value for temp disturbance
Matlabrequest
mlevalstring "temp= tempchar(S)"
mlgetmatrix "temp", "g8" 'nominal value for temp
Matlabrequest
"The following transfers data to PDT
Wvalues(0) = x1Sheet.Range("g6") 'input to comp
Wvalues (I) = x!Sheet.Range("g8") 'input to temp
dt.SetValue Wtags, Wvalues
Exit Sub
Write OPcomperror:
MsgBox "Error in WriteOPcomp " & Err.Description
Cleanup
End Sub
Sub Write OPtemp()
On Error Go To Write OPtemperror
Procedure that wri tes values to PDT when PRBS sigal is on temperature is activated
the following transfer Matlab data to Excel worksheet
mlevalstring "comp = compchar(S)"
Matlabrequest
mlevalstring "temp = tempdist((a-compchan(I)-1))"
mlgetmatrix "temp", "g8" 'calculated prbs value for temp disturbance
Matlabrequest
'The following transfers data to PDT
Wvalues(0) = x!Sheet.Range ("g6") 'input to comp
Wvalues (I) = x!Sheet.Range("g8") 'input to temp
dt.SetValues Wtags, Wvalues
Exit Sub
Write OPtemperror
MsgBox "Error in Wri1e OPtemp" & Err.Description
Cleanup
End Sub
Sub WriteOPnom()
011 Error Go To Write OPnomerror
'Procedure that write nominal values to PDT
'the following transfer Matlab data to Excel worksheet
mlevalstring "comp = compchar(S)"
mlgetmatrix "comp", "g6"
Matlabrequest
mlevalstring " temp = tempchar(S)"
mlgetmatrix "temp", "g8"
Matlabrequest
'The following transfers data to PDT
Wvalues (0) = x!Sheet.Range ("g6")
Wvalues (I)= x!Sheet.Range ("g8")
dt.SetValues Wtags, Wvalues
Exit Sub
Write OPnomerror
MsgBox "Error in WriteOPnom" & Err Description
Cleanup
End Sub

Summer 2001

5688
63.47

Units Ta Access Mode
lb/ hr

%
Reflux Rate (Temp Control MV)

Reboiler Dut_y (Comp Control MV)
Write
Write

.6. Figure 10. PDT for the PRES example.

• Figure 12. Additions to the VBA module
for the PRBS example.

T Figure 13. Additions/modifications to
AdviseEvent() for the PRBS example.

'Replace the contents of public function events with the following
Public Function AdviseEvent()

i = i + I 'i is a counter which counts the number of solver steps that occured
x!Sheet.Range ("b22") = i 'flashes i to the worksheet
x!Sheet.Range ("c2") ' fl ashes b to the worksheet
mlputmatrix "a", Cells (2,3) 'allows Matlab to see the progress in the indentification

'sequence
'The contents of this if statement are responsible for the first prbs sequence
If i = x!Sheet.Range("h6") And b <= x!Sheet.Range ("a6") Then
WriteOPcomp
b=b+I
i =0

End If
'The contents of this if statement are responsible for the delay between sequences
If i = x!Sheet.Range("k6") And b = (x!Sheet.Range("a6") + I) Then
WriteOPnom
b=b+l
i =0

End If
'The contents of this statement are responsible for second prbs sequence which follows the

'delay
If i = x!Sheet.Range("h8") and b>=(x!Sheet.Range("a6")+2) And b<(x!Sheet.Range("a6") +
x!Sheet.Range("a8") + 2) Then
Write OPtemp
b=b+I
i =0

End if
'Stop integrator when identification sequence ends
If b = (x!Sheet.Range("a6") + x!Sheet.Range ("x8") + 2) Then
Set integrator= SimCase.So!ver.lntegrator
integrator.lsRunning = False
End If

End function

177

178

Figure 14.

Typical result using the
environment for the PRES

example.

(The x-axis shows
simulation time in hours,

minutes, and seconds,
and the y-axis shows the

trends of various
process variables.

Figure 15.

Response to a
bottoms methanol

composition set point
change using PID

controllers.
(The x-axis shows

simulation in
hours, minutes, and

seconds, and the
y-axis shows the trends

of various
process

variables.)

Figure 16.

Response to a bottoms
methanol composition

set point change
using a linear 2x2

DMC algorithm
developed using the

environment.

(The x-axis shows
simulation in

hours, minutes, and
seconds, and the
y-axis shows the

trends of
various

process variables.)

~
(ii' 235.2 +-----+---........ --~~+-r+---\f\---+------+----1+-<---......,.
I­
C
'il
::i:
I 219.5+----+------~--+------+--1+-----+-+------+-----t -..,

!!

i &_ 203.9+-----+---...,...,,........---+------.+--+--~--+----t------+-<

E
CP
1-
CP

nn ~ ~n
OISTIUATE FLO\<IRATE

E 188.2 ----+--------+-----t+----ft--ftt+-!-tttllt-Ht-;-tt-t,.....,.,._..,_-llt-fH
(/)

' (/) ...
·Iii 172.5-Hl-+-!lll!-HH'-f-l-!lflfl---llH\-l+-+-l--lll!-#4!-4--l!-~-+-----+-----l----+--s

::i:
5-49:07:48.:38 552:51 :56.46 566:36:04.56 560:20 12.63 564:04:20.72 567:48:28.00 571 :32.36

HHH:MM:SS.S

7.«o

._ 6.510 +-+-,onr---A--++---lH'-+1'---H-l!!---+l---'j,.-H+--....+-+---H++--H-+---1

j
CP
,i 5.511J ++t---tt---ff---+---'l---t-+---l-1---1/----+ll-----'---+---'-+----,Hlll-----l

iii
CP a:
' i 4.660t-ttt-t--"t---t------+==--+----r----+----+-lf------1

OI

i

466:15:13.:!l 466:27:23 09 466.39:32.88 466:51 :42.67 467.03.52.46 467:16:02.24 467.28:12.03

HHH:MM:SS.S

:--7-:0
tv

,/1 --;11
i.-- u ~ ~ h .110; ;;F:,o: 7 I
J J ('J \A \

j
5.610 I

V J
J V V\/ V

y V / REAL TIME FACTOR
II

CP V
E 4.2111

' ..
iii -CP,...., TOP TRAY TEMPERATURE a: ~- I I ' __J

i 2.005
,-I ~ DISTILIATE FLO\<I RATE

OI ~

I ~

---1.403

~ AEBI ILEA DUTY
! j"'_

o.ocm
6<6:41:53.04 6<6:58:58.lll 627:16:03.12 627:33:lll.16 627.50.13.20 628:07:18.24 628:24:23.28

I
HHH:MM:SS.S

"

Chemical Engineering Education

ing the environment to one that does not. Figure 15 shows
the system response using PIO controllers to control for
bottom's composition and top-tray temperature. Figure 16
shows the same distillation process with control carTied out
using a linear 2x2 Dynamic Matrix Controller (DMC)l10

-
11 1

that has been implemented using the link described in this
paper. It can be seen that the RTF for the 2x2 DMC controller
case is comparable to that of the PID controller case, and
also gives better performance in terms of controller move­
ment and oscillation around the set point.

CONCLUSIONS
The development of an integrated, real-time computing

environment for advanced process control development and
education using Hysys, Excel , and Matlab linked with each
other has been outlined in this article. The methodology used
to develop the environment was detailed in order to enable
the reader to substantially reduce the learning curve involved
in developing the communication structure itself, thus allow­
ing a means to focus the attention onto a large variety of APC
algorithms. The potential of the environment has been dem­
onstrated using an example that implements a PRBS iden­
tification sequence on a methanol water di stillation col­
umn simulation .

REFERENCES
I. Ramaker, B.L. , H.K. Lau, and E. Hernandez, "Control Technology

Challenges fo r the Future," in Proc. CPC V, J.C. Kantor, C. E. Garcia,
and B. Carnahan , eds, A/Ch£ Symp. Series No. 3 /6, 93, I (1997)

2. Qin, S.J. , and T.A. Badgwell , "An Overview of Industri al Model Pre­
dicti ve Control Technology," in Proc. CPC V, J.C. Kantor, C.E. Garc ia,
and B. Carnahan, eds, A/Ch£ Symp. Series No 3 / 6, 93,232 (1 997)

3. Edgar, T.F., "Process Control Education: Past, Present, and Future,"
in "Chemical Engineering Education: Curricula fo r the Future," Proc.
Inda-US Se111ina1; D. Ramkrishna, P.B. Deshpande, R. Kumar, and
M .M. Sharma, eds, Bangalore, India, pp. 11 7 (1998)

4. Edgar, T.F. , "Process Control Education in the Year 2000: A Roundtable
Discussion," Chem. Eng. Ed., 24(3), 72 (1 990)

5. Rhinehart , R.R., S. atarajan, and J.J . Anderson, "A Course in Pro­
cess Dynamics and Control: An Experience to Bridge the Gap Be­
tween Theory and Industri al Practice," Chem. Eng. Ed. , 29(4) 2 18
(I 995)

6. Doyle, Tll , F.J ., E.P. Gatzke, and R.S. Parker, "Practical Case Studies
for Undergraduate Process Dynamics and Control Using Process Con­
trol Modules," Comp Appl. in Eng. Ed., 6, 18 I (I 998)

7. Doyle III , F.J ., V. Venkatasubramanian, and T.A. Kendi , "Purdue Con­
trol Modules: A Flex ible Set of Software Modules fo r an Undergradu­
ate Process Dynamics and Control Lboratory," Comp. Apps. Eng. Ed.,
4(3), 179 (I 996)

8. Turton, R., R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis,
Synthesis, and Design of Chemical Processes, Prentice-Hall , Upper
Saddle Ri ver, NJ (I 998)

9. Shinskey, F.G. , Distillation Contra/for Productivity and Energy Con­
servation, 2nd ed., McGraw Hill , ew York, NY (1984)

IO. Cutler, C.R. , and B.L. Ramaker, "Dynamic Matrix Control : A Com­
puter Co ntro l Algorithm," A/Ch£ Na tional Meeting, Houston , TX
(1979)

11 . Cutl er, C. R., and B.L. Ramaker, "Dynamic Matri x Control: A Com­
puter Control Algorithm," in Proc. Joilll Automatic Cont. Conj., paper

WP5-B (I 980) 0

King Fahd University of Petroleum & Minerals
Department of Chemical Engineering

SABIC CHAIR IN POLLUTION CONTROL

Applications and/or nominations are invited fo r the position of Saudi
Bas ic Industries Corporation (SABIC) Chair of Pollut ion Contro l in
Chemical Process Industries in the Department of Chemical Engineering
at King Fahd Uni versity of Petroleum & Minerals (KFUPM), Dhahran,
Saudi Arabia . The department has 23 full -time fac ulty members, 600 stu­
dents and offers undergraduate degree programs in Applied and Chemi­
cal Engineering Science, and graduate degree programs.

The candidate must have an earned doctorate in Chemical Engineer­
ing, hold full professorial rank, and have achieved an outstanding reputa­
tion in the fi eld of Pollution Control. The candidate will be responsible
fo r developing experti se in thi s area within the reg ion through hi s occu­
pancy of the Chair. A strong commitment to the development and mainte­
nance of high quality education and research are required. The candidate
should have a demonstrated track record in teaching, research, and pro­
fessional acti vities. Industrial experience would be an asset.

Specificall y, the Chair holder will be expected to prov ide leadership in
both the areas of academia, through undergraduate and graduate course
development, and in research through development of a research labora­
tory as a center of excellence in Pollution Control in the reg ion. He will
be responsible for teaching undergraduate and graduate courses, teaching

Summer 200 /

professional -development courses, consulting and conducting research
of direct interest to SABlC, and supervision of graduate students.

King Fahd Uni versity of Petroleum & Minerals is a leading techni­
cal uni versity in the Middle East. The uni versity has six colleges with
fi ve engineering di sciplines in the College of Engineering. Engli sh is
the medium of instruction. SABIC is the foremost non-oil company in
the Middle East and one of the world 's fastest growing industri al con­
cerns, producing chemicals polymers, metals, and fe rtili zers.

The position is for a 3-year term, with an attractive sal ary (tax-free)
and benefit package. Funds fo r equipment, conference travel and re­
search assistance are available.

Applicants should send curri culum vitae to :

Dean of Faculty and Personnel Affairs

KFUPM Box 5005, DEPT SABIC-201

Dhahran 31261, Saudi Arabia

Fax: 966-3-860-2429
E-mail: faculty@ kfupm.edu. sa

179

