
[3 5 3 class and home problems ) 

The object of this column is to enhance our readers ' collections of interesting and novel prob
lems in chemical engineering. Problems of the type that can be used to motivate the student by 
presenting a particular principle in class, or in a new light, or that can be assigned as a novel home 
problem, are requested, as well as those that are more traditional in nature and that elucidate 
difficult concepts. Manuscripts should not exceed ten double-spaced pages if possible and should 
be accompanied by the originals of any figures or photographs. Please submit them to Professor 
James 0. Wilkes (e-mai l: wilkes@umich.edu), Chemical Engineering Department, University of 
Michigan, Ann Arbor, MI 48109-2136. 
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In Andalucia in Spain, sherry is made using a system called 
the solera .fl 1 The sherry solera is a sequential batch
mixing process in a collection of barrels that is designed 

to produce sherry with uniform quality from year to year. 
Each year the sherry product is removed from the set of bar
rels containing the oldest sherry, which is then replenished 
by the same amount of sherry from the set of barrels holding 
the next oldest sherry. This is repeated for sets of succes
sively younger barrels until finally the set of barrels contain
ing the youngest sherry is topped off with fresh sherry from 
the current vintage. This process has been called "fractional 
blending" by Baker, et al. 121 

PROBLEM STATEMENT 

Don Juan de Amontillado y Fino, whose name is well known 
in the sherry world, wishes to set up a new solera. He has 
told us that Baker, et al., published tables of the fractions of 
sherry of given ages in a given set of barrels after a specific 
number of years, but he would like to have a general formula 
showing how the number of barrels and the fraction with
drawn from a barrel would affect the average age of the sherry 
and the time to achieve steady state. Senor de Amontillado 
plans to start by accumulating P sets of barrels of sherry, each 
of whose ages initially equals the index, p=l ,2, ... P, of that set 
of barrels. Then for each successive year, n=O, 1,2, ... , he will 
remove in turn a fraction a of each set of barrels, p=P,P-

1, ... ,3,2, I , and replace it from the next younger set, p=P-l,P-
2, ... ,2, 1,0, respectively. Here, p=0 represents the freshly pro-
duced sherry from the current vintage of age zero. 

With AP" representing the average age of barrel set p at 
year n, the equations can be written 

A1 ,n+I =(l - a)(A1n +1) 

Ap+l,n+1=(l-a)(Ap+1,n+l)+a(Apn+l) (p :?: l) (I) 

Aon = 0; Apo = p- a for p = I, 2, ... , P 

The initial average ages are found by the sum 

Apo =(1-a)p+a(p-l)=p-a 

Equations (1) can be written in a standard form as 
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A1 ,n+1-( l-a)A 1n = I-a 

Ap+l,n+I -(1-a)Ap+l ,n -aApn = l (p~l) (2) 

These are linear partial difference equations since there are 
two discrete indices, n and p, and the coefficients are con
stants . They are first order because the maximum difference 
in each subscript is unity.131 They can be solved by severa l 
different methods. First we will use recursion, starting with 
p=l. For simplicity, we will consider only one barrel in 
each set. 

SOLUTIONS 

#1. Recursive Solution 

The solution of Eq. (2) for the first barrel can be written as 
the sum of the solution to the homogeneous equation (right 
side equal to zero) and a particular solution to the actual right 
side. The homogeneous solution is 

A~, =C 1(1-a)" 

and the particular solution is a constant, namely 

p (I-a) 
A1n =-

a 

Combinjng the two and inserting the injtial condition A
10

=l
a, we get the solution 

(3) 

We can now tum to the second difference equation (2) with 
p= 1. This becomes 

A2,n+I -( l-a)A 211 = l+aA 111 (4) 

The homogeneous solution has the same form as for A
1
", but 

the right side now involves not only a constant but also the 
same function as the homogeneous solution. The trial par
ticular solution would then be 

A f n = a+ bn ( I - a)" 

where a and bare unknowns to be found. The particular solu
tion is then 

Afn = (2 - a) - n(I - a)n+I 
a 

The solution for A
2

" can be written as 

(5) 

(2- a) 2(1 - a)"+2 
A2 =------ (n+l)(l-a)n+I (6) 

" a a 

The general solution can be obtained by continuing recur
sively until a pattern becomes clear. Using the notation for 
the binomjaJ coefficient (read as "n choose j") 
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(
n) = n(n-l)(· ··)(n - j+I) n! 
J j! (n-j)!j! 

(7) 

we find that 

We see that the steady-state average age of the pth barrel is 

(p-a)/a. 

Thjs solution can be written in a different form by extend
ing the summation to j=n+ I and subtracting the added terms. 
This allows us to use the binomial theorem 

(x+y)"' = f ( j )xjym- j 
j=O 

(9) 

to obtain 

A pn = (p-a)+ n(I -a)- i (j: n(j- p+ I )(I -a)n- j+I aj 
j = p 

(10) 

Here we can see that the summation is zero as long as n<p, 
so that for tms case, the average age of a barrel is a linear 
function of n. It is only when n=p that the influence of the 
constant zero age of the fresh sherry addition is first felt in 
the pth barrel. Trus "shock wave" progresses through the bar
rels at the rate of one barrel per year and offers an interesting 
analogy to the shock wave traversing a tube at a fixed veloc
ity in a first-order linear partial differential equation with 
constant coefficients. 

#2. Use of z-Transforms 

The partial difference equations (2) can also be solved by 
using the z-transform. The z-transform of A is defined as 

pn 

CJ = f Apn 
P n=O 211 

(11) 

The transforms of the partial difference equations (2) are ob
tained by dividing by z" and adding over n=O to infinity. We 
find that the transformed equations become 

(1-a)z 
ZCJ I - zA Io - ( I - a )cr I = --

( z - I) 

z 
ZCJ p+ I -zAp+ l,O -(1-a)crp+I -aCJP = (z-1) (12) 

The transformed equations have become ordinary difference 
equations that can be solved directly. First, we can write the 
transform for the first Eq. (12), which becomes a boundary 
condition on the general equation 
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(1-a)z2 
<Ji=-----

( z - l )( z - I + a) 
(I 3) 

It is easy to verify that this is indeed the transform of the 
previously obtained solution (3) for A

10
• The general trans

formed equation can be put in standard form as 

z 
(z-l+a)crp+I -acrP =-( -)+z(p+l-a) 

z-1 

The homogeneous solution to this equation is 

H CaP 
(J =----

p (z-l+a)P 

Its particular solution is of the form ap+b and is 

p pz ( z - (XZ2) 
cr=--+~-~ 

P (z-1) (z-1)2 

(14) 

( 15) 

(I 6) 

Adding these two terms and applying the boundary condi
tion for p= 1, we obtain the solution to the transformed differ
ence equation as 

-(l-a)z2aP pz (z-az
2

) 
<JP= 2 +--+ 2 

(z-1) (z-l+a)P z-1 (z-1) 
(I 7) 

To invert the transformed solution, we need to know the in
verses of the components of Eq. 17. These inverses are listed 
in Table 1. The inverse of a product of two transforms is the 
convolution sum of their inverses. Thus, if cr is the trans
form of x

0 
and 0 is the transform of y 

0
, then cr0 is the trans

form of 

n 

L, XkYn - k 
k=O 

Then the inverted transform solution is 

(18) 

Apn =p-a+n(l-a)-aP i.. (~=~}n-k+l)(l-a)k- p+I 
k=p 

(19) 

This solution is similar to the recursive Eq. (10), but dif
fers notably in that the summation in the recursive solution 
changes the lower index of the binomial coefficient, whereas 
the transform solution changes the upper index. The ques
tion immediately arises as to whether or not these solutions 
are identical. The direct proof of their identity is somewhat 
laborious and is presented in Appendices 1 and 2 (which are 
available as an MS Word file from the author at 
crowe@mcmaster.ca). There is a simpler approach, however. 
If we can verify that each solution satisfies the partial differ
ence equations, then it is sufficient to show that the solution 
is unique in order to prove their identity. 

50 

TABLE 1 
List of inverses 

Transform , cr z/(z- 1) z/(z-1 )2 z2/(z-J )2 

Inverse n n+l (
n - l ) ~n - p+I 
p-1 

Proof of Identity of the Recursive and Transform Solutions 

By setting n=0 in Eqs. (10) and (19), we can verify that the 
initial condition is satisfied by both. Further, by setting p=l , 
the solution for the first barrel (3) is found for both solutions. 
Then by substituting the recursive solution, Eq. (10), into the 
partial difference Eq. (2), we obtain 

n+I l n + 2J n ·+2 . I- L . (j-p)(l-a) - J a1 + 
j=p+I J+I 

± ( ~+'Ju- p)(l - a)" - j+2 ai + 
j=p+I J+I 

n ( n + IJ · I · I, . (j-p+l)(l-a)"-J+ aJ+I =l 
j=p J + I 

(20) 

The upper limit of the second summation can be increased to 
(n+ 1) since the added term is zero and the dummy variable in 
the third summation can be changed to i=j+ 1. Then the iden
tity141 

( n+2)= ( ~+l ) +(n+l) 
J+l J+ l J 

(2 I) 

makes the three summations vanish together, thus satisfying 
the partial difference equation, Eq. (2). 

Inserting the transform solution (Eq. 19) into the partial 
difference equation (2), we get 

n+I ( ) - L, k~l (n - k+2)(l - a)k + 
k=p+I 

:t ( k~l } n-k+l)(l-a) k+I + =I 
k=p+I 

±..( ~=~ }n-k+ 1)(1-a)k+l 
k=p 

(22) 

With arguments similar to those for Eq. (20), we find that the 
three bracketed summations also vanish here. 

Thus, it remains only to prove that the solution is unique. 
Assume that there are two different solutions, A and B , pn pn 

both of which satisfy the partial difference equations and the 
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initial conditions. Then, if~ = B -A , Eqs (2) imply that 
pn pn pn 

t.1 ,n+I -(l-ex)t.1n =0 

t.p+l,n+I -(1-ex)t.p+l,n -ext.pn =0 (23) 

But since ~ p0 = 0 for all p, the only solution is ~P"=0, so that 
the solution is unique and the two forms of the solution are 
indeed identical. 

#3. Matrix Solution 

We rewrite the difference equations in matrix form and use 
matrix algebra to obtain another solution. If we define 

An=[A1n A2n .. . Apnf (24) 

then the difference equations (2) can be written as 

(25) 

where 

l(l-ex) j 
M= ex (!~~) · .. 

ex (I-ex ) 

(26) 

M is bidiagonal with uniform elements on the diagonal and 
also on the sub-diagonal. 

The right side of Eq. (25) is 

b=[(l-ex) I .. . if 
and the initial condition is 

(27) 

A0 =[(1-ex) (2 - ex) ... (P-exf (28) 

The particular solution to Eq. 25 can be written as 

-1 
A~ =(1-Mr1b= 

r 

I 

-I J: ~=Ao 
ex ex 

(29) 

whereas the homogeneous solution is A~ =Mn A O. 

Then the general solution is 

An =A~ +CA~= Ao +CMnA 0 ex 
(30) 

with Casa diagonal matrix of constants to force the solution 
to fit the initial conditions. Thus, with n=0 we find that 

[
. ( ( 1-ex 1JJ c= diag -la ) 

Therefore, the solution becomes 
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(3 1) 

Now the nth power of M can be seen by direct multiplication 
to be a lower triangular matrix with uniform elements on the 
diagonal and on each sub-diagonal. When n<P, there are n 
non-zero sub-diagonals , whereas for n:2::P, all the sub-diago
nals are non-zero. We find that the j th sub-diagonal of M" is 
uniformly equal to 

(32) 

and the diagonal elements are given by setting j=0 in this 
expression. 

We can then write Eq. (31) for a particular barrel p and 
yearn as 

A pn Jp-ex) - I ( j ) p- j-ex)(l - ext-j+I exi- l 
ex j=O 

(33) 

As with the recursive solution, Eq. (10), we can add and sub
tract the terms in the summation for j going from p to n. 
Using the binomial theorem, we can show that the solution 
also takes the form 

Apn =(p-ex)+n(l-ex)- i ( j ) (j-p+ex)exi- l (1-ex)n- j+l (34) 
J=p 

This solution is very similar to the recursive solution Eq. (10), 
but is not the same. We can again show that it satisfies the 
difference equations (2) , the initial conditions, and the solu
tion for p=l and is thus the same unique solution in a slightly 
different form . The direct proof that the matrix solution and 
the recursive solution are identical is available as Appendix 
3 from the author. 

#4. Forward Shift Operator Method 

We define the forward shift operators, E
1 

and E
2

, by the 
operator equations13I 

E1Apn =Ap+l,n and E2Apn =Ap,n+I (35) 

Then the difference equations (2) can be written as 

[E 2 - (1 - ex)]A 1n =I - ex 

[E 1E2 -(1 - ex)E 1 -ex]Apn =I 

(36) 

(37) 

The particular solution for Eqs. (36) and (37) can be written 
as before as 

(p-ex) 

ex 
(38) 

For Eq. (36), the homogeneous solution is 

Arn =C 1 (l-ex)n (39) 
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which gives the same general solution as in Eq . (3) . For the 
homogeneous solution to Eq. (37), we can operate on it with 

E11 to get 

(40) 

Since the operator on the right side has no effect on the sub
script n, the homogeneous solution takes the form 

H [ - 1 l 11 

Apn = aE 1 +(I-a) BP ( 4 1) 

where B is an unknown function of p. We can expand the 
p 

operator expression with the binomial theorem, but we need 
to remember that A =0 for p<l. Then 

pn 

p-1( ) AH= °"' n aj(l-a) 11- jB · 
pn .£... J p- J 

j=O 

and with Eq. (38) 

P H (p-a) H 
Apn = Apn + Apn = --- + Apn 

a 

When n=O, Ap0=P- a so that we see that 

(p-a)( l -a) 
B = 

P a 

(42) 

(43) 

(44) 

We can then recover the same solution as we did using ma
trix algebra. 

COMMENTS 
To calculate most easily the numerical solution to the par

tial difference equations (2), we can use a spreadsheet by 
entering the initial conditions at n=O on the worksheet. Then 
the recursive equations (1) can be entered in the cells n=l 
and for p=l and 2, respectively, and then copied over the 
desired ranges of p and n. The values for five barrels are shown 
in Figure l , with a=0.25. The number of years needed to 
reach 90% of the steady-state average ages for two values of 
a are shown in Table 2. 

The effect of the frac tion withdrawn, a , on the average 
age of the sherry in the fifth barrel is shown in Figure 2. 

The actual number of years to reach any particular average 
barrel age is the number of years since the startup of the solera 
plus the number of barrels, since that many additional years 
had to pass before the solera could be started. From Figures 
I and 2 and Table 2, it is evident that the steady state is reached 
earlier, the higher is the fraction a removed from each bar
rel , but the steady-state average age of each barrel is also 
reduced by increasing the fraction removed. This would af
fect the quality of the sherry product. 

The linear partial difference equations that describe the 
sherry solera can be solved in different ways. Four different 
theoretical methods have been applied to obtain the unique 
solution, even though three superficially different forms of 
the solution were obtained. The fact that each solution satis-
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Figure 1. Average barrel age versus year; a=0.25 . 

TABLE2 
Years to Reach 90 % of Steady-State Average Age 

Alpha Barrel I Barrel 2 Barrel 3 Barrel 4 Barrel 5 

0.25 

0.33 

7 

5 

IO 

7 

14 

9 

17 

12 

2 1 

14 
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Figure 2. Effect of a on the average age of barrel 5 . 

fies the equations and the initial conditions, and that the so
lution was shown to be unique, prove that the apparently dif
ferent solutions are indeed the same. For the numerical solu
tion , a spreadsheet is the most convenient tool to use. 
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