
( 
two-scale approach may be used to present a unified theory 
of homogeneous and heterogeneous reactors!) 

To summarize, the two-mode models are the minimal mod­
els that provide a low-dimensional description of mixing, by 
coupling the interaction between chemical reaction, diffusion, 
and velocity gradients at the local scales to the macro-scale 
reactor variables. Due to their simplicity and generality, it is 
hoped that they will find applications in the preliminary de­
sign and optimization of homogeneous chemical reactors, as 
well as provide an a lternative method for teaching 
micromixing effects in homogeneous reactors. 
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.tA.-5-3.._:_,e_tt_e_r_t_o_t_h_e_e_d_it_o_r ____ ) 
Dear Editor: 

I recently used the illustration below to explain the ben­
efits of countercurrent flow to students in a separation pro­
cesses subject that I teach. I've never heard this illustration 
used before and it seems to be a good one, so I thought it 
would be good to put it in the public domain for the benefit 
of other lecturers. However, it is very short and does not war­
rant being a "peer-reviewed" paper. 

Explaining Why Counter-Current is 
More Efficient than Co-Current 

While washing the dishes one night, I realized that this ac­
tivity provides a useful everyday il lustration of why counter­
current mass and heat transfer processes are more efficient 
than co-current ones. 

I asked the students in my class what would be the best 
way to clean a pile of dirty dishes if they had at their disposal 
one basin of dirty wash water and one basin of clean wash 
water. The class quickly reached the consensus that it would 
be best to first use the dirty water to clean off as much of the 
dirt as possible and then use the clean water to perform a 
second-stage clean. The dirty water would remove the bulk 
of the dirt, minimizing the contamination of the clean water 
and leaving it in better condition to clean off any remaining 
stubborn dirt. Putting the dirty dishes straight into the clean 
water would quickly dilute and waste its cleaning ability. 

This is equivalent to having the countercurrent flow of 
streams in a liquid-liquid extraction or gas-liquid absorption 
column. The clean solvent is best used to perform the final 
stage of cleaning, while the used solvent is still able to perform 
some cleaning of the raw feed stream as it enters the column. 

Students seemed to intuitively understand this ill ustration, 
and it provides a non-graphical complement to the usual 
method of explaining the benefits of countercurrent flow, 
which involves showing how the average concentration (or 
temperature) difference driving force differs between co- and 
countercurrent flows. 

Simon Iveson 

University of Newcastle 
Callaghan NSW 2308, Australia 
cgsmi@cc.newcastle.edu.au 

257 


