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SENSITIVITY ANALYSIS 
IN ChE EDUCATION 

Part 1. Introduction and Application to Explicit Models* 
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E ngineering analysis and design typically proceed by 
construction of system models, followed by incorpo­
ration of required input quantities and the solution of 

the model equations to obtain values of output quantities of 
interest. The construction of models is an important aspect of 
engineering pedagogy, as is familiarity with numerical meth­
ods of solution for their more complex forms.[ 1l In addition 
to teaching students to construct and solve models for their 
outputs, we believe it is also important to emphasize consid­
eration of the effects on outputs when input quantities are 
subject to variability and/oruncertainty. This is accomplished 
by sensitivity analysis (SA), which can be defined as the study 
of the uses of, and methodologies for, quantitatively calcu­
lating the effects of changes in input quantities on model out­
puts, especially for a large number of inputs. (Of course, one 
can directly calculate values of output quantities as functions 
of input quantities, but this only reveals sensitivities qualita­
tively and is only satisfactory when the number of inputs is 
small, say,:::; 3). In addition, a broad pedagogical use ofSAis to 
provide a unifying theme for the study and understanding of 
topics arising in a number of areas in chemical engineering. 

The fundamental concepts of SA are accessible to students 
who have a basic background in multivariable calculus, but 
full development requires some knowledge oflinear algebra, 
which may not be a requirement in all undergraduate pro­
grams. Thus, although some concepts can be introduced in 
the undergraduate curriculum, the full treatment is more ap­
propriate at the graduate level. 

In chemical engineering, SA has a tradition of importance 
in the field of optimization. [2,

3l Our own experience with SA 
has been principally in equilibrium models for chemically 
reacting systems,[4

-
6l which can be considered as optimiza­

tion problems. In recent chemical engineering literature, SA 
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has been applied to the design of reactive distillation units[7l 

and to process simulator models_[sJ Varma, et al., have con­
sidered SA in the context of chemical reactor models and 
related situations,[9l and a recent general treatment of SA (not 
specifically oriented to chemical engineering) was given by 
Saltelli, et alY0l 

Questions addressed by SA in a broad sense include 

1. What are appropriate quantitative measures of 
sensitivity of model outputs to changes in inputs? 
Particular measures addressing this question involve 
the marginal rates of change or marginal sensitivities 
of each output with respect to each input. These 
particular measures include the following items, which 
form the basis of this paper: 
a. A measure of the relative importance of each input 

for a given output is the relative value of the 
outputs marginal sensitivity with respect to each 
input. 

b. A measure of the uncertainties in model outputs 
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that result from uncertainties in the inputs. In 
general, this matter is called uncertainty analysis, 
and international bodies have published documents 
describing standards for the expression of such 
uncertaintiesJ11.121 Uncertainty analysis is also 
discussed in some undergraduate texts/13

-
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c. A measure of the overall effects on the outputs of 
changes in combinations of inputs. This measure 
shows the relative importance of particular 
combinations of inputs. 

2. What is the direction of change (sign) of outputs for a 
specified direction of input changes, given only the 
model structure (i.e., without obtaining a solution)? 

3. Is there a large qualitative change in the outputs for 
small input changes? 

4. Do the outputs change significantly when the underly­
ing assumptions of the model change? 

Question 1 is usually considered to be the primary scope of 
SA, but it may include Question 4,[10l and we add Questions 
2 and 3 as being in the same spirit and further broadening its 
scope. Question 2 is important in requiring only a minimal 
amount of model information (signs of quantities) as, for ex­
ample, in a form of Le Chatelier's PrincipleY7l Question 3 
arises, for example, in the context of models described by 
differential equations and is addressed by stability and bifur­
cation theory. [lsJ A chemical engineering example concerns 
finding circumstances under which a chemical reactor changes 
its behavior from steady state to periodic. 

Question 4 arises in statistics; the term robustness refers to 
the effects on a statistical analysis of changing the assump­
tions concerning underlying probability distributions. [19l An­
other chemical engineering example concerns situations when 
parameters in models are estimated from experimental data, 
requiring assumptions regarding measurement errors. It is 
desirable that the resulting parameter values do not depend 
strongly on departures from such assumptions. 

In these two papers (Parts 1 and 2), we focus on only the 
first question. In this paper (Part 1 ), we introduce SA, de­
scribe two different classes of engineering models, and ap­
ply SA to address items la, lb, and le forone of these classes. 
In Part 2, we will apply SA to the same items for the other 
class of model. Conclusions, including what is appropriate 
for the undergraduate curriculum and what can be deferred 
to the graduate curriculum, will be given at the end of Part 2. 

In the following sections, we first describe two types of 
inputs and two types of models. For one type of model, we 
then consider, in tum, item la for both types of inputs, lb 
for one type of input, and le for the other type of input (al­
though, in principle, all three items could be considered for 
both types of inputs). 

The reasons for applying items lb and le to different input 
quantities are: we are usually interested in determining the 
effects on the outputs of uncertainties in the type considered 
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for specified values of the other inputs (item lb); conversely, 
we are usually interested in determining the effects on the 
outputs of changes in inputs over which the designer has con­
trol (item le). We will conclude with a pressure drop example 
for numerical illustration. 

The treatment we describe and the examples we use in both 
Parts 1 and 2 relate to models that are amenable to analytical 
treatment to obtain values of the sensitivity quantities in­
volved. The methodology, however, is not limited to such 
cases. In very complicated situations involving many vari­
ables, it may be possible to use computer algebra software to 
obtain values, and if necessary, values can be obtained by 
numerical differentiation, e.g., using a process simulator. 

TYPES OF MODEL INPUTS 
SYSTEM VARIABLES 
AND CONSTITUTIVE PARAMETERS 

It is useful to consider two different types of input quanti­
ties in models: system variables (x,j = 1,2, ... ,J) and constitu-

J 
tive parameters (pk, k = 1,2, ... ,K). System variables (such as 
temperature, T, and pressure, P) are input quantities that can 
be manipulated by the designer or are imposed by the exter­
nal environment; their values are usually considered to be 
specified precisely, but they may be subject to change. Con­
stitutive parameters (such as viscosity and thermal conduc­
tivity) are those that must be obtained externally to the model, 
either by direct measurement or from correlations; their val­
ues are usually subject to uncertainties. 

TYPES OF MODELS 
EXPLICIT AND IMPLICIT 

It is also useful to consider two different types of models 
that arise in engineering-explicit and implicit models, terms 
that denote mathematically how the outputs are available from 
the model in terms of the inputs. In principle, we can also 
consider further model classifications involving, for example, 
continuous versus discrete variables, and deterministic ver­
sus stochastic models. Here, however, we treat only the sim­
plest situation of a deterministic model involving continuous 
variables, and we further assume that any functions involved 
in the models are differentiable. Although SA can be used for 
more complex situations, the methodology is correspondingly 
more complex. Furthermore, continuous-variable and differ­
entiable deterministic models constitute a large class of engi­
neering models. 

An explicit model with N outputs, Y;, is one that can be 
written 

Yi =fJx;p); i=l,2, ... ,N (1) 

where xis the vector of J system variables and pis the vector 
of K constitutive parameters. A simple example is a pres­
sure-explicit three-parameter equation of state (EOS), with 
output quantity P, system variables molar volume ( v) and T, 
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and constitutive parameters critical temperature (T), critical 
pressure (P), and acentric factor (w) 

P = P(v, T; T"'P"'w) (2) 

A more complex class of models is that of implicit models, 
which arise when the output quantities are implicit functions 
of the inputs, expressed formally as 

i= 1,2, ... ,N (3) 

where y is the vector of outputs. Implicit models can take 
many forms. Their distinguishing property is thatEq. (3) can­
not be "solved analytically" for Y; (although it is usually as­
sumed that the solution of the equations is unique). A simple 
example of an implicit model arises in the context of a pres­
sure-explicit EOS when vis the output quantity and (P,T) are 
system variables; then v(T,P) is defined implicitly by 

P- P[ v(T,P), T; Tc,Pc,w]= 0 (4) 

More complex examples of implicit models include sets of 
nonlinear algebraic or transcendental equations, systems of 
differential equations (ordinary or partial), and optimization 
models. 

The details of SA methodology are different for explicit 
and implicit models, but the general mathematical tools are 
similar. In Part 1, we will consider applications of SA to ex­
plicit models, while deferring implicit models to Part 2. 

SENSITIVITY COEFFICIENTS 

Fundamental quantities used in SA are the marginal rates 
of change of output quantities in the model in terms of input 
quantities, i.e., their (partial) derivatives. This addresses item 
la. The first derivatives dy/dxi and dy/dpk are called.first­
order sensitivity coefficients. The normalized first-order sen­
sitivity coefficients are d ln y/d ln xi and d ln y/d ln pk, which 
have the advantage that their values are independent of the 
units used. Furthermore a normalized coefficient can be in­
terpreted as the % change in the output Y; for a 1 % change in 
the input xi or pk. The two types of coefficient are related by 

cllnyi - Xj (ayi) --=- - i=l,2, ... ,N j=l,2, ... ,J 
cllnx· y· clx J 1 J 

(5) 

cllnyi =Els..( clyi) i=l,2, ... ,N k=l,2, ... ,K (6) 
cllnpk Yi clpk 

In some situations, it is appropriate to consider second de­
rivatives as second-order sensitivity coefficients, d2y/dx/, 
d2y/dp/, and corresponding normalized forms. 

• ITEM 1a 

Relative Importance of Changes in Input Quantities 

To address item la, a measure of the relative importance of 
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each input (i.e., each system variable and each constitutive 
parameter) on each output is the absolute value of the rel­
evant sensitivity coefficient, as shown below. 

The effects of small changes in the inputs on the outputs 
can be approximated by a Taylor expansion using the first­
order sensitivity coefficients of the outputs with respect to 
the inputs 

oyi =±(::,)•xi+ i(!Yi )•Pk i = 1,2, ... ,N (7) 
j=l l k=l Pk 

In order to consider all outputs and inputs on the same (rela­
tive) basis, the logarithmic form ofEq. (7) can be used: 

oyi = olnyi = f (cllnyi )•lnxi + i( cllnyi )olnpk 
Yi L,; cllnxi cllnpk 

J=l k=l 

i = 1,2, ... ,N (8) 

For a given value of each input change, the relative impor­
tance of each input on the magnitude of each output is the 
magnitude of the relevant sensitivity coefficient. 

• ITEM 1b 
Effects of Constitutive Parameter Changes on Outputs: 
Uncertainty Analysis 

Here we use the sensitivity coefficients with respect to the 
constitutive parameters to address item lb, since uncertainty 
analysis concerns the effects on outputs of uncertainties in 
these parameters. 

The (standard) uncertainty of measurement of a quantity, 
w;, is an associated quantity, u(w), that characterizes the dis­
persion of the measured values that could reasonably be as­
cribed to the quantityY 1l u(w) is taken as the square root of 
the variance, a 2, if this is available, and approximate 95% 
uncertainty limits (assuming the uncertainties arise from a 
normal distribution with zero mean) for w; are then (w; -
2u(w), w; + 2u(w)). (If a/ is unavailable, an estimate ofu(w) 
must be usedY 1l) 

We identify the average value of oy/ or (o ln y)2 obtained 
from Eq. (7) or (8) with a2(y) or a2(ln y), respectively, with 
analogous identifications for the covariances. In terms of 
uncertainties, this yields 

where u(pi,pk) is the joint uncertainty of pi and pk. When the 
constitutive parameters are uncorrelated (the typical case), 
the last part of Eq. (9) is absent. In this case, the relative 
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importance of each parameter is given by the square of the 
relevant sensitivity coefficient. An expression analogous to 
Eq. (9) can be written in terms of relative uncertainties. We 
note that u(ln y) = u(y)/y;, which represents the relative un­
certainty in Y; (and correspondingly for P)- Reporting nu­
merical values of uncertainties in such a standard way, in 
addition to values of the quantities themselves, is an emerg­
ing requirementY 1

-
12J 

• ITEM 1c 
Overall Etf!!cts o(Svstem Variable Changes on Outputs 

To address item le, we consider only the system variables, 
which (unlike the constitutive parameters) are normally un­
der the control of the investigator. The sum of squares of the 
changes in the model outputs for given changes in the system 
variables is an appropriate overall measure. In what follows, 
we give expressions in terms of the sensitivity coefficients 
themselves; corresponding expressions can be written in terms 
of the normalized sensitivity coefficients (Eqs. 5 and 6). The 
change in the overall sum of squares due to small system 
variable changes is given from Eq. (7) by 

N J J 

oS = L_,OYf = L_, L_,Pikoxioxk (10) 
i=l j=l k=l 

where Pik are entries in a matrix P: 

Pik = f (ayi )( ayi) j,k = 1,2, ... ,J 
L,; dXJ· axk 
1=] 

(11) 

For a given ox, oS can be calculated from Eq. (10), but 
further insight can be obtained by expressing oS in a simpler 
form in terms of a new set of system change variables, o0, as 
follows. The right side ofEq. (10) is a quadratic sum of the 
system variable changes, and it is a standard exercise in lin­
ear algebra to express this as a weighted sum of squares. [20J 

This is essentially the approach used by Seferlis and Grievink 
in design and sensitivity analysis for reactive distillation. [7l 

An arbitrary change vector dx can be expressed in terms of 
a set of normalized (i.e., in the mathematical sense of unit 
length) linearly independent eigenvectors of P, { z, j= 1,2, ... ,J}, 

J 
via 

J 

ox="' z oe L,; J J 
j=l 

(12) 

where o0 is the coordinate of ox with respect to z. We then 
J J 

express oS in Eq. (10) in the simplified form 

J J J J J 

os = I, I, I, I, zf Pzco0ko0c = L.,""ioey (13) 
i=l j=l k=l £=! j=l 

where A. (which is non-negative[20l) is an eigenvalue of P cor­
i 
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responding to z. Equation (10) represents a I-dimensional 
J 

ellipsoid involving the variables ox for a given value of oS. 
Equation (13) expresses this ellipsoid in "standard form" in 
terms of the new variable o0. Equation (12) resolves ox into 
its coordinates in terms of the new coordinate directions z . 

J 

Equations (12) and (13) show that if ox is proportional to 
an individual eigenvectorz, oS is given by the product of the 

J 
square of the proportionality constant o0 and the correspond­

] 

ing eigenvalue A. We can thus assess the relative importance 
J 

of changes of oS from a nominal value in the direction of 
each eigenvector by ordering the eigenvalues of P. 

EXAMPLE 
Pressure Drop in a Fixed-Bed Reactor 

A fixed-bed catalytic chemical reactor consists of a bed of 
catalyst particles through which the reacting system flows. 
As part (for a simple illustration) of the overall design/analy­
sis of such a reactor, we consider an explicit model that ap­
proximates the pressure drop (-Af>) of a fluid flowing through 
a cylindrical bed of spherical particles:l21l 

(-Af') = _64 (-1 -_E_B )-m_· 2_v_ [1 7 5 + _15_0~( l_-_EB_)_rcµ_f_D_
2 

] 

rc3 E3 P d D 6 · 4 md B f p p 

where 

where 

V 
D 

bed volume 
bed volume diameter 
superficial linear fluid velocity 
fluid density 
particle diameter 
bed voidage 
fluid viscosity 
mass flow rate through the bed. 

(14) 

(15) 

(16) 

The values atthe reactor inlet are Pr and µ 1 The bed depth, L, 
is given by 

(17) 

Equations ( 14) and ( 17) constitute an explicit model for 
the output quantities { (-AP),L} in terms of the system vari-
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ables {D,V, m} and the constitutive parameters { EB, dr, pf' 
µr}. For this example, N = 2, J = 3, and K = 4. 

Expressions for the first-order sensitivity coefficients, to­
gether with the corresponding normalized coefficients are 
given in Table 1; the numerical values shown are obtained 
from the following data, relating to the first stage of a par­
ticular sulfur dioxide converter.[21 J 

D = 4.31 m; V= 12 m3
; m = 38.0 kg s·1

; 

Pr= 0.548 kg m 3
; µr= 3.8 x 10-5 kg m 1 s·1

; 

dr = 0.015 m; EB= 0.45 

From these data, f
1 

= 4097 kg m·1 s·2 (=Pa) and f
2 

= 0.08024. 

With regard to item la, Column 4 of Table 1 indicates that 
the most important system 
variable affecting changes 
(in an absolute sense) in 

the vertical line at 4.31 m. 

For item lb, from the values in Column 5 of Table 1, the 
uncertainty in ln(-Af>) in terms of the uncertainties in the con­
stitutive parameters is given by the normalized version of 
Eq. (9) as 

u2 [in(-Af')] = u2 (in pr)+ (0.0438)2 u2 (in µr) + 

(18) 

where the covariances are assumed to be zero (atypical case). 
This further indicates the relative importance of the variable 
EB. Equation (18) requires values of the uncertainties in the 
constitutive parameters, u(p), as described under item lb. 

TABLE 1 
both(-Af>) andinL isD; the 
most important constitutive 
parameter in this sense af­
fecting (-Af>) appears to be 
µ; Lis independent of all the 
constitutive parameters. 

Nonzero* First-Order Sensitivity Coefficients for the Pressure Drop Example** 

For relative changes, Col­
umn 5 indicates that the 
most important system vari­
able for both (-AP) and L is 
also D; the most important 
constitutive parameter for 
(-AP) is EB. Of these two 
types of comparison, that in­
volving normalized quanti­
ties is more informative, 
since the coefficients are in­
dependent of the units. 

To gain further insight 
concerning the dependence 
of the outputs on the inputs, 
we calculate the sensitivity 
coefficients as functions of 
the input quantities. For ex­
ample, since the most im­
portant system variable is D, 
we show in Figure 1 the 
relative sensitivity coeffi­
cients of (-Af>) as functions 
of D. They are all weak 
functions of D, and their 
relative importance does not 
change appreciably from 
that at the conditions of the 
problem statement, indi­
cated by intersections with 
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Expression for 
Coefficient (A) 

Coefficient (fromEqs 14-17) 

iJ(-11P) f 
_...l(10.s + 4fi) 

iJD D 

iJ(-11P) 
!!..(us+ ri) 

av V 

iJ(-11P) 
fl (3.S+fi) 

ilm m 

iJ(-11P) 
_!!.._(1.75 +fi) 

ilpr Pr 

il(-11P) f1f2 

ilµf µf 

il(-11P) 
_!i_(l.75 + 2f2) 

ildp dp 

iJ(-11P) f1 
- X 

dEB EB(l-EB) 

[us(3 -2EB) + (3 - EB)f2] 

iJL 8V 

iJD rcD3 

iJL 4 

av rcD 2 

* iJL iJL iJL iJL iJL 
----------0 
dill ilpr ilµr ildp dEB 

Expression for 
Normalized 

Coefficient (B) 
(from Eqs. 5-6) 

-2( 5.25 + 2 f2 ) 
1.75 +f2 

(
3.50 + f2) 

1.75 + f2 

-1 

_(us+2r2 1 
l us+ f2 ) 

-[3+(~)(1.75+2f2 )] 
1- EB 1.75 +f2 

-2 

** f,~4.097 Pa; f,~0.08024; f
1 

and f
2 

are defined by Eqs. 14 and 15. 

Value of(A) Value of(B) 

-10.29 kPa m·1 -S.912 

0.625 kPa m·3 

0.386 kPa s kg·1 1.956 

-13. 7 kPa m3 kg·' -1 

8650 kPa m s kg·1 0.0438 

-522 kPam·1 -1.044 

-64.2 kPa -3.854 

-0.3817 -2 

0.06854m·2 
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For example, a 1 % relative uncertainty in each parameter results in a 
relative uncertainty in (-Af>) of 4.1 %. 

For item le, to assess the overall effects of relative changes in the 
system variables on relative changes of the outputs, the equivalent of 
the matrix P defined in Eq. (11) in terms of normalized sensitivity 
coefficients is calculated from the values in Column 5 of Table 1: 

l 
38.955 

P= -7.912 

-11.565 

-7.912 -11.5651 

2 1.956 

1.956 3.827 

(19) 

The eigenvalues of P, A;, and their normalized eigenvectors, z;, are[22J 

"-1 = 43.999; 

"-2 = 0.783; 

A3 = O; 

Zl =(0.941,-0.190,-0.280f 

Z2 = (0.060, - 0.721, 0.69lf 

Z3 = (0.333, 0.667, 0.667f 

The normalized equivalent ofEq. (13) gives 

81nS = [81n(-Af')]
2 

+[8(~InL)j2 = 

(20) 

43.99980? +0.78380~ +080~ (21) 

This indicates that, when a change vector for the system variables 

(o ln D, o ln V, o ln ill )Tis proportional to an individual eigenvector 
z; (with proportionality constant 80), the relative change in S (o ln S) 
is given by A;oet Since A

1 
= 43.999 is the largest eigenvalue, Eq. 

(21) indicates that the largest relative change in S occurs in the direc­
tion of z

1
. For example, a unit change of the system variables (o ln D, 

o ln V, o ln ill )Tin the direction of z
1 
leads to a 44-fold relative change 

m 

____ /L_J__ 

cc:, 

~-2 
<1 
._I__. 

~ -4 

··=·-·-·-·-·-~----· .. 
dp 

_____ __!;;JJ_ 

D 
-6L---------+------__::.----, 

3 4 5 6 7 9 10 

D = 4.31 m D/m 

Figure 1. Pressure drop example: Normalized sensitivity coeffi­
cients for (-11P) as functions of bed diameter D; values at 

D = 4.31 m correspond to those in Table 1. 
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in S. Note also that there is one zero eigenvalue; in gen­
eral, when N :::; J, the number of zero eigenvalues is at 
least J - N. For a system variable change vector 
proportional to z

3 
(corresponding to A

3 
= 0), the relative 

change in S is zero. 
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