
(Summer School) ________________ ___,

Increasing Time Spent on

Course Objectives by

USING
COMPUTER PROGRAMMING

TO TEACH NUMERICAL METHODS

DAVID L. SILVERSTEIN

University of Kentucky • Paducah, KY 42001

T he chemical engineering curriculum is a crowded
agenda, with students needing to allocate limited time
resources to focus on educational objectives. A typi­

cal curriculum includes instruction in numerical methods, and
programming assignments are one way of ensuring that stu­
dents understand the methods underlying modeling calcula­
tions. Developing applications from "scratch" requires too
much time spent on tasks not central to course objectives,
however, leaving too little time for the engineering problem.
An innovative approach to this problem, "Template-Based
Programming," minimizes time spent on the elements of pro­
gramming outside of course and assignment objectivesYl

Template-based programming (not to be confused with the
software engineering term "template") provides the student
with a fully functional application, in all respects but one­
the subroutine containing models and numerical methods is
deliberately empty, with variables necessary to communicate
with the user exposed and well defined for the student. The
student is required to write only the codes necessary to imple­
ment the model and appropriate numerical methods. This
enables students to focus on the assignment objectives with­
out unnecessarily concentrating on the use of syntax and struc­
tures not germane to the engineering assignment.

BACKGROUND
Newly graduated chemical engineers will potentially be

called upon to perform a wide range of tasks involving com­
puters. They will need to use current technologies requiring
little programming skill, but they may also be called on to
develop models and simulations that require some ability to

Template-based programming
provides a means for incorporating

computer programming into courses while
minimizing time the students spend on

programming tasks unrelated
to the course objectives.

develop procedural computer code. At times this will involve
legacy codes, often in FORTRAN, dating back several de­
cades. Sometimes this will require working in modem envi­
ronments, such as writing complex procedural scripts in
MATLAB, or integrating spreadsheet calculations with pro­
cedures written in Visual Basic.

The limited space available in the curriculum for computer
training must be used to provide as broad a base as possible
to enable graduates to adapt to the specific computing-re­
lated requirements of their employer as rapidly as possible.
At the same time, it must be recognized that most chemical
engineers are not expected to be applications developers,

David L. Silverstein is currently Assistant Pro­
fessor of Chemical Engineering at the University
of Kentucky, Paducah. His special interests in­
clude learning-style centric educational software
development, pedagogy-driven design of dis­
tance-learning classrooms, improving retention
of mathematics for engineering courses, and co­
operative experiences in process control between
engineering and technology students. He holds
a PhD and MS in Chemical Engineering from
Vanderbilt University, and a BSChE from the Uni­
versity of Alabama.

© Copyright ChE Division of ASEE 2003

214 Chemical Engineerring Education

(Poster Session Award Paper) ____________ _____,,,_

writing complete user-friendly programs from "scratch."

To maximize the value of each course in the curriculum,
the integration of programming must be directed toward meet­
ing educational and program objectives as defined by the in­
dividual department or program. Accreditation Board for
Engineering and Technology (ABET) accredited curricula
require that students learn "appropriate modem. .. computing
techniques."[2l In most cases, chemical engineering programs
have addressed that criterion in part by incorporating a pro­
gramming course_[3l The most common language used is
FORTRAN, with C, C++, and Visual Basic taught in many
other programs. [3•

4l Teaching procedural elements of script­
ing languages, such as those in MATLAB, Maple, and
Mathematica, is proving to be an increasingly popular option
among chemical engineering programs_[4l

The decision on how to incorporate programming into the
curriculum should take into consideration why programming
is important to chemical engineers. A CACHE Corporation
survey[5l provides some interesting insight. Of the practicing
chemical engineers surveyed, 92% never use FORTRAN or
another computer language in their work. Furthermore, 86%
of employers did not expect literacy in different computer
language paradigms. Faculty members revising chemical en­
gineering curricula to meet the needs of industry will find it
challenging to determine the computing skills that should be
taught as part of a core curriculum. [6l When the requirements
of the ABET Engi-
neering Criteria

thor break down a complex problem into a logical series of
steps in a syntactically rigorous language, with a flow oflogic
that should reflect the mental discipline an engineer should
be capable of to solve challenging problems. Programming
concepts are expected to strengthen two key facets of engi­
neering education-problem formulation and problem solv­
ing, [7l although some studies indicate this may not be the
case. [sJ It can also be argued that programming languages are
"a novel formal medium for expressing ideas about method­
ology,"[9l and thereby strengthen the communications com­
ponent of the curriculum.

General puipose mathematical software (such as MATLAB,
Maple, Mathematica, or Math Cad) has been adopted by many
chemical engineering programs with the intent of teaching
students problem-solving skills requiring computer usage.
Typically, this requires some degree of programming. The
benefit of this approach is that the "overhead" of applica­
tions development is handled by the host application. One
difficulty with this approach is teaching numerical methods
with these packages when the program already has most nu­
merical methods incorporated directly into the software. In
this case, use of a high-level programming language may be
more appropriate. In all cases, the opportunity for sufficient
instruction of students in the software or programming lan­
guage they are expected to use is critical.

Applications development requires that all details regard­
ing a program be ad­
dressed, including

2000 (EC2000) are
also considered, the
need to specifically
address program­
ming and computer
use in the curricu -
lum is even more
pronounced.

SRK EOS Calculator . ' -~
memory manage­
ment, user interfaces,
buffer protection,
graphics, file man­
agement, and operat­
ing system integra­
tion. Engineering stu­
dents should be fo­
cused on the prob-Since there ap­

pears to be little
need for practicing
engineers to pro­
gram, we must ask
why we teach pro­
gramming in most
chemical engineer­
ing curricula. The
most likely answer
seems to be, be­
cause developing a
program requires
that the program au-

Summer 2003

Solving a non-linear equation of state using Newton's method.

Pressure [atm [abs I]

Specific Volume [L/mol]

Temperature [Kl

When you press the Solve button, the program
should use the SAK Equation of State to solve
for whichever of the above values is equal to
zero. If more than one value is equal to zero, an
error message will appear.

~olve
Status:

System-Specific Physical Constants

Critical Temperature [Kl

Critical Pressure [atm]

Accentric Factor

Figure 1. The user interface resulting from compiling and executing the tem­
plate. The program is fully functional, except that it does not calculate any­
thing when the button is clicked. Error messages regarding user input are
still displayed, even without the student code.

lem, addressing nu­
merical methods,
model accuracy and
assumptions, stabil­
ity, limits of applica­
bility, communicat­
ing the model and
results, and integrat­
ing the results with
reality. The method
described herein en­
ables focus on the
topics important to

215

(_~_u_m_m_e_r_S_c_h_o_o_z ________________________________)

chemical engineering students.

TEMPLATE-BASED PROGRAMMING

The template-based approach begins with a fully functional
application. The student is provided with the complete
workspace for the integrated development environment (IDE)
under which they have previously worked in their program­
ming course. Immediately after loading the template, they
can compile and run the program, which will appear as in
Figure 1. One key element is, however, missing. When the
"solve" button is pressed, nothing is returned. That button
calls a subroutine that, while fully commented and linked to
the application, is devoid of executable code. The student is
expected to write all necessary code to provide the subrou­
tine with the functionality required by the assignment. A typi­
cal subroutine is shown in Figure 2 . All variables needed as
input for the routine are exposed by global variables, as is the
variable declared to store the result calculated by the students,
which is returned to the application interface.

The result of the assignment is an attractive, uniform, fully
functional, stand-alone application that students can then use
for solving additional problems. Time spent on non-objec­
tive activities, such as preparing "FORMAT" statements or
reading and writing to files has been minimized or eliminated.
The high-level programming language has been used in such
a way that it shares many of the benefits of math packages,
including the ability to assume that 1/0 management, memory
management, and the user interface are taken care of without
need for consideration by the subroutine programmer.

IMPLEMENTATION

Use of these templates develops along the same lines as
other course material. First, expected outcomes for the as­
signment were derived from the course objectives. An as­
signment was developed and application constructed sans
components required for the student to develop to achieve
the expected outcomes.

Students were required to take a FORTRAN course to
fulfill programming requirements until a policy change at
the University of Kentucky (UK) in2001 allowed them to
take a course in Visual Basic to satisfy that requirement.
To maximize the value of the student's previous training,
early uses of this approach were coded in Compaq's Vi­
sual FORTRAN environment. Most recent uses of this ap­
proach have been assigned with a student option of using
FORTRAN or Microsoft Visual Basic.NET templates. In
all cases, students have been given the option of writing
their own program from scratch, using any programming
environment. The assignment is typically rather detailed,
since some significant instruction is required to get started

216

using the template because students have never had to work
within someone else's application prior to this assignment.

RESULTS AND DISCUSSION

Students did not write routines to collect model parameters
from a console or data file, design structures to pass data
between routines, or format numerical output and send it to
the console or to a file. They gained no experience in inherit­
ance, encapsulation, polymorphism, or GUI programming.
They did design a model, specify required input and output,
write subroutines and functions involving the model and a
numerical method, debug their code, validate the model, and
verify the numerical method. They focused, thereby, on the
course objectives-modeling chemical processes or perform­
ing engineering calculations, selecting and implementing
numerical methods, and practicing fundamental logic and
problem-solving skills.

An additional benefit of the approach includes ease of grad­
ing. Since all students started from a common set of vari­
ables, the code was easier to trace. The results presented
in the form of screen captures were consistent and easier
to follow.

Template-based programming has been applied in two
courses so far: Process Principles, the sophomore material
and energy balance course, and Process Modeling, a junior­
level course in modeling principles and numerical methods.

The class size in all courses in which this approach has

SUBROUTINE SRK ()
! Routine to actually run the SRK EOS calculations

! It obtains values of 3 of 4 variables (PVT) and Tc,Pc,and the accentric factor
! from the dialog box
! It must provide a value of the missing variable while not changing the variables
!provided
! Minimal error checking is performed
! The following two statements incorporate this file into the overall project
use dfwin
use SRKGlobals

! The following global variables are available to you.
!double precision Pressure Pressure given in the dialog box
!double precision Volume Specific Volume given in the dialog box
!double precision Temperature Temperature given in the dialog box
!double precision TCrit Critical Temperature given in the dialog box
!double precision PCrit Critical Pressure given in the dialog box
!double precision Omega Accentric Factor given in the dialog box (may be =0)

l You must assign a value to whichever variable from amongst Pressure, Volume,
: Temperature was =0

! You will need to create some variables for use within your subroutine

! You may choose to create another subroutine INSIDE THIS FILE to handle equation
!solving

!You will need to first figure out what to solve for,and then branch to actually
! solve for that unknown
!That gives you three cases,one of which is trivial. For the other two, you will
! need to use Newton' s method
! Remember to calculate the SRK parameters which you will use in all three cases.
1 You will likely need to declare other variables to complete your program

! YOUR CODE STARTS HERE

1 YOUR CODE ENDS HERE
END SUBROUTINE SRK

Figure 2. Typical student subroutine template.

Chemical Engineerring Education

(______________________________ R_o_s_te_r_S_es_s_i_o_n_A_w_a_rd_R_a_rp_e_r_)

been applied has been ten or less. The UK engineering pro­
grams in Paducah are an extension of the main campus in
Lexington. Students pursue a BS in chemical engineering
under what is currently a curriculum identical to that of the
Lexington program. Chemical engineering courses at UK
Paducah are taught by UK faculty stationed in Paducah, with
the remaining courses taught by Murray State University and
Paducah Community CollegeY0l ABET accreditation is ex­
pected in July 2003.

The first use of template-based programming was in Pro­
cess Modeling. One of the objectives for this course is that
students "use computer software and programming languages
to solve complex mathematical systems." Two assignments
were given. The first was a simple determination of the ma­
chine epsilon, the smallest difference between two numbers
that the computer can distinguish. The purposes of the as­
signment were to reinforce the idea of inherent limitations of
computer calculations, to reintroduce computer programming
to the students (who had not programmed during the 1 - 2
years since their programming course), and to familiarize the
students with the template-based approach. The second project
was an implementation of Gauss-Siedel elimination to solve
for a solution to a system of linear equations.

The first time this course was taught at the Paducah cam­
pus, students were unable to complete the epsilon calcula­
tion due to difficulties with passing variables to subroutines,
with using DO loops, with reading and writing input and out-

TABLE 1
Summary of Survey Results

put, and other serious programming deficiencies. The options
left to the instructor were to reteach these topics every time
the modeling course was offered, to eliminate the program­
ming task, or to develop a method that would allow students
to focus on the skills they needed to retain.

The second time the course was taught, templates were used.
Students were surveyed regarding their perception of their
programming skills and the utility of the template-based ap­
proach.[1l Table 1 summarizes the results. Students demon­
strated improvement in perception of their individual skills
in various programming concepts after the template-based
assignment in all cases except for the question about basic
mathematical operations and on the question regarding DO
loops. The second project required a sequence of nested DO
loops that tested their understanding of this construct, which
was not as strong as they had previously perceived. Other
results of the survey indicated more time was spent on
engineering objectives than would have been spent with­
out the template.

The students were enthusiastic about this approach, stating
that they were more confident about starting to program since
the "busy work" had been completed for them. The visual
nature of the output was more satisfying than the console­
based output of programs they had written previously. Stu­
dents from the previous section of the course expressed envy
that students using templates did not have to struggle through
the issues they did with fundamentals of applications devel-

opment.

The biggest improvements ob-
served by the instructor were the

("]" - student strongly disagrees: "5" - strongly agrees)
(Courses: Clv1E200-Process Principles; Clv1E420-Process Modeling)

reduction in time spent during of­
fice hours instructing students in
programming fundamentals and
the fact that all students turned in
programs that met instructional
objectives. Students spent far less
time working on the programs us­
ing the templates than before, but
the time they did spend was qual­
ity time, focused on the assign­
ment objectives.

I am comfortable writing programs using FORTRAN

I understand how to use variable arrays in FORTRAN

I understand how to use if-then-else structures in programs

I understand the use of DO loops and how they are terminated

I understand the use of comparison operators in FORTRAN

I can perform mathematical operations on variables in a
FORTRAN program

Using a template allows me to focus more on the engineering
problem compared to writing a program from a blank file

The time spent programming was reduced by using the template

After having worked through the issues involved in starting to use
the template, the template was easier to use than writing a
program from a blank file

Summer 2003

Initial
Survey

CME200
2.8

3.6

2.7

3.6

3.3

3.3

NIA

NIA

NIA

Post
Projed
Survey

CME200
3.0

3.9

3.4

3.8

3.5

3.8

4.5

4.3

4.1

Initial
Survey

CME420
1.8

1.3

2.8

3.3

3.3

3.3

NIA

NIA

NIA

Post
Projed
Survey

CME420
2.5

2

3.5

3

4

3.3

3.8

4.3

4.5

The second course in which this
technique was applied was Pro­
cess Principles in the fall of 2001
and 2002. During coverage of
equations of state, students were
required to solve the Soave­
Redlich-Kwong equation of state
for an unknown PVT variable us­
ing Newton's method. Again, stu-

217

(_~_u_m_m_e_r_S_c_h_o_o_z __________________________________)

dents had issues with the numerical method, but not with the
programming technique. In part, this was due to the fresh­
ness of the programming course in these sophomore's ex­
perience, but students still expressed a preference for
working from a template instead of writing a program from
a blank file. Submitted results were of superior quality
compared to those of an assignment in the fall of 1999
that required complete development of an application to
solve a similar problem.

Surveys were again conducted involving students in both
sections of Process Principles in which templates were imple­
mented. Table 1 summarizes those survey results. The key
finding of the survey is confirmation that students again per­
ceived that they spent more time focused on meeting course
expected outcomes while practicing and improving their pro­
gramming skills.

The template-based approach is flexible, readily applied
not only to the Compaq Visual FORTRAN IDE and the
Microsoft Visual Basic.NET environment, but applicable
within MATLAB and other packages. In the fall of 2002, the
Process Principles class had a group of students, halfof w horn
had instruction in FORTRAN, and the other half a course in
Visual Basic. Templates for both languages were made avail­
able and were used by students. The complete templates, in­
cluding the code for the user interface, also serve as an ex­
ample for students interested in developing their own appli­
cations for research or personal use.

There are some difficulties associated with the use oftem­
plates. The primary issue in implementing them is actually
developing a reliable, debugged interface. With Compaq Vi­
sual FORTRAN, the interface development requires under­
standing of Microsoft Windows GUI development concepts,
which is not part of the typical chemical engineering
professor's background. More recent FORTRAN environ­
ments (Leahy Fortran.NET, for example) make this process
much simpler. When students work under different languages
or environments, multiple templates may be required, as they
were during the fall 2002 offering.

The implementation of templates will benefit from some
technical improvements. The subroutine should be encapsu­
lated as an object, so that the student does not directly modify
any variables from the host routines. Another alternative
would be having the students develop the core of a dynamic
link library that compiles independently from the application
and may be called from a variety of other programs. Pro­
cess simulators and data acquisition systems can also be
integrated with the templates to further develop the
student's computing skills.

To simplify adoption of this approach, the author has made

218

templates freely available for download. [nJ Other faculty who
wish to share their templates with the engineering commu­
nity at large are invited to submit their templates to the au­
thor for inclusion in a web-accessible library.

CONCLUSION

Template-based programming provides a means for incor­
porating computerprogranuning into courses while minimiz­
ing time the students spend on progranuning tasks umelated
to the course objectives. It allows the student to model pro­
cesses and apply numerical methods in a logical manner,
breaking down complex procedures into syntactically rig­
orous steps, resulting in a usable application. It also capi­
talizes on the programming courses students take early in
the curriculum.

Templates have been successfully incorporated into two
courses at the University of Kentucky's extended campus in
Paducah, with very positive results, particularly with respect
to time spent on engineering tasks as described in the course
objectives. It is a flexible approach, as demonstrated by use
with both FORTRAN and Visual Basic, and can be applied
to many other languages or computing environments. Stable
and robust template development does require substantial
time, but results in a more efficient educational experience
for the student.

REFERENCES
1. Silverstein, D.L., "Template-Based Programming in Chemical Engi­

neering Courses," Proceedings of the 2001 ASEEAnnual Conference
& Exposition, American Society for Engineering Education (2001)

2. Criteria for Accrediting Engineering Programs, Accreditation Board
for Engineering and Technology, Inc., Baltimore, MD: <http://
www.abet. org/> (2002)

3. <http://www.che.utexas.edu/cache/survey.html> CACHE Survey Re­
sults

4. Dahm, K.D., R.P. Hesketh, and M.J. Savelski, "Is Process Simulation
Used Effectively in ChE Courses?" Chem. Eng. Ed., 36(3), 192 (2002)

5. Davis, J., G. Blau, and G.V Reklaitis, "Computers in Undergraduate
Chemical Engineering Education: A Perspective on Training and Ap­
plications," Technical report, CACHE Corporation, Draft 3.1 (1993)

6. Kantor, T.J., and T.F. Edgar, "Computing Skills in the Chemical Engi­
neering Curriculum," in Computers in Chemical Engineering Educa­
tion, B. Carnahan, ed., CACHE Corp, Austin, TX (1996)

7. Stephanopoulos, G., and C. Han, "Languages and Programming Para­
digms," in Computers in Chemical Engineering Education, B.
Carnahan, ed., CACHE Corp, Austin, TX (1996)

8. Urban-Lurain, M., and D.J. Weinshank, "Do Non-Computer Science
Students Need to Program?", J. Eng. Ed., 88, 535 (2001)

9. Abelson, H., and G. Sussman, Structure and Interpretation of Com­
puter Programs, MIT Press, Cambridge, MA (1985)

10. Smart, J.L., W. Murphy, G.T. Lineberry, and B. Lykins, "Develop­
ment of an Extended Campus Chemical Engineering Program, Pro­
ceedings of the 2000 ASEE Annual Conference & Exposition, Ameri­
can Society for Engineering Education (2000)

11. <http://www.engr.uky.edu/~silverdl/TBP/> •

Chemical Engineerring Education

