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C onvective transport phenomena are fundamental prin­
ciples of chemical engineering and are covered in both 
graduate- and undergraduate-level courses, but the 

transport equations are frequently coupled and cannot be 
solved analytically. Consequently, classroom teaching of this 
topic is usually fragmented ; the fundamental equations are 
developed and the semi-empirical transport correlations 
are applied, but methods to so lve the fundamental equa­
tions and arrive at the Nusselt and Sherwood numbers are 
usually neglected . 

With the ubiquity of fast and inexpensive computers and 
easy-to-implement software packages (e.g., Matlab, Visual 
Basic), it has become tractable to fill this gap. Implementa­
tion of computational methods in engineering education re­
mains limited, however.111 This deficit can be alleviated by 
the incorporation of numerical methods into the curriculum 
and increased availability of pertinent, ready-to-use code. 

Free convection near a vertical wall is a classic example of 
convective transport and involves simultaneously solving the 
Navier-Stokes, heat, and continuity equations. Pohlhausen 
showed that this problem could be approximated by coupled 
second- and third-order ordinary differential equations 
(ODEs) with respect to a similarity variable. Importantly, 
this approximation can be readily solved using ODE solv­
ers built into common software packages (e.g. , Matlab, 
Mathematica, Polymath). 

This example has been used in two separate courses taught 
at Virginia Tech. In a graduate-level transport phenomena 
course, students employed Euler's method to solve the 
coupled ODEs and match the boundary conditions. The ob­
jective was for the students to reproduce Figure 12-5 and 12-
6 from Deen.121 In an undergraduate numerical methods 
course, students were provided with the complete and work­
ing code as part of an interactive laboratory exercise. The 
goal was to introduce the students to the use of an ODE solver 
and the shooting method to solve boundary value problems. 

The example will be presented in four steps: 

1. Brief derivations of the coupled second- and third­
order ODEsfrom the fundamental transport equations 
are presented. 

2. These two equations are solved as an initial value 
problem consisting of five coupled first-order ODEs. 

3. A shooting method algorithm is presented that 
employs the Newton 's method to iteratively find initial 
conditions that satisfy conditions far from the wall. 

4. The solution is used to predict the average Nusselt 
number and temperature and velocity distributions 
near the wall. 

The solution is demonstrated using Matlab (version 6), but 
other programming languages can be used. This step-wise 
approach is intended to aid student learning by breaking the 
full problem into discrete modules that implement different 
numerical methods and programming structures. In addition, 
the graphical display of predictions in dimensional form is 
intended to aid visualization of fluid mechanics . The learn­
ing objectives that are illustrated in this example can be sub­
divided into categories of transport phenomena, numerical 
methods, and Matlab implementation (see Table 1). 

DESCRIPTION OF THE PROBLEM 

A fluid (e.g., air) of density p, viscosity µ, heat capacity 
Cr, thermal conductivity k, and coefficient of thermal 
expansivity 13, is in contact with a vertical wall (see Figure 
1). If the surface temperature of the wall, Tw, is greater than 
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( 
the temperature of the fluid far from the wall, T

0
, then ther­

mal expansion of the fluid near the wall will lead to buoy­
ancy-driven flow (i. e., free convection) in response to grav­
ity, g. In this two-dimensional geometry the x-axis (defined 
as parallel to the surface) is oriented vertically, and the y-axis 
is oriented horizontally. For thi s two-dimensional system, the 
relevant transport equations are continuity 

dv dvy __ x +--=0 
ax dy 

(I) 

the Na vier-Stokes equation for flow in the x-direction (paral­
lel to the surface 

( 
dv x dV X J dP fl.( ) ( a2

vx a
2

vx I p Vx-+V - =--1-' T-T0 pg-µ l--+--j 
dx y dy dx ax 2 dy2 

and the heat equation 

TABLE 1 
Learning Objectives 

Relevant to the Free Convection Example 

Leaming Objectives Relevant to Transport Phenomena 

(2) 

• Understand the transport equati ons that describe free convection 
• Understand the boundary conditions relevant to free convection 

near a vertical wall 
• Visualize and evaluate the 2D temperature and velocity profiles 

predicted from theory 

Leaming Objectives Relevant to Numerical Methods 
• Set up coupled ordinary differential equations and solve them as 

an initial value problem 
• Employ secant method to iteratively solve multiple nonlinear 

equations 
• Employ secant method to solve coupled ordinary differential 

equati ons as a boundary value problem 

Leaming Objectives Relevant to the Use of Matlab 
• Write and use an m-file as a function 
• Use ODE45 to solve a set of coupled first-order ordinary 

differential equations 
• Implement matrix operations: inverse, transpose, multiplication 
• Graph data using "plot" and "contour" commands 
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Figure 1. Coordinate system for free convection of a fluid 
at T near a heated wall at T . 
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pc p(vx dT + Vy dTJ = k(a2; + a2; J 
ax dy ax dy 

(3) 

These equations have four dependent variables (T, P, v x, and 
v ) and two independent variables (x and y). From visual in-

Y 
spection, we see that ten boundary conditions are required to 
completely solve them. Although they can be solved using 
finite element or finite difference numerical approaches, an 
approximation of the so lution can be obtained by first sim­
plifying these equations to a pair of coupled ordinary dif­
ferential equations. 

The simplification scheme (described in detail by Deen, 
pp. 493-50 I 121) is given here briefly. First, these mathemati­
cal expressions may be simplified by neglecting pressure drop, 
dP/dx, and by recognizing that diffusive transport in the x 
direction, a2v x / ax 2 and a2T / ax 2, is negligible relative to 
convective transport. Thjs eliminates the dependent variable 
P and the need for three boundary conditions. Second, a stream 
function , which automatically satisfies Eq. ( 1) 

d\lf 
V =-

x dy 
d\lf 

V =--
y ax 

( 4) 

is used to eliminate one equation and one dependent vari­
able. Third , a similarity variable originally proposed by 
Pohlhausen, TJ ex: y / x0 25 , is used to convert the partial dif­
ferential equations into ordinary differential equations. Fourth, 
the remaining dependent and independent variables are 
nondimensionalized and scaled to achieve the follow two 
equations : 

Here the variables are 

F=---'-"'-­
v(43Grx)°'25 

0 = T-To 
Tw -To 

the dimensionless groups are 

Grashoffnumber: Grx =gv2x3~(Tw- To) 

Prandtl number: Pr= µC P / k 

(5a) 

(5b) 

(6a) 

(6b) 

(6c) 

( 6d) 

(6e) 

and bnematic viscosity is v = µ/p. Equations (Sa) and (Sb) 
must be solved subject to five boundary conditions 
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F(rt = 0) = dFI = dFI = 0 
drt TJ =0 drt i1 • ~ 

0( rt • 00 ) = 0 and 0( rt = 0) = 1 (7) 

Note that because 0 and dF/dTj must asymptotically approach 
zero as TJ goes to infinity, their derivatives, d2F/d112 and d0/ 
d11, also must go to zero. 

SOLVING THE INITIAL VALUE PROBLEM 
To solve Eqs. (5a) and (5b) numerically, they are first re­

duced to sets of first-order equations by defining new depen­
dent variables P1, F1, F2, 0 °, and 0 1 l3- P·67 1I 

dFO = pl 
drt 

~=F2 
drt 

dF2 = -3 p0p2 + 2(F1 )2 - 0 0 
drt 

d0o 
--=0' 

drt 

d01 
-- = -3PrF00 1 

drt 

(8) 

Here P1 and 0 ° are equivalent to F and 0 in Eq. (5), and F' , 
F2, and 0 1 are first and second derivatives of F and 0 with 
respect to TJ. Note that Eq. (5a) is third order and is replaced 
with three first-order equations, whereas Eq. (5b) is second 
order and is replaced with two equations. 

The five coupled first-order ODEs can be readily solved in 
Matlab using the built-in ODE45 solver. The ODEs are de­
fined within a Matlab m-file "freeconvect.m" (see Table 2) 
where the function "Y =freeconvect(eta,X,Pr)" calculates the 
set of first derivatives 

y = l( ::: ; :jl 
d0o / drt 

d01 
/ drt 

(9) 

subject to three arguments: I) the independent variable, eta, 
2) the set of dependent variables, X (at eta) 

(10) 
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and 3) the Prandtl number, Pr. For this example, Pr= 0.72 (for 
air) is used. (Details regarding built-in ODE solvers for Matlab 
version 6 can be found in Higham and Higham141, pp. 148-163.) 

A driver program (see Table 3) is used to solve the five 
coupled ODEs subject to a set of five initial conditions, 
"Xinit," over a finite range of TJ , "etaspan." In this case, the 
finite range chosen is O ~ TJ ~ 10. From Eq. (7) , only three 
initial conditions (at TJ = 0) are known: F°=O, F 1=0. and 0 °=1. 
The remaining initial conditions must be guessed. Because 
F2 and 0 1 are proportional to the velocity gradient, dv/dy, 
and temperature gradient, dT/dy, respectively, F2 should be 
positive and 0 1 negative at TJ = 0. For the case of Pr= 0.72, 
the initial values are F2 = 0.6761 and 0 1 = -0.5047 and pro­
duce the solid curves in Figure 2. In principle, a trial-and­
error method can be employed to determine these initial val­
ues, but it is tedious. Alternatively, an algorithm to solve two 
coupled nonlinear equations, such as Newton 's method, can 
be devised to iteratively solve the boundary value problem. 

SOLVING TWO COUPLED NONLINEAR 
EQUATIONS 

Newton 's method for solving nonlinear equations involves 
an iterative process of iteratively refining x, by a correction, h 

TABLE2 
Subroutine for ODE45 Solver 

function Y=freeconvect(eta,X,Pr) 
% X=(F0; Fl; F2 ; Theta0 ; Thetal) 
dF0deta=X(2) ; 
dfldeta=X(3); 
dF2deta=-3*X(l)*X(3)+2*(X(2)) A2 -X(4); 
dTh eta0deta=X(5); 
dTh etaldeta=-3* Pr *X(l)*X(5) ; 
Y=[dF0deta; d Fldeta ; d F2deta ; dTheta0de ta; 

d Theta l d eta]; 

TABLE3 
Solver Program 

% ODE45 Solver for freeconvect.m 
Pr=0.72; % Prandtl number for air 
etaspan= [0 10]; 
Xini t=[0 ; 0;0.6761;1;-0.5047] 
options=ode set( ' AbsTol' ,le-7, ' RelTol' , l e-4); 
% 
% solver wil l cal l function 'freeconvect' 
[Eta,X] =ode45(@fr eeconvect,etaspan,Xinit,options,Pr); 
% 
% plot results 
figure(!), plot(Eta,X( : 2), 'k-') 
xlabel(' \ it{ \ eta)', 'Fontsize' , 16) 
ylabe l ('{ \ it{F)) Al', 'Fontsize',16) 
figure(2), plot(Eta,X( : ,4),'k- ') 
xlabel ('\it{\eta] ', ' Fontsize' , 16) 
ylabel ( ' { \ Theta) A0', 'Fontsize ' , 16) 
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{I 1) 

where h is calculated by linear extrapolation of the function, 
f(x) , to zerof3. ppI39-I45J 

O=f(xi)+(df/ctx t h 
I 

{12) 

This approach can be scaled up readily to solve the roots of 
coupled equations. For this particular example, the equations 
in matrix form are 

where (h
1
h

2
)' is the solution to the equation 
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Figure 2. Solution to dimensionless boundary value prob­
lem for Pr= 0.72. Solid line corresponds to the correct so­
lution, which satisfies F' = dF' ldr, = 01 = d01/dr, = 0. Dashed 
line is incorrect solution , which only satisfies F' = 01 = 0. 
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Note that these equations are designed to find initial values 
of F- and 0 1 (at TJ = 0) that satisfy final values of F1 = 0 and 
0 ° = 0 (at TJ = 10). Equations (13) and (14) can be expressed 
using matrix and vector variables as 

(15) 

and 

O=F+KH {16) 

respectively, and combined to achieve an iterative strategy 

X 1=X --K- 1F 
-1+ -1 = - (17) 

where !£ is the Jacobian matrix. 

Although the four derivatives that comprise !£ cannot be 

expressed analytically, they can be estimated using two-term 
forward finite divided differences. The first of the four is ap­
proximated by the equation 

{18) 

To estimate the four derivatives, the ODEs in Eq. (8) have to 
be solved for three pairs of initial values {F;2, 0 /}, {If + 1\, en, { F;2, 0/, + 00}, where OF and 00 are small numbers. 

A Matlab code for solving thi s boundary-value problem is 
given in Table 4 (next page). Within the iterative loop, three 
steps are taken. First, the ODEs are solved over the interval 0 
:5: T) :5: 10 for three pairs of initial values, {F;2, 0 / }, {F;2 + OF' 
0 1

1
}, and {F;2, 0 / + 8

0
}, where "oF=dF2=0.001 " and 

"o0 =dT1 =0.00 I". The resultant values of F' and 0 ° at TJ= 10 
for each pair of initial conditions is placed into an array (X 1, 

X2, and X3). Second, the four derivatives that comprise !£ 
are calculated. Third, new estimates of initial values are cal­
culated using Eq. (1 7). 

These three steps are repeated withjn a "while" loop that 
continues until the magnitudes of both corrections fall below 
10·6• Once the convergence tolerance is met, the algorithm 
exi ts the iterative loop and plots the results. Because the ODE 
solver evaluates {F;2

, 0 / } last, upon exiting the loop the matrix 
X holds the solution for these initial values. The accuracy of 
the solution can be improved by allowing OF and 8

0 
to de­

crease as the solution converges. In particular, a strategy of 
setting "dF2=H(l )" and "dTl=H(2)" is analogous to the Se­
cant Method.13• PP 145-1501 

When an initial guess of "initF2=1" and "irutTl=-0.5" is 
used, a solution is found in 7 iterations that matches the bound­
ary conditions (solid curves in Figure 2) and agrees closely 
with tJ-.e tabulated values reported by Ostrach.151 Interestingly, 
when the code is run with initial conditions "initF2=0.5" and 
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"initT l=-0.5", it converges in 15 iterations to yield the dashed 
curves in Figure 2. Although trus solution also matches the 
specified boundary conditions at 11=10, the derivatives are 
not asymptotically approaching zero. 

INTERPRETING THE RESULTS 

Once the unknown initial condition 0 '(11=0) is determined, 
it can be used to calculate local and average Nusselt num­
bers, Nu, and Nu , respectively. Here, using the fundamental 
equality between the bulk heat flux into the fluid and con­
duction near the wall 

h(Tw -T0 )=-k !Tl 
y y=O 

(19) 

the local Nusselt number can be derived in terms of dimen-
sionless groups!51 

Likewise, the average Nusselt number can be derived 

where GrL corresponds to Gr, at x = L. Using values of 
0 1(11=0) determined for a range of Pr values and Eq. (21), 
the circles in Figure 3 can be obtained. These predictions show 
very good agreement with the semi-empirical formula that 
Le Fevre!61 developed from numerical solutions to 
Pohlhausen 's approximation (solid curve). 

- ( GrL Pr2 10.25 

Nu = l 2.435 + 4.884 Pr0·5 + 4.953 Pr ) (22
) 

In addition , Nu can be used to predict average heat flux, q 

L 

- I J k -( ) q = L h(Tw - T0 )dx = L Nu T w - T0 = 

0 
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TABLE 4 

Iterative Solver 

% Shooting Met hod (Non-Linear Solver ) for 

Boundary Value Problem 

Pr=0 . 72; % Prandtl number for air 

dF2= . 001 ; % i n itial step size 

dTl= . 001 ; % initial step size 

initF2=1 . 0; % initial guess 

initTl=-0 . 5; % initial guess 

K=zeros(2); % derivatives for Newton's method 

etaspa n= [ 0 10]; % solve ODEs over f ini te range 

H=[ l; 1] ; 

options=odeset( ' AbsTol' , l e-7, 'RelTo l ' ,le-4); 

% 

while ma x (abs(H)) >le-6 

% 

% evaluate initial value ODEs 

[Eta , X]=ode45(@freeconvect,etaspan , .. . 

[0;0;initF2 =dF2 ;l ; ini t T1] ,options,Pr); 

n=s i ze(Eta , 1); 

X2= [X(n,2) ; X(n,4)]; 

[Eta,X]=od e45(@freeconvect,etaspan , .. . 

[ 0 ; 0 ;ini t F2 ; 1 ; ini tTl +dT1] , opt i ons ,Pr ) ; 

n =s i ze( Eta , l); 

X3 = [ X ( n , 2 ) ; X ( n , 4 ) ; 

[E t a , X]=ode45(@freeconvect , etaspan , .. . 

[0 ; 0 ;initF2 ; l;initT1] , options,Pr); 

n=size(Eta,1); 

Xl=[X(n,2) ;X(n , 4)] ; 

% 

% estimate derivatives 

K(l,l) = (X2(1)-Xl (l) ) / dF2; % dF1 / d F2 

K(2,l)=(X2(2) - X1 (2)) / dF2; % dT0 / d F2 

K(l,2)=(X3( 1 )-Xl ( l )) / d Tl; % dF1 / d T2 

K(2 , 2 ) =(X3 (2 ) -X1(2 )) / dT1 ; % dT0 / d T2 

% 

% calculate new initial conditions 

a=cond(K) ; 

if a >10 A6 , display('matrix bec omi ng s ingular') 

break , e n d 

H=inv (K) * ( - Xl) ; 

initF2=initF2+H(l) ; 

ini tTl=ini tTl+H (2) ; 

fprintf( 'ini t F2= %7 . 6f initT1=%7 . 6 f 

% 

end 

% 

cond(K)=%3 . 2e \ n' ,ini tF2, ... 

initTl ,a) 

% Plot Results 

figure(l), p l ot( Eta,X( : ,2),'k- ' ) 

xlabel ( ' \ i t { \ eta} ' , 'Fontsize',16) 

ylabel('{ \ it {F }} Al' , 'Fontsize ' ,16) 

figure(2), plot(Eta , X( :, 4), ' k-') 

xlabel (' \ it { \ e t a } ' , ' Fontsize ' , 16) 

ylabel(' {\Theta} A0 ' , ' Fontsize' ,16) 
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Figure 3. Average Nusselt number as a function 
of Prandtl number. Values predicted using this 
model (circles) are compared to semi-empirical 
formula , Eq. 22 (solid line). 
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Figure 4. Contour plots of a) vertical velocity and 
b) temperature of air(T

0
=15°C) near a heated wall 

(Tw=65°C) as a function of vertical and horizon­
tal position. These plots were generated by 
dimensionalizing the solution (Figures 2a,b) for 
fluid properties of air at Tr40 °C. 

Fall 2004 

Graduate Education) 

Here we see that Pohlhausen's approximation predicts that q is pro­

portional to (Tw - T) 1.
25

. 

Although Figure 2 demonstrates that a solution can be found that 
matches the boundary conditions, and Figure 3 validates the solution, 
it may be difficult for undergraduate students to conceptualize this 
abstract solution. Therefore, converting the solution into dimensional 
form for a familiar fluid may be valuable for student learning. For this 
example, air of TO = 15 °C near a wall of T w = 65 °C is used because 
experimental data have been collected by Schmidt and Beckmann _l7 1 

T(x,y) and v/ x,y) can be determined using the definitions of the di­
mensionless groups (Eq. 6), the equation for vertical velocity 12• psooi 

(24) 

and fluid properties at the film temperature [Tr=(Tw + TY2], v = 0.1692 
cm2/s, and 13 = 0.00319 °K- 1

• Under these conditi(?nS, flow is laminar 
for vertical positions x < 6 m (Gr.Pr< 109

). The resultant 2D contour 
plots (see Figure 4) provide interesting insights into free convection. 
First, the transport effects are localized to a region very' close to the 
wall; at x = lO cm, the thermal boundary layer, ~\ (defined where 0 = 
0.01) is only 13 mm thick, and at x = 1 m, ~\ = 23 mm. SeGond, the 
velocity profile evolves in two ways: the velocity increases with vertical 
position, x, and the point of maximal velocity shifts away from the wall. 

Finally, the results can be compared with experimental measure~ 
ments of Schmidt and Beckmann17·PP354-355J (see Figure 5, next page). 
Here, the predicted temperatures agree well with measurements at two 
different vertical positions (x = 2, 7 cm), but the predicted velocities 
are 10% below experimental measurements. A similar deviation be­
tween model and experimental velocities was reported by OstrachY1 

FINAL REMARKS 
- ~ .. --: ,, 

The example presented here is intended to lead the instructor through 
stages of problem solving (formulation, calculation, and interpreta­
tion), but contains too much content for a standard 60-minute lecture. 
To date, I have used portions of this example in two classes: transport 
phenomena at the graduate level and numerical methods at the junior/ 
senior level. In both classes, students were already familiar with the 
concept of free convection and the objective was to gain experience 
numerically solving ODEs. 

For the graduate course, I derived Eq. (8) and assigned as home­
work the task of generating Figure 2. I showed the students how to use 
Euler 's method, suggested they employ a trial-and-error approach, and 
allowed them to use any software of their choosing (e.g., Matlab, Ex­
cel). 

For the undergraduate course, I developed a computational exer­
cise to solve Eq. (5) and generate Figures 2 and 4 that the class could 
work through in a computational laboratory. The exercise focused on 
deriving Eq. (8) from Eq . (5) and implementing an ODE solver and a 
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) 
shooting method algorithm. 

The exercise was made available electronically on the course 
website and the code was presented in a modular form (like 
Tables 2-5) that could be readily cut and pasted into Matlab. 
This minimized class time spent composing and debugging code. 
Active learning techniques were incorporated to address learn­
ing objectives (Table l) and involved short answer questions 
such as identifying the relevant boundary conditions, testing 
different conditions (e.g., "Xinit" in Table 3, "Pr" in Table 4), 
explaining the role of particular commands (e.g., 

"Cond,max,axis"), and filling in missing fragments of code. 

The value of this example as a computational exercise is 
that it provides the students with working code that can be 
adapted to solve related problems. Consequently, a useful ex­
tension of this in-class exercise would be to design a take-home 
assignment that requires modification of the model (e.g., vary 
Pr to generate Figure 3) or application of the model predictions 
(e.g., apply Eq. 23 to estimate heat flux). 
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TABLE S 
Conversion of Results to 2-Dimensional Solutions with Contour Plots 

% Plot results in dimensional space 
To=l5;, Tw=65; % ambient and wall temp. in degC 
g=980; % gravity constant in cm/ s A2 
b=l / (273+0 . S*(Tw+To)); % average coefficient of expansivity 
nu=0.1692; % kinematic viscosity at film temp. in cm2 / s 
% 
% calculate x and y space 
n=size(Eta,1); 
xx=linspace(0,10,101) '*ones(l,n); 
yy=(Eta*(4*nuA2*xx(:,l) ' / g / b / (Tw-To)) . A0.25) '; 
% 

% calculate temperature in x and y space 
T=To+(Tw-To)*X(:,4) ' ; 
TT=ones(l0l,l)*T; 
figure(3) 
cvals=linspace(16,64,7); 
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[c,h]=contour(yy,xx,TT,cvals, 'k-') ;, clabel(c,h,cvals) 
xlabel('Horizontal position (cm)', 'Fontsize' ,16) 
ylabel('Vertical position (cm)•, 'Fontsize' ,16) 
title('Temperature (\ circC) ', 'Fontsize' ,16) 
axis([0 1.5 0 10]) 
% 

% calculate velocity in x and y space 
W=(4*b*g*(Tw-To)*xx( : ,1)) .A0.5*X(:,2) '; 
figure(4) 
cvals=linspace(S,25,5); 
[c,h]=contour(yy,xx, ,W,cvals, 'k-'); , clabel(c,h,cvals) 
xlabel('Horizontal position (cm)', 'Fontsize' ,16) 
ylabel('Vertical position (cm)', 'Fontsize ' ,16) 
title('Vertical Velocity (cm/ s) ', 'Fontsize' ,16) 
axis ( [ 0 1. 5 0 10 J ) 
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