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C oupling refers to a flux occurring without its primary 
thermodynamic driving force; for example, mass flux 
without a concentration gradient called the thermal 

diffusion is a well-known coupled process. Coupling also 
refers to a flux occurring in a direction opposite to the direc­
tion imposed by its driving force; for example, a mass flux 
can occur from a low to a high concentration region and is 
called the active transport or uphill transport, such as potas­
sium and sodium pumps coupled to chemical energy released 
by the hydrolysis of adenosine triphosphate (ATP) in bio­
logical systems. Although the coupled processes seem to be 
in conflict with the principles of second law of thermody­
namics, interestingly, the second law allows the progress of a 
process against its driving force and hence with a decrease in 
entropy t.S .< 0, but only if it is coupled with another process 

J 
with larger positive entropy change, i.e., .1Sk >> 0, thus pro-
ducing a positive total entropy change (t.Si + t.Sk) > 0. This is 
consistent with the second-law statement that a finite amount 
of organization may be obtained at the expense of a greater 
amount of disorganization in a series of coupled spontaneous 
processes. This can have important implications in describing 
the coupled phenomena and organized structures in complex 
systems, such as biological energy conversion cycles.(1•7J 

Some examples of coupled processes follow. Thermoelec­
tric phenomena have the Seebeck and the Peltier effects; in 
the Seebeck effect, a temperature difference between two junc­
tions of dissimilar metals produces an electromotive force ; 
in the Peltier effect, the two junctions are maintained at the 
same constant temperature, and a current applied through 
the system causes a heat flux from one junction to another. 
The uniform junction temperatures are maintained under a 
steady heat flux _(I J 

In heat and mass transfer, thermal diffusion (Soret effect) 
and the Dufour effect are the coupled transport processes. In 
the Soret effect, a mass flux occurs due to a temperature gra­
dient without a corresponding concentration gradient, while 
in the Dufour effect, a heat flux occurs due to chemical po­
tential gradient, without temperature gradient. Thermal dif­
fusion is a critical separation process for isotope mixtures 
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and is of great interest in oceanographic problems. Another 
well-known coupled process is the Benard instability where 
a critical temperature gradient in a fluid induces a structured 
convection in the forms of cells or rotated flows (left and 
right) and contributes to an effective coupling between hy­
drodynamic and thermal forces.<2J In living systems, the res­
piration system is coupled to the oxidative phosphorylation, 
and ATP is produced.<4,

5.?J The change from a simple to a com­
plex behavior is the order and coherence within a system that 
leads to coupled processes and organized dissipative struc­
tures .<1 ·3J Such structures are not necessarily far from local 
equilibrium and can only be maintained by a constant supply 
of mass and/or energy fluxes. They have long been confined 
only to biological systems, but this is changing and research­
ers from diverse disciplines are studying the occurrences and 
implications of coupled processes.<2-3·13l 

Teaching of coupled processes in a first-year graduate class 
should cover the approximate contents presented in Table 1, 
which also lists some possible textbooks and their present 
coverage. Textbooks for transport phenomena by Bird, et al. ,<8l 

and Deen<9J describe some of the coupled phenomena with­
out the nonequilibrium thermodynamic (NET) theory, while 
the texts for thermodynamics by Kondepudi and Prigogine,<1J 
and Demirel<7J describe some of the coupled transport and 
reaction processes with the postulates and formulations of 
NET. The concept of nonequilibrium systems and the NET 
theory would provide students with the basic fundamentals 
of coupling (see Table 2). This study presents the use of NET 
in teaching various coupled processes from physical and bio­
logical systems in the transport phenomena II graduate course 
at Virginia Tech. 
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NONEQUILIBRIUM SYSTEMS 

Transport and rate processes are open, nonequilibrium, and 
irreversible systems with temperature, concentration, pres­
sure gradients, and affinities . Figure 1 shows a stationary­
state nonequilibrium system with coupled and uncoupled 
fluxes. Although the system is not at global equilibrium, ther­
modynamic properties such as temperature, concentration, 
pressure and internal energy are well-defined in an elemental 
volume surrounding a given point. These volumes are small 
enough that the substance in them can be treated as uniform, 
and yet they contain a sufficient number of molecules so that 
the principles of statistics and the methods of phenomeno­
logical thermodynamics are applicable. Therefore a local equi­
librium in any elemental volume exists, and the thermody­
namic properties are related to the state variables in the same 
manner as in equilibrium.(l ,JOJ Mostly, the internal relaxation 
processes in the fluid or material are much faster than the 
rate of change imposed upon the state variables, and the lo­
cal equilibrium concept is valid for a wide range of transport 
and rate processes of usual fluid systems.c1.7-

9J For example, 

TABLE 1 
Contents and Coverage for 

Coupled Transport and Rate Phenomena 

Bird, Stewart Ko11depudi & 
Co11te11ts & Lightfoo#'I Prigogi11e'11 

Nonequilibrium systems Ch 1.2 
Local equilibrium Ch 24.1 Ch 3.4, 15.1 
Dissipative structures Ch 19 

Nonequilibrium thermodynamics Ch 15 
Balance equations & entropy balance Ch 19.2, 24.1 Ch 15.3 

Dissipation (entropy production) Ch 24.1, B7 Ch 15.2 
Minimum entropy production Ch 17.2 
Identification of fluxes and forces Ch 24.3 Ch 15.5 
Phenomenological equations Ch 16.1 
Phenomenological coefficients Ch 16.1 
Onsager's reciprocal relations Ch 24.1 Ch 16.2 
Curie-Prigogine principle Ch 24. 1 Ch 16.2 
Degree of coupling 

Coupled systems 
Multicomponent diffusion Ch 24.2, 22.9 

Diffusion in electrolyte systems 
Heat and mass transfer Ch 24.2 Ch 16.8 
Thermoelectric phenomena Ch 16.3 
Chemical reactions Ch 16.5 
Electrokinetic phenomena Ch 16.7 
Membrane transport Ch 24.5 
Biological systems Ch 19.3, 19.6 

Second law analysis 
Lost work, exergy loss 
Extended nonequilibrium 
Thermodynamics 
Network thermodynamics 
Mosaic in nonequilibrium 

thermodynamics 
Rational thermodynamics 
Example problems & questions Ch 24 Ch 15, 16 
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Ch I 1.8 
Ch I 1.8 

Ch 11.4 
Ch 11.8 
Ch 11.4 

Ch 11.8 
Ch 11.7 
Ch 11.4 
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the relaxation time for heat conduction for gases at normal 
conditions is 10-12s, and for typical fluids 10-11 -10-13 s.c11 J Lo­
cal equilibrium is not valid in highly rarefied gases where 
collisions are too infrequent, however, and hence the relax­
ation times are much higher. The extension of equilibrium 
thermodynamics to nonequilibrium systems with the local 
equilibrium assumption is possible in terms of entropy s[T(x), 
ni(x)] and energy u[T(x), n/x)] densities, which are a func­
tion of the temperature and species mole number densities at 
location x, when a well-defined local temperature T(x) ex­
ists. Consequently, the total entropy and energy can be ob­
tained from the integrals over the volume of system 

V V 

and using the s(x) and u(x), we obtain the local variables of<2
-
6> 

(as1au)
0

i =IIT(x) and (as/anit=-µ(x)!T(x) 

The level of distance from the global equilibrium may be 
treated as a parameter of a process, and is called the thermo­
dynamic branch as shown in Figure 2.< 1J Near global equilib­
rium, there are linear relations between the driving forces in 
the process and the fluxes that result; examples are Fourier's 
and Fick's laws. Processes occurring far from global equilib­
rium, however, such as most chemical reactions , lead to non­
linear force-flux relations, and in some cases to the sponta-

Figure 1. Nonequilibrium distribution of components in a 
stationary-state coupled system: Flux of species U is coupled 
with the flux of Y through an enzyme in a cell. Species of Y 
do not take part in any chemical reaction. Neither the flux 
of U nor the flux of Y is coupled to the flux of W, however. 

TABLE2 
General Procedure for Teaching Coupled Phenomena with 

Nonequilibrium Thermodynamics Approach 

Slll!.Procedure 

I. Stan with the Gibbs relation in terms of the relevant thermodynamic 
variables 

2. Establish the conservation laws for the variables 

3. Establish an entropy balance equation and derive the rate of entropy 
production or dissipation function to identify a set of conjugate fluxes 
and thermodynamic fo rces 

4. Use these fluxes and forces in linear phenomenological equations 

5. Calculate total fluxes in terms of forces or forces in terms of driving forces 

6. Calculate the transport coefficients using Onsager's reciprocal rules 

7. Calculate the dissipations due to individual processes 

8. Quantify the effects and degree of coupling on transport and rate processes 
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neous formation of self-organized dissipative structures.<I.4•
6> 

NONEQUILIBRIUM THERMODYNAMICS (NET) 

Change of total entropy of a system is 

dS deS d iS 
--=--+--
dVdt dVdt dVdt 

(1) 

where the dS/dV dt is the rate change of total entropy, the 
first term on the right is the entropy exchange through the 
boundary that can be positive, zero, or negative, and the sec­
ond term is the rate of entropy production due to irreversible 
processes within a system, and is always positive. We deter­
mine the volumetric rate of entropy production 

cJ>=(diS/dVdt)=I,JkXk ~0 

or the rate of local dissipation of Gibbs free energy in terms 
of a product of a flux , Jk, and a thermodynamic force, Xk, 

'I-'= I,J kXk = TcJ> ~ 0 

For a multicomponent fluid system with n species and z 
number of chemical reactions, the dissipation function can 
be derived by incorporating the entropy balance into the gen­
eral balance equations of mass, momentum, and energy, and 
the Gibbs relation<1-

10> 

'l'=I,JX=TcJ>= 

T{Juv( ~ J-~!J{Tv(~iJ-Fi]+~ t:(Vv)-~!Air,j}~o 

where 

J
0 

and J; vectors of heat and mass fluxes respectively 
µ,; chemkal potential of species i 
F; force per unit mass of component i 
t viscosity part of stress tensor 
v velocity 

A affinity ( A=-I.viµi) 
v stoichiometric coefficients 
1, reaction flux, which is a scalar. 

(2) 

In Eq. (2), the dissipation function consists of four separate 
contributions of heat transfer, mass transfer, momentum trans­
fer, and chemical reactions (without electrical and magnetic 
effects); their conjugate fluxes and forces are summarized in 
Table 3. The relationship between the heat flux, J, and the 

q 

conduction heat flux, J,1 is 

n_ 

Jq =Ju - I,hJi 
i=I 

where hi is the partial specific enthalpy. 

In the dissipation-phenomenological equation (OPE) ap­
proach,<12> Eq. (2) identifies a set of independent conjugate 
fluxes and forces to be used in the following linear phenom­
enological equations in the form of a conductance formulation 
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) 
m 

Ji= L Lik Xk ( 3) 
k=I 

If the fluxes are easy to determine or relate to measurable 
properties, then the following resistance formulation is pre­
ferred 

m 

Xi=I.Kikh (4) 
k=I 

The phenomenological coefficients, Lik or Kik (i,k = 
1,2, ... ,m) are related to the transport coefficients, such as ther­
mal conductivity, k, and mass diffusivity, D, and can be de­
termined experimentally; Kik = ILl;/ILI, ILi is the determinant 
of the matrix of the coefficients Lik' and 1qk is the minor for 
L;k· According to Onsager's reciprocal relations, the cross co­
efficients are symmetric Lik = Lki; (i:;t:k) for a set of indepen­
dent conjugate fluxes and forces identified by the dissipation 
function or the rate entropy production. Onsager's relations 
are based on microscopic reversibility, and are independent 
of the state of a system or any other microscopic assump­
tions.<1-10> The cross coefficients, Lik' describe the degree of 
coupling, qik' of processes<4•

12> 

w s Thermodynamic branch 

en 

Xs 

Linear region 

Organized 
structures 

Nonlinear region 

Xe X 

Figure 2. Thermodynamic branch indicating the linear and 
nonlinear regions; X shows the force and Xe is the critical 
force or distance from equilibrium state, where no force 
exists. After a critical distance from global equilibrium the 
system may move to an organized structure that needs con­
stant supply of matter and/or energy. 

TABLE3 
Conjugate Fluxes and Forces Identified by the Dissipation 

Function (DPE) Approach1121 

Process Flux Force 

Heat flux Ju = LqXq Xq=TV(+] 

Mass flux J; =L;X; ( µi J X=F-TV -
I I T 

Viscous effect Jv =LvXv Xv=(Vv) 

k 
Reaction velocity J, =L,X, X, =Aj =- I.µ;v ij 

i=l 

where 
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qik ( )1/2 

LiiL kk 
(s) 

which can be determined using the transport coeffi-
cients.c12.1J. 16J 

From Eqs. (2) and (3), the dissipation is expressed by 

m 
'I'= I,L ikxixk ~o 

i,k 
and the matrix form of it shows that the dissipation function 
is quadratic in form 

'I'=XTLX=JTKJ ~ O 

for all forces and fluxes, where XT and ,rr are the transpose of 
the respective vectors. Table 4 shows the four main postu­
lates in the linear NET approach. 

COUPLED TRANSPORT AND RATE 
PROCESSES 

Equation (2) consists of scalars of tensor rank zero 'I' 
0

, 

vectors with tensor rank one 'P 1, and a tensor of rank two 'I' 2 
z 

'I'0 =t(v' •v)-I,1,,iAi ~o (6) 
j=l 

'1'1 = Ju Tv'( ; ) \!/{ Fi - Tv'( ~i ) ] ~ 0 (7) 

'S 
'P2 ='1'1 :(v'v) ~ o (8) 

where 7:(v'v )=7':(v'v )'+t(v'-v) (the double dot product of a 
symmetric and antisymmetric tensor is zero). According to 
the Curie-Prigogine principle, in isotropic macroscopic sys­
tems, a scalar process cannot produce a vectorial change and 
vice versa; for example chemical affinity cannot cause a di­
rected heat flux , and more generally, fluxes and forces whose 
tensorial rank differ by an odd number cannot couple in an 
isotropic medium. Such fluxes can be coupled at the system 
boundaries (which are not isotropic) by the boundary condi-

TABLE4 
Four Main Postulates of the Linear Nonequilibrium 

Thermodynamics (NET) Approach 

• Global form of the flux-force relations is linear, and the propor­
tionality constants in these relations are the phenomenological 
coefficients 

• In an isotropic system, according to the Curie-Prigogine principle, 
no coupling of fluxes and forces occurs if the tensorial order of the 
fluxes and forces differs by an odd number 

• In an isotropic system, any flux is caused by all the forces that 
satisfy the Curie-Prigogine principle, and any force is caused by 
all the fluxes 

• Matrix of the phenomenological coefficients is symmetric 
provided that the conjugate fluxes and forces are identified from a 
dissipation function equation or an entropy production equation 
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tions, however. 

The fluxes and forces in Eq. (2) can be defined in various 
ways, for example, definitions of mass fluxes change with 
the choice of reference velocity. The entropy production re­
mains invariant under certain transformations, however;<1-14J 
for example, for a system in mechanical equilibrium 

I, (ciFi - civ'µ) = 0 

(from the isothermal Gibbs-Duhem equation and mechani­
cal equilibrium equation), and for the transformation 

Ji • Ji +vci 

where ci is the concentration of component i, and vis an arbi­
trary average velocity. Equation (7) can be transformed fur­
ther by introducing the total potential 

µ ; =µ i+ 'l'i 

where 'Vi is the specific potential energy, the isothermal gra­
dient of the total potential v' Tµ i' and the heat flux Jq in the 
following expression 

Tv'( ~i ) -Fi= v'µ, - µi v'TT + v'\j/ i = v'Tµ ; - hi ~T (9) 

where v'l)ii = - Fi. Using Eq. (9) in Eq. (7), we have for n-1 
independent diffusion fluxes 

( 10) 

This procedure eliminates an arbitrary choice of fluxes and 
forces , and ensures that the cross phenomenological coeffi­
cients obey the Onsager's relations for linear phenomeno­
logical laws. 

In the next section, some examples of transport and rate 
processes from physical and biological systems are presented 
to show the utility of NET in teaching coupled processes. 

Heat and Mass Transfer • For a fluid under mechanical 
equilibrium with no chemical reaction, the dissipation func­
tion of heat and independent diffusion fluxes from Eq. (10) 
iso,12.14) 

n-1 [n-l aµk ] l 'P=-Jqv'lnT- I, Jiaik I,l-J v'wj ~o 
ik=I j=I awj ' T,P,Wi;tj 

(11) 

where a.k = o.k + wk/w , and o k is the unit tensor, w. is the 
I I n I J 

mass fraction of species j. In a binary liquid mixture, a set of 
independent forces identified by the dissipation function of 
Eq. (l l) for heat and mass fluxes is Xq = -v'lnT and X1 = 
-(1/wz)(oµ/ow 1\ r v'w1, respectively. Then the linear phe­
nomenological equations are 

l (aµ, J -Jq = Lqq v' In T + Lq1 - -a v'w, 
W 2 W1 T,P 

(12) 
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-Jq = L1q \7 In T + L11 -
1
-( clµ, J \7w 1 

Wz clw1 T,P 
(13) 

Here, by the Onsager reciprocal relations, L
1
q = Lq1• From 

Eq. (12), heat flux due to primary coefficient L is expressed qq 
by Jq =-Lqq\7lnT=-LqqT\7(1!T) ; after comparing with 
Fourier 's law Jq = -k\7T , the L is related to the thermal qq 
conductivity k:L = kT. When no volume change occurs due qq 
to the diffusion flows (no volume flow) , the mass flux JI is: 

J, = -L11 ( l + v,c, I VzCz )(aµ, I oc, )vc, 

where ci and Vi are the concentration and partial molar vol­
ume of component i, respectively; comparing it with Fick's 
law, J

1 
=-D 

1 
\7c

1
, the L

11 
is related to the diffusion coefficient 

of component 1 D I: L11 = D1[(1 + Vic, /V2c2)(0µ1 /clc,)r . 

The heat of transport Q
1 
of species 1 is defined by Q1 = L 1/ 

L
11

; it is the heat carried by a unit flux of species 1 when 
there is no temperature gradient and no diffusion of other 
species and can be measured experimentally.<15i Equations (12) 
and (13) can be expressed in terms of heat of transport Q

1 

and the transport coefficients<1,
12> 

- Jq =k\7T+pD1Q1\7w, (14) 

(15) 
where DT.i is the thermal diffusion coefficient for species 1 
and p is the density. The second term on the right side of Eq. 
(14) shows the Soret effect, also known as thermal diffusion, 
while the first term on the right side of Eq. (15) shows the 
Dufour effect. Comparing Eqs. (13) and (15) with vanishing 
concentration gradients yields L

1 
= pDT 

1
.The degree of cou-

q , 

piing can be expressed in terms of Q
1 
and the other transport 

coefficients from Eq. (5) <13i 

( 
\l/2 

q=Q, pDM 1M 2w1w2 I l kMavRT 2(l+r, 1)) 
(16) 

where Mi and Mav show the molecular mass of species i 
and mixture , respectively, R is the gas constant, and 
f'11 = (a ln y 1 / cl In x1 )T P is called the thermodynamic factor, 
and can be determined' from experimental data or an activity 
coefficient, -y, model. As heat and mass fluxes are both vec­
tors , the sign of q indicates the direction of fluxes of a spe­
cies; if q > 0, the flow of a species may drag another species 
in the same direction, while the flux may push the other spe­
cies in the opposite direction if q < o .<1

-
12i Using Eqs. (14) to 

(16), effects of concentration and temperature on the coupled 
heat and mass fluxes in liquid mixtures can be studied .<7, ,3l 

Membrane Transport • The dissipation equation for an 
isothermal, nonelectrolyte transport in an ideal binary sys­
tem of solute (s) and water (w) through a membrane is<14

,
16

> 

(17) 
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Equation (17) leads to the following general forms of the 
fluxes 

(18) 

I w = - L wsL'.µ s - Lww L'.µ w (19) 

where the forces ~µ,,, ~µ, w are the differences of chemical 
potentials, and J, and Jw are the fluxes for the solute and wa­
ter across the membrane, respectively. It is customary to re­
place ~µ, with more easily measurable quantities, such as 
L'.µi = vilP+RTL'.lnci = ViL'.P+RTL'.c/c , and Eq. (17) be­
comes 

'P = -Js(°V5L'.P +L'.IT /c 5 )- I w(vwL'.P-L'.IT /cw) 2'. 0 (20) 
where Vs and V w are the partial volumes, c, and cw are the 
concentrations of solute and water, respectively, ~II is the 
osmotic pressure difference ~II = RTL'.c, Equation (20) is 
further transformed by defining the total volume flux Jv across 
the membrane as J v = J w V w + J s Vs, and the flux of the sol­
ute Jd relative to the water Jd =J/c, - Jjcw 

'P= - JvL'.P-JctL'.IT 2'. 0 (21) 
With the forces of Af> and ~II identified by Eq. (21), the 

commonly used phenomenological equations that describe 
the transport through a membrane are 

J V = -LPL'.P - LpctL'.IT 

Jct = -LctpL'.P - LctL'.IT 

(22) 
(23) 

With Onsager's relations, Lpd = Ldp' the transport through 
the membrane can be described by the three coefficients in­
stead of four. The coefficient L is the mechanical coefficient 

p 

of filtration, the Ld has the characteristics of a diffusion coef-
ficient, the cross coefficient Ldp is the ultrafiltration coeffi­
cient, and Lpd is the coefficient of osmotic flux . The ratio -
Lpd/Lp is called the reflection coefficient a , which is always 
smaller than unity. With these coefficients, the degree of cou­
pling is obtained from q = Ld/(LPLl12

• 

Transport in Ion-Exchange Membrane • For the diffu­
sion of a single electrolyte and water in an ion-exchange mem­
brane, the dissipation due to the fluxes of ions (1 and 2) from 
a neutral salt and water across the boundary is<14•16l 

q, = -J,L'.µ1 -J zL'.µ z - JwL'.µ w 2'. 0 (24) 
where µi is the electrochemical potential of ion i, and ex­

pressed by µi=µi+z iFE; here zi is the charge and Fis the 
Faraday constant. For a pair of electrodes interacting revers­
ibly with one of the ions in the solution, the electromotive 
force M can be related to the electrochemical potential dif-

ference of the ith ion L'.E=L'.µi /ziF. By assuming that the ion 
2 reacts reversibly with the electrode, and since ion 1 is not 
produced or consumed, then the flux of ion 1 is the flux of 
salt, and given by J, = J/v

1
, where v, is the number of ions 

decomposed per molecule of salt , which obeys the 
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electroneutrality condition v 

1
z

1 
+ v

2
z

2 
= 0. With the electric 

current flux I= F(J 
1
z

1 
+ J

2
z), Eq. (24) becomes 

(25) 
It may be advantageous for certain cases to transform Eq. 

(25) further by using the volume flux J, instea~of water flux 
Jw, and by introducing the relationships ~µ s = VsflP + LlTT / cs 
for a nonelectrolyte solute and Llµ w = V w ( LlP - LlIT s) into 

'I' = -J v ( LlP - LlIT s) - J sfln s / Cs - ItlE ;;:, 0 ( 26) 

The related phenomenological equations are then 

J v = -L vv (LlP- LlIT s)- LvsflIT s / Cs - LveflE (27) 
J s = -L sv (LlP - LlIT s)- LssflTT s / cs - LseflE (28) 
I= -Lev(M - LlIT s)- LesflIT s I cs - LeellE (29) 

In Eqs. (27) to (20) six coefficients characterize the mem­
brane transport due to Onsager's relations. The coefficients 
can be determined by measuring conductivity of the mem­
brane, transport numbers, and the fluxes due to electro-os­
motic, osmotic, diffusional, and pressure. 

The thermodynamic efficiency of energy conversion 'Tl can 
be defined as 

T] = (- J;!~s J+(-Jw!w J (30) 

where ~ represents the driving process, and J ,1'.µ, and J wfl.µ w 
are the driven processes. The degrees of coupling are the ion­
water q,w' ion-current qse, and water-current qwe' which are 

Lwe 

( 31) 

Oxidative Phosphorylation (OP) • Experiments and 
empirical analyses of cellular processes show that linear re­
lations exist between the rate of respiration and growth rate 
in many organisms, and for some of the steps in OP.<5-6·' 6l In 
mitochondria, the respiration system is coupled to the OP, 
and the electrochemical potential gradient of protons across 
the inner membrane drives the synthesis of ATP from ad­
enosine diphosphate (ADP) and phosphate (Pi). The theory 
of NET has been used to describe the thermodynamic cou­
pling, and how the mitochondria can control the efficiency 
of OP by maximizing ATP production, the cellular phosphate 
potential, or the cost of ATP production. <5-6l For this coupled 
system a representative dissipation expression is 

'I'= J0X0 +JPXP;;:, O (32) 
where the input force X

0 
is the redox potential of oxidizable 

substrates, and X is the output force representing the phos­
phate potential , XP = - [ LlG ~ + RT In( c ATP / c ADPcPi )1. which 
drives the ATP utilizing functions in the cell; the 1'.G0 is the 
standard Gibbs free energy. The associated input flux \ is 
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the net oxygen consumption, and the out flux JP is the net rate 
of ATP production. 

Based on Eq. (32), the linear phenomenological relations are 

J P =L pXo +L poXp 

J 0 =L 0 PX 0 +LPXP 

(33) 
(34) 

Here, L
0 

is the influence of substrate availability on oxy­
gen consumption rate and L is the feedback of the phosphate 

p 

potential on ATP production rate. The cross-coupling coeffi-
cient L

0
P is the phosphate influence on oxygen flux , while Lpo 

shows the substrate dependency of ATP production. Experi­
ments shows that Onsager 's reciprocal relations hold for OP, 
and L = L _<5> op po 

Thermodynamic efficiency of the coupled systems of res­
piration (driving, 'I'>> 0) and OP (driven, 'I'< 0) is defined 
as the ratio of output power ('I' = J X ) to the input power 
('I' = J X ) <4.6> P P P 

0 0 0 

JPXP 
T]=--- (35) 

J OXO 

By dividing Eq. (33) by Eq. (34), and by further dividing the 
numerator and denomerator by XaCL

0
L/ '2. we obtain the effi­

ciency in terms of the force ratio x and the degree coupling q 

where 

. X +q 
T]= JX = ---­

q + 1/x 
(36) 

j=~. x= XPZ , Z= ( ~ l)u
2 

and q Lop with O<lql<l 
JoZ Xo Lo (L oLpt2 

The ratio J /1
0 

is the conventional phosphate-to-oxygen con­
sumption ratio P/O, the term Z is called the phenomenologi­
cal stoichiometry. For the biphasic function in Eq. (36), opti­
mal thermodynamic efficiency 'Tlop, is the function of q only, 
as shown in Figure 3. 

( y 

l q j llopt = 
I+~ 

(37) 

The sequence of coupling is controlled at switch points 
where the mobility, specificity, and the catalysis of the cou­
pling protein are altered in some specific ways, such as shifted 
equilibrium. Equations (32) to (37) offer a phenomenologi­
cal description of respiration and oxidative phosphorylation, 
and the NET approach does not require a detailed mecha­
nism of the coupling. 

Chemical Reactions • NET theory provides a linear re­
lation between the rate of reaction 1, and the affinity A of 

reaction ( A=-I, v iµi , where the v; are the stoichiometic co­

efficients, which are positive for products and negative for 
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reactants) when IAI <RT~ 2-6 kJ/mol. Obviously, in the com­
mon temperature interval of 200-1000 K this constraint is 
very restrictive for chemical reactions. The use of internal 
coordinate space in chemical reactions systems extends the 
range of applicability of NET, however, and yields nonlinear 
(generally with respect to its process probability density) and 
linear Fokker-Planck equations to describe nonequilibrium 
processes in internal coordinate space with NET theory's con­
ventional rules.< 14> The multivariate Fokker-Planck equation has 
a phenomenological parameter called the mobility matrix that 
relates forces to fluxes and can be derived from kinetic trans­
port theory; the equations can describe the evolution of hydro­
dynamic fluctuations in irreversible systems, as well as the 
Brownian motion of particles under nonuniform temperatures .<14> 

For enzyme-catalyzed and some chemical reactions, under 
certain boundary conditions, force-flux relationships can be 
described by a simple hyperbolic-tangent function such as 
the Michaelis-Menten kinetics, which can be approximated 
as linear in some regions . Therefore, at very high positive 
and negative values of the affinity, reaction flux is almost 
independent of affinity, and there exists a quasilinear region 
in between, which extends over an ~ 7 kJ/mol .< 14> 

For an elementary chemical reaction the flux J, is<1> 

(38) 

where the affinity A is expressed in terms of forward rr and 
backward rb reaction rates A= RT ln(r/rb) as well as in terms 
of chemical potential. Close to thermodynamic equilibrium, 
where A/RT<< I, we can expand Eq. (38) as J, = rr.e/AIRT), 
and compare with the linear reaction flux 

Jri = -I, LijAj 
i,j 

to obtain the phenomenological coefficient as L = rr /(RT). 
IJ ,eq 

Consider a fluid film having a first order irreversible reac­
tion B ~ P; the evolution equations for heat conduction 
and diffusion with reaction under nonisothermal conditions are 

(39) 

(40) 

( 41) 

where r
8 

= -kc
8

, and c
8 

and cP are the concentrations of spe­
cies ofB and P, with the linear phenomenological laws for J8 , 

JP, and\, Eqs. (39) to (41) become03> 

ocs ( ) at= -\7 · pDss v'ws + pDsp v'wp + pDTB \7 ln T + rs 

dCp ( ) at=-\7· pDpsv'ws+pDpp\i'wp+pDTP\i'lnT -rs 
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(42) 

(43) 

) 

-\7 -[p(DssQ~ +DpsQ; )Vws +p(DspQ~ +DppQ; )Vwp+kv'T] 

+(-~Hr )rs 
( 44) 

where L1H, is the heat of reaction. Eqs. (42) to (44) are the 
modeling equations that take into account the coupling be­
tween the two diffusion fluxes of the species B, P, and the 
heat flux with a set of suitable boundary and initial condi­
tions. No couplings occur between the scalar reaction flux 
and the vectorial transport fluxes assuming that the medium 
is isotropic according to Curie-Prigogine principle. 

EXTENDED NONEQUILIBRIUM 
THERMODYNAMICS (ENET) 

ENET uses the evolution equations for the conserved vari­
ables and therefore it can describe a larger class of phenom­
ena. The resulting equations lead to nonlinear and non-Fickian 
mass diffusion, and can describe diffusion in polymers, in 
which the viscous stress and diffusion are coupled. The in­
troduction of the concept of internal degrees of freedom into 
NET extends its range to describe a wider class of 
nonequilibrium processes, and also leads to Fokker-Planck 
equations; fluctuations of thermodynamic variables are con­
sidered as internal degrees of freedom, and therefore the fluc­
tuation theory is integrated into NET. This approach introduces 
the distribution function in the space of fluctuating thermody­
namic variables and the Gibbs' entropy postulate, and deals with 
very slow changes compared to the microscopic time scale. 
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Figure 3. Change of efficiencies in terms of flux ratios and 
degree of couplings; for a maximal net rate of ATP flux at 
optimal efficiency: q

1
= 0.786,for an economic net ATP flux 

(JPT/}op/ qt "'. ~.953, JOI' a maximal output power (JPX )opt at 
optimal eff1c1ency : qP = 0.910, and for an economic net 
output power (J X 71} : q •c = 0.972.fHI p p opt p 
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CONCLUSIONS 

Coupled transport and rate processes are important part of 
some natural and complex phenomena. Partial differential 
equations obtained from the NET theory can provide a uni­
fied approach to describe coupled phenomena and organized 
structures and other processes in physical, chemical, and bio­
logical systems. Therefore, the NET formulations within a 
suitable graduate transport phenomena textbook may be use­
ful to teach coupled transport and rate processes. 

NOMENCLATURE 
A affinity (J mo(·') 
c concentration (mol m·3), 

D diffusion coefficient (m2 s·') 
DT thermal diffusion coefficient 
E electric potential (V) 
F Faraday constant 
F force per unit mass (kg m s·2 kg·') 
G Gibbs ' free energy (J) 

h partial specific enthalpy (J mo(·') 
h enthalpy (J) 

H, heat of reaction (J mo)·') 
I current flux 
j ratio of fluxes 

\ heat flux (J m·2 s·') 
J, mass flux for component i (kg m·2 s·') 
J, reaction velocity (flux) 
k thermal conductivity (J m's·'K), reaction rate constant (s·'), 

K,i phenomenological coefficient (resistance form), Eq. (4) 
L

1
i phenomenological coefficient (conductance form), Eq. (3) 

m number of fluxes 
M molarmass 
n number of components 

N, number of moles 
P pressure (Pa) 
q degree of coupling, Eq. (5) 

Q* heat of reaction 
r reaction rate (mo! s·') 

R universal gas constant (J mo)·'K') 
s entropy density (J K-1m·3) 

S entropy (J mol·'K') 
t time (s) 

T temperature (K) 
u energy density (J m·3) 

U internal energy (J) 
v velocity (m s·1) 

V volume (m3
) 

V partial molar volume (m3) 

w mass fraction 
x ratio of forces, distance 
X thermodynamic driving force 
z charge (C) 

Z phenomenological stoichiometry 
Greek Letters 

<I> entropy production rate (J K·' s·') 
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r thermodynamic factor 
6 unit tensor 
-y activity coefficient 
1) efficiency 
µ chemical potential (J moI·') 
v stoichiometric coefficients 

II osmotic pressure (kPa) 
p density (kg m·3) 

-r viscosity part of stress tensor (kg m·' s·2) 

lj, potential energy (J) 
'I' dissipation function (J s·') 

Subscripts 
b,f backward and forward respectively 
eq equilibrium 

i,j,k components 
0 oxygen 

opt optimum 
p phosphate 
q heat 
s solvent 

w water 
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