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When similarity solutions to partial differential equa­
tions are introduced in the classroom, the intro­
duction of similarity variables and the approach 

to self-similar problems often appears to be something of a 
"dark art." This paper provides an example to show how 
proper dimensional analysis can be used to demonstrate the 
existence of self-similar behavior. The procedure is as fol­
lows: 

1. State the governing equations and boundary condi­
tions . 

2. Rearrange any variables that can be combined in 
additive or multiplicative groups to simplify the 
governing equations and boundary conditions. 
Simplifications that should always be performed if 
possible include: rearranging the governing equa­
tions so one term has no coefficients, translating the 
independent variables so inner boundary conditions 
are at zero, setting all but one of the boundary and 
initial conditions to zero by translation of the 
dependent variable, and cross-multiplying the 
boundary conditions so that they equal dimension­
less constants (e.g., 0, ±1 , or ±oo).'L11 

3. Write the dimensional-variable space of the problem 
as a system of inequalities. Include dimensional 
independent variables, dependent variables, and 
system parameters that remain after performing step 
two. State all lower and upper bounds of these 
quantities. This bookkeeping measure concisely 

* /11 linear Dirichlet problems, the dependent variable should sometimes 
be made dimensionless at this point in the procedure. An example is the 
solution to the Navier-Stokes equation for impulsive motion of a fla t 
plate i11 a semi-infinite medium (also known as Stokes' fi rst problem, 
posed in Reference 1 ). 

summarizes all variables and their possible values. 
In addition, it clearly shows variables that can be 
removed, or bounds that can be relaxed, during 
asymptotic analysis. 

4. Compose a dimensional matrix for the dimensional­
variable space. Determine the rank of this matrix. 
Subtract the rank from the total number of variable 
groups. If dimensionless groups arose during 
rearrangement in step two, add one for each. The 
result is the number of dimensionless degrees of 
freedom involved in the problem. 

5. If the number of dimensionless degrees of freedom 
is two, a similarity solution exists. If the degrees of 
freedom can be reduced to two by taking upper (or 
lower) bounds of the independent variables to 

John Newman joined the Chemical Engineer­
ing faculty at the University of California, Ber­
keley, in 1963, and has been a faculty senior 
scientist at Lawrence Berkeley National Labo­
ratory since 1978. His research involves mod­
eling of electrochemical systems, including in­
dustrial reactors, fuel cells and batteries, and 
investigation of transport phenomena through 
simulation and experiment. 

Charles Monroe recently completed his gradu­
ate study at the University of California, where 
he investigated dendrite formation in lithium/poly­
mer batteries with Dr. Newman. He earned a 
BS from Princeton University in 1999, received 
the 2002 Dow Award for Excellence in Teach­
ing, and was granted a doctoral fellowship for 
2003 by the Shell Foundation. Recently, he 
joined the Department of Chemistry at Imperial 
College, London, as a Research Associate. 

© Copyright ChE Division of ASEE 2005 

42 Chemical Engineering Education 



This paper provides an example to show how proper 
dimensional analysis can be used to demonstrate the existence 

of self-similar behavior. 

infinity (or negative infinity), a similarity solution 
describes this asymptotic regime. 

We illustrate these steps below with the classic problem of 
transient constant-flux heat transfer to a stagnant one-dimen­
sional medium between a conductive inner wall and an insu­
lated outer wall. 

The earliest experiment under the conditions analyzed here 
is credited to F. E. Neumann, who performed experiments to 
measure the thermal conductivity of solids . In 1862 he lec­
tured in Paris, proposing mathematics to describe bars heated 
electrically at one end. 121 He used the heat equation (with a 
superfluous generation term) to obtain an expression for ther­
mal conductivity under conditions of constant flux; for cubic 
bodies of low conductivity, he derived another expression to 
show that temperature rises with the square root of time. 
Preston 's Theory of Heat references similar experiments by 
0 . J. Lodge (1879), and gives another incorrect mathemati­
cal treatment. 13·41 The finite problem was developed accurate! y 
by Carslaw,151 and several avenues for solution of finite and 

Conductive wall 
q, = - kaT/ch 

Insulating wall 
q, = 0 

Figure 1. Experimental geometry for the heat-transfer 
problem. 

* To imagine a more concrete experiment, think of the wall at x = 0 as a 
metal block, which has high thermal conductivity, and the wall at x = L 
as a piece of low-density foam, both of which are impenneable to and 
insoluble in the thennally conductive medium between. Assume the me­
dium is water, which is isotropic, has low viscosity, and is of intermedi­
ate conductivity. An electric heater rnpplies constant power to the metal. 
The system can be oriented with respect to gravity to suppress the effect 
of f ree convection. 
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semi-infinite cases were proposed by Carslaw and Jaeger,161 

who were the first of these authors to mention a possible so­
lution by integrated error function complement. The similar­
ity solution was introduced as an exercise in the textbook by 
Bird, Stewart, and Lightfoot.Pl 

Figure 1 shows a one-dimensional rectilinear region with 
spatially uniform initial temperature T

0 
and walls at x = 0 

and L. At time t = 0, a uniform and constant heat flux q, 
(which may be positive or negative) is applied in the positive 
x-direction at the conductive boundary x = O; the boundary at 
x =Lis well-insulated.· We assume experimental conditions 
with adiabatic walls parallel to the heat flux, effectively con­
stant and isotropic transport properties, and no homogeneous 
heat generation. 

Three solutions, valid at long times (Eq. 18), intermediate 
times (Eq. 19), and short times (Eq. 20) are presented here. 
Dimensional considerations are then used to realize a fourth 
self-similar solution (Eq. 29), which describes asymptotic be­
havior in a semi-infinite medium or a medium observed at 
very short times . 

STATEMENT OF GOVERNING EQUATIONS: 
INITIAL AND BOUNDARY CONDITIONS 

We begin by writing the governing equations and bound­
ary conditions. The transient one-dimensional rectilinear heat 
equation applies in this case 

c aT = k a
2
T 

P P at ax 2 (l) 

where pis density of the medium, CP is its specific heat ca­
pacity at constant pressure, and k is its thermal conductivity. 
Appropriate initial and boundary conditions are 

T(O, x) = T0 

-k dTI - q 
dX (t;?O,O} - x 

dTI -0 
dx (t,L} 

(2) 

(3) 

(4) 

We seek mathematical solutions to Eq. (1) satisfying condi­
tions 2 through 4 that are easily calculated at all experimen­
tal time scales. 

As a first approach to simplification, we apply the second 
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step of our procedure, which results in this restatement: 

a(T-To) k a2(T-To) 
at pep ax 2 

T(O,x)-T0 =0 

~ a(T-To)I =-I 
q ax 

X (t<!O,O) 

a(T-To)I = o 
ax 

(t ,L) 

(5) 

(6) 

(7) 

(8) 

The initial condition is now zero, and the governing equation 
and boundary condition 3 have been rearranged. It is appar­
ent here that T

0 
appears only in an additive combination with 

T, and that CP and qx occur only in multiplicative combina­
tion with k. 

STEADY STATE 
FOURIER-SERIES SOLUTION: 
LARGE-S LAPLACE-TRANSFORM SOLUTION 

We now implement step three of the procedure. The di­
mensional-variable space of a problem summarizes the do­
mains of remaining dimensional independent variables, the 
ranges of dimensional dependent variables and system pa­
rameters, and all known bounds of these quantities. While 
not essential, this step is a useful tool to help clarify one's 
thinking before approaching the differential equation. The 
dimensional-variable space of the problem stated in Eqs. (5) 
through (8) is 

independent variables 

dependent variable 

parameters 

{
o ~ t < 00 

O~x~L 

{-oo~T(t,x)-T0 < 00 (9) 

l
o~~< 00 

pep 

k 
-00<-<00 

qx 

Inequalities 9 reflect that physical values of the properties 
pc\ and k are positive. The flux q, and temperature differ­
ence T - T

0 
may take positive or negative values, because 

heat can be added to or taken from the system, resulting in an 
increase or decrease of temperature. The distance L between 
walls has been included as the upper bound of x. 

Step four is to apply the "Buckingham pi theorem" (the 
rigorous development of which may be more appropriately 
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attributed to Bridgman, and the linear algebraic formulation 
of which owes to Langhaar) to these groups of variables. '8•

9
•
10

• 
11 I 

The dimensional matrix is 

X T-T
0 

kip<:\ k/q, L 

0 0 -1 0 

!] 1 0 2 (10) 
0 0 -1 

Matrix 10 is created by putting relevant fundamental SI units 
to the left of the rows and elements of the dimensional-vari­
able space above the columns. The powers to which units are 
raised in each variable determine the values of the matrix 
elements. 

There are 6 groups of variables, and the rank of the di­
mensional matrix is 3; therefore, by the pi theorem, the prob­
lem can be phrased in a dimensionless-variable space with 
three degrees of freedom . If a two-dimensional boundary­
value problem with three dimensionless degrees of freedom 
is separable and has a closed domain in one independent vari­
able, it can usually be reduced to a Sturm-Liouville system 
in the closed domain if asymptotic behavior is subtracted from 
the initial condition. Although our goal here is to illustrate 
self-similarity, the Fourier-series solution and a Laplace-trans-

0.3 

0.2 

~ 0.1 ' 
I 

© 

0.0 

-0.1 

---- ln(-c) = - 10 
ln('t) = -8 

- - ln('t) = -6 
- - - ln(-c) = -4 
--- --- ln(-c) = -2 
........... ln(-c) = 0 

- - = steady-state 

-0.2 ....._ _ _ _._ __ __,,._ _ _ __..___ __ ....__ _ _ _. 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 2. Plot of the long-time solution given by Eq. 18 and 
the transient Fourier-series solution given by Eq. 19. 
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form solution more useful at short times are shown now. The 
Fourier series results from the standard approach to separable 
partial differential equations; the next section will reveal that 
the Laplace-transform solution relates fundamentally to the 
result by simj)arity transformation . 

At this point, the three dimensionless variables can be se­
lected by trial and error, with two dimensionless degrees of 
freedom allotted to the independent variables and one to the 
dependent variable. A more physically sound route to a natu­
ral set of dimensionless variables is provided by an overall 
energy balance around the slab, 

- tfq ·dS = f pCP (T - T0 )dV (11) 
S V 

Upon simplification of the integrals, multiplication of both 
sides by k, and some rearrangement, thi s energy balance re­
duces to the simple form 

I 

1: = J 0ds (12) 
0 

In Eq. (12) 

kt 1:=---
pCPL2 

s = !.. 
L 

(13) 

which assigns the appropriate number of degrees of freedom 
to the independent variables and the dependent variable. Sub­
stituting these variables into the governing equation and 
boundary conditions, we find 

ae a20 (14) a1: as2 

0(O,s)=O (15) 

a01 ~ {, ~o,o) = -I (I 6) 

a01 
as (, ,1) 

-0 (17) 

Note that® is always positive because the heat flux no longer 
appears as a parameter. 

A first step in the analysis of a transient partial differential 
equation is to obtain a solution valid at long times .* Usually, 
long-time solutions are obtained by discarding the terms con­
taining time derivatives, but because thj s problem involves 

constant flux of heat, and therefore a constant increase or 
decrease in system energy, the time derivative of the dimen­
sionless temperature approaches a nonzero value at long times. 
To obtain long-time behavior when a system accumulates or 
loses energy, the condition 

ael = t (s) a1: ,-.~ 
should be employed. The solution that satisfies conditions 
16 and 17 when t • oo is then 

(18) 

where the factor of 1/3 is included so that 0 00 satisfies the 
dimensionless energy balance given in Eq. (12) . The Fou­
rier-series solution valid at all times is 

(19) 

Equations (18) and (19) are plotted in Figure 2. 

The rate of convergence of the Fourier series in Eq. (19) 
slows as 1: • O. A series that converges much more rapidly is 
obtained as follows. Take the Laplace transform of the prob­
lem with respect to time. A large-s expansion of this result 
can be obtained by Maclaurin exRansion of the transformed 
problem with respect to exp(-✓s J. Term-by-term inversion 
of thjs series by comparison with a table of Laplace trans­
forms11 21 gives an alternative to Eq. (19) 

which converges rapidly at small values of,. and is plotted 
in Figure 3 (next page). The integrated error function comple­
ments included in Eq. (20) are defined as the functions which 
solve the differential equation 

d2y dy 
- 2 +2z--2ny = 0 
dz dz 

n = -1, 0, 1, 2, ... (21a) 

when n is equal to unity. 

Ordinary differential Eq. (21a) is satisfied by functions of 
the form1'31 

y = Ai nerfc(z) + Bi nerfc(-z) 

where 

* Taking the long-time f onn of a transient equation to obtain an ordinary equation exemplifies a basic type of astymptotic analysis: an independent variable 
(t) can be removed from the variable space by assuming it takes a large value ( t • 00 ). The governing equations and boundary conditions must then be 
rephrased to reflect insensitivity to this variable (accumulation becomes a f unction ofx only). We applied this type of asymptotic simplification implicitly 
when reducing the problem to one spatial dimension. 

Winter 2005 45 



2 00 

i0erfc(z) = ✓rr, J exp(-z2 )ctz = erfc(z) 
z 

i "erfc( z) = - ~ i n-Ierfc(z) + _!_ i n- 2erfc(z) 
n 2n 

(21b) 

Solutions to Eqs. (14) through (17) given by Eqs. (19) and 
(20) are identical. Fewer terms of Eq. ( 19) are required for 
accuracy at long times, and fewer of Eq. (20) are needed at 
short times. 

SELF-SIMILARITY IN AN 
ASYMPTOTIC REGIME 

Previously, we used L to scale position x and time t. Step 
5 of the procedure outlined in the first section of this paper 
yields an asymptotic result for small -r. Physically, the condi­
tion that -r << 1 corresponds to systems where the length scale 
or volumetric heat capacity is large, or the thermal conduc­
tivity or time is small; the dimensionless energy balance given 
by Eq. (12) further shows that when -r is small, the di­
mensionless energy put into the system is also . 

Under any circumstances where -r << 1, L may be 
considered to approach infinity, the domain of x be­
comes open, the number of columns in the dimensional 
matrix reduces by one, and the degrees of freedom re­
duce to two. Parabolic problems that afford two dimen­
sionless degrees of freedom can be solved by grouping 
the independent variables together in a single similar­
ity variable . This condition is called complete similar­
ity, or self-similarity of the first kind. 11 41 

We choose two dimensionless variables, making sure 
both independent variables are contained in one of them 
and the dependent variable is in the other: 

(22) 
© 

We introduced constants 13
1 

and 13
2 

into relations (22); par­
ticular values for them can be selected later to simplify solu­
tion of the resultant ordinary differential equation and put 
results in a standard form . 

Talcing L -+ oo in Eqs. (5) through (8) and then inserting 
relations (22) give 

d28 I d8 I 
O= dri 2 + 2~f l'ldri - 2 ~f 

8 

8( 00) = 0 

:~111 =0 = - ~,~ 2 

d81 = 0 
dri ,1-+ oo 

(23) 

(24) 

(25) 

(26) 

Boundary condition (26) limits the asymptotic behavior of 
the solution at large x, and is not as strict as Eq. (8), which 
restricts the solution at a particular x. Substitution of 'Tl into 
Eqs. (5) through (8) as L approaches infinity to yield Eqs. 
(23) to (26) represents a similarity transformation . 

0.7 ,--------,-----r----..--- - --,----, 

0.6 

1' 

0.5 '' 
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\ 
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\ 
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\ 

' ' 

\ 

' ' ' ' ' ' 

.... 

' ' 

·········· · ln('t ) = -10 
······ ln('t) = -8 
- ·- ·-· ln('t) = -6 
- · - ln(-c) = -4 
- - ln('t) = -2 
-- ln('t) = 0 

.... .... 

- - -
0.0 ...,_-'----=------'--=-=~ - -'---

0.0 0.2 0.4 0.6 0.8 1.0 

Here, the similarity variable 'TJ and dependent vari­
able 0 have been chosen because they are relatively 
simple forms. To put x in the numerator of 'Tl simplifies 
back-substitution, because second derivatives of 'Tl with 
respect to position are then zero. There is only one de­
rivative with respect to time in the governing equations 
and boundary conditions and there are two with respect 
to x, which suggests choosing a 0 that omits x, if pos­
sible. It should be noted that an ordinary differential 
equation will result for any choice of dimensionless 
similarity variable, as long as it excludes the depen­
dent variable and contains both independent variables. 

Figure 3. Graph of the integrated error-function-complement 
series solution, Eq. (20). 
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Note that introduction of the similarity variable has re­
duced governing Eq. (5) to an equation of second order. In 
problems that are amenable to similarity transformation, two 
of the boundary conditions should collapse to a single condi­
tion. Either boundary condition (24) or (26) can be di scarded 
on the basis that it is superfluous-a solution that satisfies 
governing Eq. (23) and one ofEqs. (24) or (26) must satisfy 
the other. 

If [3
1 

is chosen to be 1/2, then Eq. (23) matches Eq. (21a) 
with n = 1. Boundary condition (25) takes its simplest form 
when 

{27) 

To satisfy Eq. (27), we choose [3
2 

= 2. The dimensionless 
similarity variables are 

17 = ~ ✓ pCP and 
2 kt 

{28) 

A solution to Eqs. (5) through (8) when L - oo is given by 

0( 11) = ierfc( 11) {29) 

Equation 29 is plotted in Figure 4. Because 

0=~ 2-,;. 
this solution matches the first term of series 20 when reflec­
tions from the far wall are neglected. As an exercise, the stu­
dent can take the limit of series (20) when dimensionless time 
approaches zero to retrieve the similarity solution. 

0.6 

0.5 

0.4 

<D 0.3 

0.2 

0.1 

0.0 
0.0 0.5 1.0 1.5 2.0 

Figure 4. Th e similarity solution yielded by Eq. (29). 
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CONCLUSION 

A methodology has been proposed that allows stepwise 
determination of self-similar solutions of the first kind by 
dimensional and asymptotic analysis. The five-step proce­
dure is given in section 1, and is illustrated by the problem of 
transient constant-flux heat transfer to a stagnant medium with 
an insulated far wall in the remaining sections. Our approach 
illustrates how simplifying governing equations and bound­
ary conditions according to certain rules and writing a di­
mensional matrix at the outset of a problem can effectively 
guide its solution. 

A procedure to obtain self-similar solutions of the second 
kind, where the similarity variable can be used but more than 
two dimensionless degrees of freedom are present, will be 
addressed in future work. An example of a self-similar prob­
lem of the second kind is the transient mass transfer of a sol­
ute from a sphere at constant concentration into a stagnant 
medium in which the solute is homogeneously consumed with 
first-order kinetics. 
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