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The object of this column is to enhance our readers' collections of interesting and novel prob­
lems in chemical engineering. Problems of the type that can be used to motivate the student by 
presenting a particular principle in class, or in a new light, or that can be assigned as a novel home 
problem, are requested, as well as those that are more traditional in nature and that elucidate dif­
ficult concepts. Manuscripts should not exceed 14 double-spaced pages and should be accompanied 
by the originals of any figures or photographs. Please submit them to Professor James 0 . Wilkes 
(e-mail: wilkes@umich.edu), Chemjcal Engineering Department, University of Michigan, Ann 
Arbor, MI 48109-2136. 
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High-performance computers coupled with highly ef­
ficient numerical schemes and user-friendly software 
packages have helped instructors teach numerical 

solutions and analysis of various nonlinear models more 
efficiently in the classroom. One of the main objectives of a 
model is to provide insight about a system of interest. Ana­
lytical solutions provide very good physical insight, as they 
are explicit in the system parameters. Having taught applied 
math to both senior undergraduate and first-year graduate 
students for five years, this author feels that students do not 
appreciate the value of analytical solutions because ( I ) they 
wrongly believe numerical methods are best used to solve 
complex problems with high-speed computers, and (2) they 
are not comfortable or confident doing the complicated 
integrals , rigorous algebra, and transformations involved in 
obtaining analytical solutions. Such solutions, however, can 
be gained using various computer techniques. For example, 
computer algebra systems such as Maple,l1J Mathematica,l21 

MATLAB ,131 and REDUCE,l41 can be used to perform the 
tedious algebra, manipulations, complicated integrals, vari­
able transformations , and differenti ations, etc., invol ved in 
applying mathematical methods. 

The goal of thi s paper is to show how Maple can be used 
to fac ilitate similari ty transformation techniques for so lv­
ing chemical engineering problems. The utility of Maple in 
performing the math , solving the equations, and plotting the 
results will be demonstrated. For an understanding of the 
physics in the problems solved, readers are advised to refer to 
the cited references. For the sake of readers not familiar with 
Maple, a brief introduction about Maple is given . 
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MAPLE 

Maple111 is a computer-algebra system capable of perform­
ing symbolic calculations. Although Maple can be used for 
performing number crunching or numerical calculations just 
like FORTRAN, the main advantage of Maple is its symbolic 
capability and user-friendly graphical interface. In a Maple 
program, commands are entered after a">". Maple prints the 
results if a";" is used at the end of the statement. This helps 
in fixing mistakes in the program after a particular step, as the 
results are shown after every step or command. For brevity, 
in this paper most of the Maple commands are ended with 
a colon (:). In general, while Maple is very useful in doing 
transformations, the user might have to manipulate resulting 
expressions from a Maple command to obtain the equation 
in the simplest or desired form. Often, these manipulations 
can be done in Maple itself by "seeing" the resulting expres­
sions. Hence, first-time users should use a ";" instead of a 
" :" at the end of each statement to view the results after each 
command/statement. Many of the mistakes made by students 
are identified and rectified easily if they replace":" with";" in 
all of the statements. Maple can be used to perform all steps 
from setting up an equation to analyzing the final plots on 
the same sheet. All the mathematical steps and manipulations 
involved can be performed in the same program or file . For 
clarity between the Maple commands and output, all the text 
describing the process or Maple commands is given within 
brackets, " [ ]". 

SIMILARITY TRANSFORMATION FOR 
PARTIAL DIFFERENTIAL EQUATIONS 

Similarity transformation is a powerful technique for 
treating partial differential equations arising from heat, 
mass, momentum transfer, or other phenomena, because it 
reduces the order of the governing differential equation (from 
partial to ordinary). Depending on the governing equation, 
boundary conditions, domain, and complexity, the similarity 
transformation technique might yield a closed-form solu­
tion, a series solution, or a numerical solution. One of the 
major difficulties students encounter is that they find it very 
difficult to convert the governing equation from the original 
independent variables to a similarity variable. The following 
examples illustrate the use of computers and software in 
teaching/obtaining similarity solutions for various chemi­
cal engineering problems. 

Example 1 

Diffusion/Heat Transfer in Semi-infinite Domains 

Consider the transient heat-conduction problem in a slab.''· 2
' 

The governing equation and initial/boundary conditions are 
expressed in Eq. (1). 
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&u &2u -=a:-&t &x 2 

u(x,0) = 0 (1) 

u(0, t) = 1 and u(oo, t) = 0 

where u is the temperature, xis the distance from the surface of 
the slab, tis the time, and a is the thermal diffusivity. Eq. (I) is 
solved b_y usi_ng the ~ansformation Tl = x / ( 2 M ). The origi­
nal partial differential equat10n is converted to an ordinary 
differential equation in the similarity variable, 11· The bound­
ary conditions for U (u in the similarity variable), are: 

U(0) = 1 

U(oo) = 0 (2) 

The steps involved in the similarity transformation method 
are illustrated below: 
Typically, Maple programs are started with a "restart" com­
mand to clear all the variables. Next, the "with(student)" 
package is called to facilitate variable transformations: 
>restart : w ith (student): 
>eq :=d iff(u(x, t), t)-a l pha*d iff(u(x, t),x$ 2); 

eq := (!t u(x , t))-a:( ::2 u(x , t)) 

[First, u(x,t) is transformed to U(1'](x,t)). Then, the governing 
equation is converted to the similarity variable:] 
>eq 1 :=ehangevar(u(x, t)=U(eta(x, t)),eq):eq2 :=expand 
(s i m p l ify(su bs(eta(x, t)=x/2/(al pha* t)"( 1 /2),eq 1 ))) : 
eq2 :=expand(eq2 *t) :eq2 :=subs (x=eta*2*(alpha*t)"( 1 / 
2), eq2 ): eq 2 :=convert(eq2 ,d iff): 

[The final form of the governing equation is:] 
>eq2 :=expand(-2 *eq2) ; 

eq2:=(~U(TJ))TJ + __!_( d
2

, U (TJ)) 
d'fl 2 d'fl-

[The given boundary conditions are used to solve the govern­
ing equation :] 
>be 1 :=U(O)= 1 ; 

bcl: =U(0) =1 

>be2 :=U(i nfi nity)=O; 
bc2: =U(oo) = 0 

>U :=rh s(d solve({ eq 2, be 1 , be2 }, U(eta))): 
>U :=convert(U ,erfe); 

U: = erfc (1']) 

>u :=s u bs(eta=x/2/(al pha*t)"( 1 /2), U); 

u := erfc(
2
~J 

[The solution is plotted in Figure 1, which shows how the 
temperature, u, penetrates to progressively greater distances 
as the time, t, increases:] 
>plot3d(subs(alpha=0.001 ,u),x= l .. 0,t=S00 .. 0,axes=bo 
xed, label s=[x, t , "u"],orientation=[-60,60]) ; 
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Figure 1. Dimensionless temperature distribution 

in a semi-infinite domain. 

Example 2 

Plane Flow Past a Flat Plate- Blasius Equation 

The velocity distribution in the boundary layer of a plane laminar 
flow past a flat plate is given by Eq. (3): 

ou +ov=O 
ox oy 

ou ou o2u 
u- + v- =--

8x oy 8y2 

u (0,y)= l (3) 
u (x,0 ) = 0 and u (x, oo) = l 

v (x,0 ) = 0 

For this problem, first the velocities, u and v, should be converted to 
stream function s defined by u = o'lj; I oy and v = -o'lj; I ox. The 
stream function , by default, satisfies the continuity equation (Eq. 
1). The second equation yields the governing equation for the 
stream function , 1jl . Next, the stream function is expressed as 
'lj; = ✓x f(TJ ), where 'Tl= y / ✓x is the similarity variable. The 
boundary conditions for u and v yield the boundary conditions for 1jl, 
and finally for f(11). Once the function f(11) is obtained (numerically), 
both stream functions and velocity expressions can be expressed in 
terms off and 11· The steps involved in thi s example are more tedious 
compared to the previous example. All the complicated steps involved 
can be facilitated using Maple: 
>res tart :with (student) :with (p I ots): 
Warning, the name changecoords has been redefined 
[The governing equation is entered:] 
>eq :=u(x , y)*d iff(u(x ,y),x)+v(x ,y)*d iff(u(x, y), y)- d iff(u(x, y), y$ 2); 
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[Next, Stream functions 
( u = o'lj; I oy and v = -o'lj; I OX) 

are introduced] 
>var s : ={u(x,y)=diff(psi(x,y),y),v(x,y)=­
d iff(psi(x,y),x)}: eq :=subs(vars,eq); 

eq := r~ 'lj;(x,y ))(~'t);( x,y)) 
oy oxoy 

-[ :x 't);(x,y )) (:;2 't);( x, y))-(::3 't);(x,y )) 

[Next, the transformation 

'lj; = ✓x f (TJ ), where 'Tl= y / ✓x 

is used to obtain the equation for f:] 
>eq :=changevar(psi(x ,y)=x "( 1 /2) * f(eta(x , y)),eq) : 
eq 1 : =(s imp I ify(s u bs(eta(x, y)=y /x"( 1 /2), eq))) : 
eq 1 :=s ubs (y=eta * x"(l / 2),eq 1 ):eq 1 :=si 
mplify(eql * x):eq2:=convert(-eql ,diff); 

eq2 := - - , f (TJ ) f (TJ)+ - 3 f (TJ ) l (d
2 

) (d
3 

) 
2 dTJ- dTJ 

[Next, the velocity variables, u and v (i .e., derivatives 
of the stream function), are expressed in terms off and 
the similarity variable 11 :) 
>v(eta) :=-
diff(psi(x ,y),x) :v ( eta) : =ch an gevar( psi (x, y)=x "( 1 / 
2 )* f (eta(x, y)), v( eta)) :v(eta) : =expand (subs (eta(x 
,y)=y/x"(l / 2) ,v(eta))):v(eta) := subs(y=eta*x"(l / 
2), v( eta)) :v( eta): =facto r(v( eta)) ; 

v ( 'Tl ) : = _ _I_ f ( TJ) - D ( f) ( TJ) TJ 
2 ✓x 

>u(eta) : =diff(psi(x,y),y) 
u(eta) : =changevar(ps i(x, y)=x A( 1 /2) * f(et 
a(x, y)), u (eta)) : u(eta) : =expand (subs (eta(x, y)= 
y/x"( l / 2),u(eta))): u(eta) :=subs(y=eta* x " (l / 
2),u(eta)) ; 

[D(f)(11) in Maple represents the derivative off with 
respect to 11· Next, the boundary conditions are ex­
pressed in terms off:] 
>bcl :=subs(eta=O,v(eta))=O; 

1 f (0 ) 
bcl: = - - , = 0 

2 vx 

>bcl :=-bcl *2* x A( l / 2); 
bcl := f (0 ) = 0 

>bc2 :=subs(eta=O, u(eta))=O; 
bc2 := D (f )(o) = o 

>bc3 :=su bs(eta=infinity,u(eta))= 1; 
bc3 := D (f )(oo) = 1 

[The length of the domain is taken to be five (to replace 
infinity). This number is found by trial and error. Increas-
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ing the length beyond five does not change the results .] 
>bc3 :=subs(infinity=S, bc3) ; 

bc3 := D(f)(5) = 1 

[For this problem, analytical solutions are not possible (al­
though approximate solutions are possible). For this example, 
numerical solution for the Blasius equation is obtained as:] 
>sol :=dsolve({eq2 ,be 1 , bc2 , bc3},f(eta),type=numeric) ; 

sol:= proc (x_bvp) ... end proc 

[The solution is plotted in Figure 2, which shows how the 
function, f (related to the stream function) , varies with the 
simi larity variable, 'Y] , from zero to five] 
>odeplot(sol, [ eta , f(eta)] ,0 .. 5, th ickness=3 ,axes=boxed); 
[Next, velocity profiles are obtained:] 
> u (eta) : =convert( u (eta), d iff) ;v( eta): =co nve rt(v( eta) ,d iff) ; 

u(ri) := ~f(ri) 
d'fl 

l f(ri ) -(dd f (ri )Jri 
v(ri ) := -- Tl 

2 ✓x 

[Figure 3 shows how the x component of velocity increases 
from zero, at the wall, and levels off at its main stream value 
for larger values ofl] from zero to five] 
>odeplot(sol, [ eta , u(eta)] ,0 .. 5, th ickness=3 ,axes=boxed 
,labels=[eta ,u]); 
[Since v is a function of x, v*x 112 is plotted. Figure 4 shows 
the y component of velocity (multiplied by x 112) increases 
from zero at the wall, and levels off at its main stream value 
for larger values of 1l from zero to five] 
> odeplot ( sol,[eta,v ( eta ) * x"( l / 
2)] ,0 .. 5 ,th ickness=3 , a x es=boxed, lab 
els=[eta,"v*x"(l /2)"]); 

[The solution at 1'] = 0 is obtained as:] 

>sol(O) ; 

d d2 
'fl= O.,f ( 'fl)=O., ~ f( 'fl)=0., -

2 
f ( 'fl )=0.336152378983949952 

d'fl d'fl 

ela 

Figure 2. Function fas a function of the similarity variable, 11· 
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[Stress is related to the Reynolds number (re) and the velocity 
gradient at y = O:] 
>5:=re*d iff(u(x, y), y); 

S := re( : y u (x, y)J 

[The velocity gradient in terms of the stream function is:] 
>s u bs(u(x, y)=d iff(ps i(x, y), y),S); 

re( :;2 1µ (x, y)J 

[The second derivative of the stream function (d) is expressed 
in terms off and 'Y]:] 
>d : =d iff(ps i (x, y), y$ 2): d: =ch an gevar(ps i (x, y)=x"( 1 / 
2)*f(eta(x, y)), d):d :=expand(su bs(eta(x, y)=y /x"( l /2),d)): 
d:=subs(y=eta*x"(l / 2),d ):d :=convert(d,diff); 

d2 
d2 f(ri ) 

d := Tl✓x 

>5:=re*d : 
[The second derivative of f is found from the numerical 
solution:] 
>eqd3 :=sol(0)[4 ]; 

eqd3 := d
2

2 f (ri) = 0.336152378983949952 
dri 

[Hence, the stress-Reynolds number relationship becomes:] 
>5:=subs(diff(f(eta), ' $ ' (eta,2))=rhs(eqd3),5) ; 

S 
·= 0.336152378983949952 re 
. ✓x 

Example 3 

Graetz Problem in Rectangular Coordinates 

Consider the Graetz problem in rectangular coordinates (to 
simplify the mathematical complexity involved with cylindri­
cal geometry).141 The governing equation and initial/boundary 
conditions are: 

(l - x2)&u = &2u 
&z &x2 

u (x,O) = 1 

( 
&u 

u 0, z) = 0 and - (1, z) = 0 
&x 

(4) 

For this problem, a similarity transformation cannot be used 
to reduce the partial differential equation to one ordinary dif­
ferentia l equation (boundary value problem in 11). To obtain 
solutions very close to z = 0 , E9- (4) is converted to the new 
coordinates defined by Tl = x / ~ 2✓z) and z = z (note, some 
textbooks use z = z

1 
as the second coordinate, but for simplic­

ity it is left as z in this paper). In the new coordinates , 1l and 
z, u is obtained using a perturbation technique by expressing 
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ela 

Figure 3. The x-component velocity as a 
fun ction of the similarity variable, 11-

0.6 

n'(112) 0.4 

2 3 4 

Figure 4. They-component velocity as a 
fun ction of the similarity variable, TJ. 

k 

u as u = L Zkf; ( 11) . The boundary conditions for f (in the 

similarity ;viriable 11 ) are: 
f0 (0 ) = l; fk (0)= l, k = 1, 2, 3 ... 

f0 (00)= 0;fk(oo) =0,k = l,2,3... (5) 

The steps involved in the similarity transformation method 
are performed in Maple. 
> restart :with(student): 
>eq :=( 1 -xA2)*d iff(u (x ,z) ,z)-diff(u(x ,z), x $ 2); 

eq := (1 - x
2
)[:z u (x,z)) - ( : : 2 u (x, z)) 

[First, the governi ng equation is converted to similarity 
variables (11 and z):] 
>eql :=changevar(u(x,z)=U(eta(x,z),z),eq) : 
eq 2 : =expand (s imp I ify(s u bs(eta (x, z )=x / 2/( z)"( 1 / 
2),eql))):eq2:=expand(eq2 * z ): eq2 :=subs (x= e 
ta * 2 * ( z) " ( 1 / 2), e q 2 ) : e q 2 : =convert ( e q 2 , di ff): 
eq2 :=expand(-4*eq2) ; 

Fa/12006 

[For illustration , only terms up to z2 are considered in the 
perturbation series:] 
>N :=2 ;vars :={U(eta,z)=sum(zAk*f[k](eta), k=O .. N)}; 

N:= 2 

vars := {U (17, z) = f0 (11)+ zf1 (TJ)+ z
2
f2 (11)} 

[The governing equations for the dependent vari ables are 
obtained as:] 
>eq3 :=e x pand(subs (vars,eq2 )) :for i from O to 2 do 
Eq [iJ :=coeff(eq 3 ,z,i) ;od ; 

Eq0 ~ 2a[ ,: fo (a)] + [ ,:2 ro(")l 

Eq1 ~2"[ ,: Ii ( " ) ]-4 Ii ( a)-s"
3
[ ,: fo ( a) H ,:2 f1 ( a) j 

Eq2 := 211(_i_ f2 ( 11))-8f2 ( 11)-811
3

(_i_f1 ( 11)) 
d17 d17 

+ J 6"211 (a)+ [ ,:2 f2 ( ") l 
[The first three terms are obtained by solving these differential 
equations with the given boundary conditions (note that the 
boundary condition at x = I is solved approximate ly as U = 
0 at 11 = oo :] 
>sol [OJ :=dsolve({Eq [OJ ,f[O](O)=O, f[O)(infin ity)= 1 }) ;assign 
(sol[OJ ): 

so l
0

: = f/ r1) = erf(T]) 
>sol[l J:=dsolve({Eq[l )}) ; 

sol , ,~ [f, (") ~ (1 + 2a' )_ C2 

[The constants have to be zero to satisfy the boundary condi­
tions :] 
>assign(sol[l )):_Cl :=0 :_C2 :=0:f[l ](eta) :=eval(f[l ](eta)) ; 

( 
._ 1 (- 317 - 41'] 3 ) e(-,i') 

fl 17) ,- - .J; 
3 'IT 

[Similarly, f
2 

is obtained:] 
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>sol [2] :=d solve(Eq [2]): ass ig n(sol [2]):_C3 :=0 :_C4 :=0 : 
f[2 ](eta): =eval (f[2] (eta)); 

1 (-285T) - 570T)3 -384T)5 -160'fl7 )e(- 11
') 

f2 ('Tl):= 180 ✓TI 

[Once the functions (the f's) are obtained, the Sherwood 
number can be obtained:l4l] 
>u :=su bs(vars, U(eta,z)): u :=su bs(eta=x/2/sq rt(z), u); 

[ 
3x x

3 
) [-fz] 

. _ ( X ) 1 -Uz-~ e 
u .-erf , +- , 

2'-JZ 3 ',/Ti 

2 [ 285x 285x 3 12x5 5x
7 

) [-fz] 
1 z - 2✓z - 4z(312) - z (s12) - 4z(112) e 

+--------------------
180 ✓TI 

[The dimensionless temperature distribution is plotted in 
Figure 5, which shows that temperature increases from the 
center of the slab to the surface value along the x-coordinate. 
The increase in temperature is more rapid at the entrance and 
temperature increases are more gradual for higher values of 
z from Oto 0.05, the distance along the flow.] 
>plot3d(u ,x= 1 .. 0,z=0.05 .. 0,axes=boxed,labels=[x,z, 
"u"], orientatio n=[l 20,60]); 

SUMMARY 
This paper illustrates that mathematical methods for 

nontrivial problems in chemical engineering can be taught 
efficiently in a class using computers and user-friendly 
software. 

The similarity solution approach is a very powerful tech­
nique for obtaining closed-form solutions for problems in 

,..,.._::::,, 
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• 0 .4 

0 .2 
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heat, mass, momentum transfer, and other disciplines in 
chemical engineering. A traditional approach to teaching this 
technique would involve complicated variable transformations 
and integrals done by hand. In this paper, it was shown how 
an analytical technique could be facilitated using computers 
and software. While Maple has been used in this paper, Math­
ematica, MATLAB , REDUCE, or other symbolic software 
packages can be used to obtain similar results. In addition to 
teaching numerical simulation, computers and software pack­
ages can be used to teach traditional mathematical methods 
for a wide variety of problems. Mathematical methods , such 
as separation of variables, Laplace transform, perturbation, 
conformal mapping, Green 's function, analytical method of 
lines, and series solutions for nonlinear problems (multiple 
steady states) can be facilitated using Maple. Readers can 
contact the author for further details or copies of related Maple 
programs. Some of these methods are illustrated in a book to 
be published in the future. l91 
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Figure 5. Dimensionless temperature distribution in rectangular 
coordinates, governed by the Graetz equation. 
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