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The object of this column is to enhance our readers' collections of interesting and novel prob­
lems in chemical engineering. Problems of the type that can be used to motivate the student by 
presenting a particular principle in class, or in a new light, or that can be assigned as a novel home 
problem, are requested, as well as those that are more traditional in nature and that elucidate dif­
ficult concepts. Manuscripts should not exceed 14 double-spaced pages and should be accompanied 
by the originals of any figures or photographs. Please submit them to Professor James 0. Wilkes 
(e-mail: wilkes@umich.edu), Chemical Engineering Department, University of Michigan, Ann 
Arbor, Ml 48109-2136. 
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We are all aware that teaching scientific matter is 
much more accepted by students when it can be 
related to situations they can experience in their 

everyday life. A good example is the cooling of a cup of cof­
fee, whose scientific analysis is much more instructive than 
we could have thought at first sight. Indeed, we will see that 
all heat transfer mechanisms ( conduction, convection, and 
radiation), as well as those of mass transfer, (because of the 
evaporation of the coffee) are involved. This problem was 
often addressed as "leisure in science" or "first approach 
of science," and a quick search on the Web shows that this 
problem has been proposed at all levels of education, from 
beginning to university. The approach presented here is aimed 
at being rigorous, but because we do not intend to use very 
powerful numerical modeling, simplifications will be made. 
An important quality for an engineer is to make the "right" 
simplification, i.e., which results only in slight inaccuracies, 
while respecting the correct hierarchy for the parameters. In 
the case chosen here no chemical reaction is present, but the 
coupling of heat and mass transfer in a nonstationary process 
is a common situation in chemical engineering. It can be 
encountered, for instance, in small industrial units when a 

tank, after a batch transformation, is let to cool freely before 
discharge. Another very important characteristic of the study 
is that experiments to assess the modeling are easy to perform 
with very simple tools, such as a thermometer, a stopwatch, 
and a balance (to estimate the loss by evaporation). Such ex­
periments could even be done in a kitchen, in full accordance 
with the "everyday life" aspect of the situation. The method 
to approach the problem, and the reflection about transport 
phenomena that it induces, make it a good basis for discus­
sion between students and teachers. To avoid a lengthy paper, 
all equations given here are not discussed deeply and, for a 
student, may deserve an additional look into textbooks or, 
better, a discussion with teachers. 
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PRESENTATION OF THE PROBLEM AND 
HYPOTHESES 

The problem: we put a cup of hot coffee on a table. Its 
initial temperature, 8

0
, is around 80 °C, and ambient air is 

at temperature 8
3

, with, for instance, a relative humidity of 
50% (that means half-saturated). What is the temperature of 
the coffee after 10 min. for instance? Or, more widely, when 
will I be able to drink it safely and what parameters influence 
this duration? A scheme of the situation is given in Figure 
1 and the different fluxes will be discussed in paragraph 2. 
To solve the problem we have to make a list of simplifying 
hypotheses: 
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1. Temperature 0 is homogeneous through the liquid in 
the cup. There is no temperature gradient in the liquid, and 
the inner wall temperature of the cup is equal to that of the 
liquid, because internal free convection is sufficiently high. 
These are very important hypotheses and we will devote a 
specific paragraph to assess them. 

2. Even if our system is time dependent, we will use 
steady-state equations to model the heat and mass transfer 
fluxes. This "pseudo steady-state approximation" is very 
often proposed and is fully justified here, because establish­
ment of transfers is more rapid than evolution of tempera­
ture of the liquid. It is always difficult to demonstrate this 
statement, and intuition is often the only indicator. Such 
ambiguity is rarely addressed, but it has been discussed by 
Cussler in his book about mass transfer.m 

3. There is no heat loss through the bottom of the cup, 
because the table blocks the heat flux. Nevertheless, we may 
foresee that putting the cup on a massive metallic surface 
will speed up the cooling. In this case, the bottom heat flux 
would not obey the steady-state law, ( see, in textbooks, 
the chapter devoted to conductive transfer in semi-infinite 
medium). This will not be considered here. 

4. At the vertical cylindrical wall of the cup and at the 
surface of the liquid, heat loss occurs by free convection and 

No heat loss at the bottom 

Figure 1. Schematics of the fluxes. 

radiation. Moreover, at the liquid surface, evaporation of the 
liquid simultaneously takes place. This evaporation induces 
an extra heat loss, corresponding to the heat needed for 
vaporization of water, that is provided from a decrease in the 
internal energy of the liquid and the cup. Forced convection 
by blowing air is not considered here, although it could be 
very easily implemented through adapted computation of 
the coefficients of convection. It is important to mention here 
that, at temperatures below 200 °C, chemical engineering 
calculations usually neglect radiation fluxes because they 
are competing with forced convection fluxes, which are much 
larger. When dealing only with free convection, this omission 
would lead to significant errors, even at low temperature. 

5. The coffee cup is simulated by a cylinder, external 
height H,, internal diameter D,, with constant wall thick­
ness ew' and with a thermal conductivity Aw. The area of the 
external vertical wall surface is Aw, and that of the horizantal 
liquid surface is A,. Also, this hypothesis upon the geometry 
of the cup is not very restrictive and can be adapted for other 
cases. Liquid is supposed to fill the cup almost entirely. 

6. Coffee is similar to water, and properties are evalu-
ated at 60 °C. 

Description of the Equations for Modeling 

The heat loss through the wall and at the liquid surface 
results in a temperature decrease that may be described by 
the instantaneous heat balance equation, where accumulation 
of internal energy in the water and the cup (considering ho­
mogeneous temperature) equals the sum of all instantaneous 
heat losses. Because water evaporates, we also need an in­
stantaneous mass balance: 

d0 
(mCp +MCp ,)-=-~heatlosses (1) 

c wa dt ~ 

dM . fl -- = -evaporative ux 
dt 

(2) 

where m and Cpc refer, respectively, to the mass and specific 
heat of the cup, and Mand Cpwat' to mass and specific heat of 
the water. We can now describe the different heat losses and 
express them using steady-state equations of heat and mass 
transfer, as stated in hypothesis 2. 

Heat Loss at the Vertical Wall of the Cup, Qw 

This is a transfer, in series, by conduction through the wall, 
then, in parallel, free convection and radiation to ambient 
air. As stated in hypothesis 1, internal convection at the in­
ner wall is not considered. This global transfer is accounted 
for by a global coefficient Uwe' referred to the external area, 
given by: 

-1 

. b U 1 + ew area,g1ven y: we = D D 
hnv +hR A e + i 

w 2D 
e 

(3) 

and 

(4) 
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We need to evaluate the coefficient h for free convection nv 
at the vertical wall. An equation for such a heat transfer coef-
ficient can be found in:[2J 

hnv = 1.35l ew; ear (5) 

where Eq. (5) is adapted to be used directly for free convec­
tion in air. SI units are used throughout. 

Radiation transfer is accounted for by a radiation coefficient 
hR. To estimate hR' we can approximate our case by a situation 
in which a small gray surface at 8 radiates toward a large gray 
enclosure, the room at 8 a. In this case, and if 8 and 8 a are not 
very different, it can be shown ( see any heat transfer textbook, 
for instance Reference 3), that hR is proportional to the third 
power of the mean absolute temperature: 

~ ((0+273)+(ea +273)1
3 

hR = 4Gsl 2 ) (6) 

where £ represents the emissivity of the surface and a is the 
Stefan-Bolzman constant. This linearization of radiation 
fluxes is very convenient and is a great help to account for 
the radiation without adding complex equations. 

An important quality for an engineer is to make 
the "right" simpl-ification, i.e., which results 
only in slight inaccuracies .... 

Note that the convection coefficient, as well as the radiation 
coefficient, depends on the outer wall temperature 8w. Indeed, 
it is not convenient in the computation to evaluate the outer 
wall temperature, so, for estimation of these coefficients, we 
will equate the outer wall temperature to that of the liquid. 
It results in some inaccuracy for hnv and hR. Eventually, this 
inaccuracy is likely to be weak because, for usual materials 
and thicknesses, the thermal resistance of the wall is low in 
respect to the outer thermal resistance, and the outer wall 
temperature is actually not very different from the inner wall 
temperature. It does not mean that the thermal resistance 
of the wall is neglected here, because it does appear in the 
equation of U [Eq. (3)]. The extreme case of an insulating 
wall (as for an expanded polystyrene cup, see paragraph 4) 
where the inaccuracy is maximum is well described because 
the "inaccurate" term has a weak numerical influence in the 
computation of U [Eq. (3)]. 

Heat loss, by Heat Transfer Only, at the Surface of 
the Liquid, o. 

It also occurs by free convection and radiation, in parallel, 
and is accounted for by a global coefficient hs with: 

hs = hns +hRs 

Qs = hsAsJ0 - 0a) 

(7) 

(8) 

hns represents the coefficient for free convection at a horizontal 
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surface. From Reference 2, for air, it is given by: 

( r 
hns = 1.31l 0 ~eea) (9) 

Heat loss resulting from the evaporation, Qevap 

We must first estimate the evaporative molar density of 
flux, Nwat" At the interface, air is saturated at the surface 
liquid temperature 8, and water partial pressure is equal to 
its vapor pressure Pv(8) at this temperature. Far from the 
surface, for half-saturated ambient air, the water partial pres­
sure is 0.5P (8 ). In the case of a single component we can 
find explan;tio~s in mass transfer textbooks (see for instance 
Reference 5): 

1 
Nwa, = kcCT-(Pv ( 0)-0.5Pv (ea)) (10) 

F 

k is the mass transfer coefficient referred to a molar concen­
tration difference at low or equimolar transfer fluxes.Fis the 
logarithmic mean of the partial pressure of air, Pair= PT - P wat 
at the surface and far from the surface, and it accounts for the 
influence of the bulk flow of air. So: 

(11) 

CT is the total molar concentration. Pv(8) can be computed 
from a vapor pressure law for water, such as Clapeyron's or 
Antoine's law. Here we have used, from Reference 4: 

105 7 9668_1668 21 

P (0) = --10 228+0 whereP isinPa,0in °C (12) 
V 760 V 

An important feature is now to estimate the mass transfer co­
efficient k . This can be done using the analogy between heat 
and mass transfer, as first proposed by Chilton and Colburn. [6l 
For the air-water system, because the Lewis number, Le, is 
close to 1, it gives[7l: 

(13) 

The molar density of the flux is then 

Nwat = h~ ;(Pv(0)-0.5Pv(0a)) (14) 
9)1:air Pair 

After some rearrangements, using the perfect gas law, mass 
flux is: 

W = hns9J1wat l A. (P (0)-0.5P (0 )) (15) 
wat 9)1:airCPair F s1 v v a 

Now, knowing the evaporative mass flux, the heat loss by 
evaporation, Q , is given by: 

evap 

(16) 

where Af-lv is the heat of vaporization of water per kg of 
water. 
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Finally the system of differential equations to solve is: 

(mCpc +MCpwa,) de= -hs (0)Ase (8-8
3
)- Uw(0)Aw(0-0a)-6Hv hns9J1wat l Asi (Pv (0)-O.SPv (0a)) 

ili 9J1~~~F 
(17) 

dM hns9J1wa, 1 A (P (0)-O.SP (0 )) 
dt 9J1airCPair F s1 v v a 

with initial conditions at t = 0, 8 = 8
0

, and M = M
0

• This system can 
be solved numerically by the variable step Runge-Kutta method, for 
instance. For all our computations, we have used a very convenient 
commercial software, Mathcad 13, where automatic resolution of 
such system of equations is implemented. Listing of the program 
can be found at <http://lgc.inp-toulouse.fr/intemet/pers/condoret. 
htm>. 
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RESULTS OF THE MODELING AND 
COMPARISON WITH EXPERIMENTS 
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The experimental apparatus, including a numerical thermometer, 
a balance, and a stopwatch, is seen in Figure 2. Three different 
porcelain cups (No.'s 1, 2, and 3) were used filled with water. The 
cups were put on the balance plate, hot water from an electric kettle 
was poured in, and the temperature and mass variation of the liquid 
were recorded. A piece of insulating material was set under the cups 
to prevent direct contact with the balance plate. It proved to be 
useful with respect to hypothesis 3. Physical and geometrical data 
are given in Table 1. Figures 3 a, b, and c presents the comparison 
between experimental temperature and the modeling as described 
above. The modeling appears very good, although it slightly un­
derestimates the cooling rates in all cases. A simple explanation 
could be that area of the handle was not taken into account in the 
computations (indeed, cup No. 2, which gave the best results, had 
a small handle). Figure 4 also presents good agreement between 
experimental and modeled mass variation. As an example, Table 2 
gives computed values of different terms of the equation for experi­
ments of cup No. 2, and relative contribution of each flux can be 
appreciated. It can be seen, for instance, that the evaporative flux, 
except at the end, is quite significant (see below, paragraph 4). Also 
note that radiation and free convection coefficients are in the same 
range (around 7Wm 2 °C1) 

~)85 

Figure 2. Experimental apparatus. 
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Figures 3. Variation of th 
temperature of the liquid 

for the 3 different cups 
a) cup No. 1, M

0 
= 78.6 g 

ea= 22.3 °C, ea= 82.5 °C 
(• : experiment;--: model 
b) cup No. 2, M

0 
= 102.9 g 

ea= 21.8 °C, ea= 79 °C 
{J..: experiment 

--:model 
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c) cup No. 3, M = 87.2 g 

ea= 21.1 °C, ea= 80 °C 
{• :experiment;--: model) 
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USE OF A SIMPLIFIED ANALYTICAL SOLUTION 
One may feel frustrated to need a numerical solution for the system of differential equations. First note that the mass of water 

varies only slightly (less than 3%), so we can suppress the mass balance equation and consider the mass of water as a constant, 
equal to M

0
• Furthermore, Table 2 shows that variation, in respect to the temperature, of heat and mass transfer coefficients 

is not very large. We have found that use of parameter values computed at the mean temperature leads to very similar results. 
Eventually, we can only consider one simplified differential equation, using averaged values: 

110 

105 

100 

95 

..... - -

- -

·--- ~ 

• - -· ·- - • -

80 

75 

70 

. ------
r---

0 200 400 600 
lime(s) 

Figure 4. Loss of mass (g) for the 3 
different cups: 

a) cup No. 1, M
0 

= 78.6 g, 
ea= 22.3 °C, ea= 82.5 °C 

{• : experiment;--: model) 
b) cup No. 2, M

0 
= 102.9 g, 

ea= 21.8, °C, ea= 79 °C 
(..__.experiment;--: model) 

c) cup No. 3, M
0 

= 87.2 g, 
ea= 21.1 °C, ea= 80 °C 

(• :experiment;--: model) 

- -

800 

cup 
N°l 

cup 
N°2 

cup 
N°3 

(19) 

Nevertheless, even with the proposed averaging, Eq. (19) has still no 
obvious analytical solution, due to the exponential term in the expression 
of Pv(8). But, if the function Pv(8) is approximated by a parabolic equa­
tion, Pv(e) = be2 + ce + d, we can propose an analytical solution. We found 
by numerical fitting, that 

b =18.367 c =-1237.2 d = 27753 in the range 40 °C to 80 °C 

In this case, Eq. (19) is a differential equation with separated variables, 
whose solution is: 

t ( 8) = M Cp + mCp - arctan ----- - - arctan ----- (20) ( )( 2 (2bB8+A+cB) 2 (2bB8+A+cB)) 
Owat cw w w w 

with 

w=.J-4bBA0" +4bB2dm-A2 +2AcB-c2B2 

TABLE 1 
Numerical Values of the Parameters of the Three Different Cups 

Values are in SI units as given in the nomenclature. 

D, H 
' 

e 
w 

m " w 
Cp 

0.0520 0.0495 0.0040 0.1092 1 970 

0.0512 0.0610 0.0020 0.0642 1 970 

0.0520 0.0635 0.0040 0.1278 1 970 

TABLE2 

E 

(21) 

(22) 

0.924 

0.924 

0.924 

Numerical Values Given by the Model for Experiment of Cup No. 2 (M
0 
= 0.1029 kg, 0

0 
= 21.8 °C) 

Values are in SI units as given in the nomenclature. 

time temp. mass(g) Qevap Qw Qs hnw hns hRw hRs Uwe 

0 79.0 102.9 12.0 8.6 2.1 7.5 7.4 7.1 7.6 14.1 

90 75.2 102.5 9.5 7.8 1.9 7.3 7.3 7.0 7.5 13.9 

180 71.9 102.1 7.8 7.2 1.7 7.2 7.2 6.9 7.3 13.7 

270 69.0 101.8 6.6 6.7 1.6 7.1 7.1 6.8 7.2 13.5 

360 66.3 101.5 5.6 6.3 1.5 7.0 7.0 6.7 7.2 13.3 

450 64.0 101.3 4.9 5.9 1.4 6.9 6.9 6.6 7.1 13.2 

540 61.8 101.1 4.3 5.5 1.3 6.8 6.8 6.5 7.0 13.0 

630 59.8 101.0 3.8 5.2 1.2 6.7 6.7 6.5 6.9 12.9 

720 58.0 100.8 3.4 4.9 1.2 6.7 6.6 6.4 6.9 12.7 

810 56.3 100.7 3.1 4.6 1.1 6.6 6.6 6.4 6.8 12.6 

900 54.7 100.6 2.8 4.4 1.0 6.5 6.5 6.3 6.8 12.5 
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h 9J1 1 B=- ns,v wat A L:.H 
9)1:airCPair Fav 

81 

v 
(23) 

(24) 

Figure 3b compares the numerical and the analytical so­
lution of the equation, and shows that the simplification is 
quite valid. 

The case may be further simplified if we consider that 
evaporation does not occur (insulating cover on the cup). In 
this case Eq. (18) becomes: 

d0 
(M0Cpwa, +mCpc) dt =-UwavAwe(0-0a) (25) 

which is very easily integrated to 

0 - 0 u.,yA., t 
_i __ = e (M0Cp.,,+mCp,) 

ei -ea 
(26) 

Results of this analytical solution are presented in Figure 
3b, showing that the final temperature is significantly higher in 
this case. This situation exists in real life. It corresponds to the 
"fast food coffee," which is served in expanded polystyrene 
cups with a cover that insulates and blocks evaporation. This 
absence of evaporation combined with an increased thermal 
resistance of the wall (expanded polystyrene has a very low 
conductivity) results in very slow cooling. This explains why 
we often bum our lips at the end of a fast food meal when we 
drink our coffee without precaution, as we cannot imagine it 
is still so hot after the duration of the meal! 

COMMENTS ON THE HYPOTHESIS OF 
HOMOGENEOUS LIQUID TEMPERATURE 

We can use the analogy with the well known case of heating 
or cooling of a solid. The homogeneity of the solid tempera­
ture is usually assessed by considering the Biot number, 

Bi= hL 
\ 

(27) 

where L is a characteristic length of the system. The Biot 
number evaluates the ratio between inner conductive trans­
fer and outer convective transfer. When the Biot number is 
much smaller than 1, homogeneity of the solid temperature is 
insured. In our case, the Biot number can be written as: 

(28) 

So with Uw"" 14 Wm 2 °C1,D =4x 10 2 m, and Awa,= 0.67W 
m 1 °C1

, we obtain Bi= 0.8. This value is not "much" smaller 
than 1, but we have considered here that only thermal con­
duction occurs in the liquid, while free convection is actually 
present, and greatly increases the inner transfer. For instance, 
we can estimate the enhancement of the "apparent" conductiv­
ity by the value of the Nusselt number, Nu. To evaluate this 
value, we can use a simplified sketch and consider inner free 
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convection in a horizontal cell. Equations for such situation 
can be found in Reference 9: 

Nu= hL = 0.069Ra033 Pr0074 

\ 
H3 PL,0 

with 3xl05 <Ra= gf-1 < 7xl09 

av 

and Pr= Cpµ 
\ 

(29) 

In our case, if we want to accept a temperature difference 
Li8 = 1 °C, between bottom and surface of the liquid, Eq. 
(29) predicts a conductivity enhancement of around seven­
fold that now allows a better fulfillment of the Biot criterion. 
Remember that this very simplified approach aims only at es­
timating if we are in the acceptable range. If we now consider 
the case of the industrial tank with a characteristic length of 
1 m, Eq. (29)-which gives a conductivity enhancement of 
120-fold-allows maintaining the Biot number at a low value, 
and the hypothesis of homogeneity is still valid. 

CONCLUSION 
The agreement between modeling and experiments (Figures 

3 and 4) was surprisingly good. Indeed, every experienced 
researcher knows that a totally predictive model is often 
disappointing and parameter adjustment is common practice 
(conversely, students are very confident in these predictive 
models!). Nevertheless, be aware of the numerous simplifica­
tions we used that here proved to be reasonable. As a practical 
conclusion, note that when preparing a cup of coffee another 
scenario is possible: hot coffee from the pot is poured into the 
cup. In this case there is first cooling of the coffee by exchange 
of enthalpy with the cup. The cup and the liquid quickly reach 
an equilibrium temperature, 8eq' given by the equation: 

e = MoCPwa,0i + mCpc0a 
eq MoCPwa, + mCpc 

(30) 

Indeed, the temperature decrease is significant and this 
speeds up considerably the desired cooling. Evaluation of the 
kinetics of this process is not easy, but is useless because its 
rapidity (a few tens of seconds) can be easily demonstrated. 
So, an even more efficient cooling process would be to pour 
the coffee again into anew cup (as massive as possible), and 
repeat if necessary. Because everyday life situations are an 
unlimited source of scientific questions, what will happen if 
we add sugar to the liquid? Will this influence the cooling 
rate? This is another story, worth being discussed-around 
a cup of coffee! 

NOMENCLATURE 
A area (m2

) 

A term defined by Eq. (22) 
B term defined by Eq. (23) 
Bi Biot number, Eq. (27) 
Cp specific heat (J kg 1 °C 1) 
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CT total concentration (Mo! m 3
) 

D diameter (m) 
e thickness (m) 

m 

9J1 
N 
Nu 
Q 
Pr 
pv 

Qevap 

Ra 
t 
u 
w 
b.Hv 
a 

~ 
E 

>, 
V 

Q 

o 

logarithmic mean of partial pressures of air (Pa) 
height (m) 
free convection heat transfer coefficient (Wm-2 0 C-1) 

radiation heat transfer coefficient (Wm 2 0

C- 1
) 

low or equimolar flux mass transfer coeff. (kg s-1m-2) 

characteristic length (m) 
Lewis number= ratio of thermal and massic diffusivities 
mass of water (kg) 
mass of the cup (kg) 
molecule weight (kg MoJl) 
molar density of flux (Mo! s 1m 2

) 

Nusselt number, Eq. (29) 
heat flux (W m 2

) 

Prandt number, Eq. (29) 
vapor pressure (Pa) 
evaporative heat flux (W m 2

) 

Rayleigh number, Eq. (29) 
time (s) 
global heat exchange coefficient (Wm 2 0

C- 1
) 

mass flux (kg s 1
) 

massic latent heat of water (J kg 1
) 

thermal diffusivity (m2 s 1
) 

thermal expansion coefficient (K1
) 

emissivity of the surface 
thermal conductivity 
kinematic diffusivity (m2 s 1

) 

density (kg m 3
) 

Stefan Boltzman constant= 5.67 x 10 8 (W m 2 K 4
) 
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8 temperature (C) 

subscripts 

0 initial 
a ambient 
a!f a!f 
av average 
C cup 
e external 

internal 
s surface 
V vertical 
w wall 
wat water 
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