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0 ne major objective of a thermodynamics course is to 
introduce the modeling of vapor-liquid equilibrium 
(VLE) and liquid-liquid equilibrium (LLE). The 

analysis of flash methods used to obtain this equilibrium data 
involves the simultaneous solution of a set of equilibrium 
and mass balance equations. When these methods are used 
for LLE, finding the equilibrium solution can be difficult, as 
different problems can arise. For example, the solutions may 
be very sensitive to the objective function, the initial-guess 
values, and the algorithm used in the optimization method. 

Many papers in the past have discussed different aspects and 
strategies proposed to solve the LLE calculations. Information 
published in scientific papers, however, covers different and 
very specific aspects, and the topic is complex, making it very 
difficult to extract general and clear conclusions about the best 
procedure to evaluate LLE data. Nowadays, on the other hand, 
the commercial process simulators - such as Aspen Plus, Hy­
sys (Aspen Tech), and ChemCAD (Chemstations)-include 
phase equilibrium calculation strategies capable of overcom­
ing the above important difficulties, but they do not include 
details about their internal calculations. Process simulators 
are introduced to and used by students in different graduate 

courses, but these computer tools are not useful for compre­
hension of the phase equilibrium problem. 

This paper presents an exercise for chemical engineering 
students in LLE data calculations, and shows limitations of 
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the isoactivity criterion as the unique search condition. This 
criterion is combined with the common tangent line condition 
to prevent false equilibrium solutions, in a way that is easy 
for graduate students to program, for example, in EXCEL. 
Also, an adaptation of the vector method proposed by Eubank, 
et al.,l1l has been used for LLE calculations, showing some 
interesting aspects that can be discussed in postgraduate 
courses on phase equilibria. 

THEORETICAL BACKGROUND 
The two usual approaches for solving phase equilibrium 

problems are the K-value method, where a set of material 
balances and equilibrium equations are solved simultaneously, 
and the Gibbs energy minimization (GEM) method.[2J 

K-Value Method 

At constant temperature (T) and pressure (p), a heteroge­
neous closed system, consisting of Pphases and c components, 
is in equilibrium when the following condition is satisfied: 

(1) 

where µ; is the chemical potential of the component i in 
phase P. 

For two liquid phases (I and II), Eq. (1) can be written as: 

(2) 

where a;, 1;, x; are the activity, activity coefficient, and mo­
lar fraction of the component i in phase P, respectively. Alter­
natively, Eq. (2) can also be written as Ki = xi1 

/ xi = 1i I 1i1 , 

where Ki is the phase equilibrium constant for the component i. 

Consider the problem when calculating compositions of 
conjugated liquid phases that are obtained from a hetero­
geneous ternary mixture, M. To solve the problem, mass 
balances and equilibrium conditions [Eq. (2)] should be 
combined. 

Models suchasNRTLorUNIQUAC, which can be used to 
calculate the activity coefficient, need the 
values of binary interaction parameters Aii 
(six parameters for a ternary system). The 
DECHEMA Chemistry Data Series[3l col- GM/RT 
lects such parameters for most published 
phase equilibrium data. 

Gibbs Energy Minimization Method 

XI 
1 

persurface. The latter condition ensures a global minimum 
solution to the LLE problem. Therefore, the phase equilibria 
solution minimizes the total Gibbs energy of the system. 
Three principal algorithms have been proposed to solve the 
total GEM problem: 

a. The tangent line/plane method by Michelsenl41 and 
Jg lesias-Silva, et alJ21 

b. The maximum area method developed by Eubank, et 
al.,m and Elhassan, et alJ51 

c. The equal area method of Eubank and HallJ61 

SOME PROBLEMS IN THE LLE 
CALCULATIONS USING THE 
K-VALUE METHOD 

The usual engineering approach for solving phase equilib­
rium problems is to use the K-value procedure. This method, 
however, often fails because of the computational procedure. 
For example, if the initial guesses for the iterative procedure 
are too far from the correct solution, the program converges 
to a local minimum rather than to a global one. Therefore, 
the K-value method can predict a wrong phase equilibrium. 
Only one solution, however, minimizes the total Gibbs en­
ergy. For binary systems, K-values succeed even with poor 
initial guesses, but for more complex systems, Gibbs energy 
minimization is preferable. 

The high nonlinearity of the equations in NRTL or UNI­
QUAC is one of the reasons for the high sensitivity of solu­
tions to initial-guess values and to the algorithm used in 
the optimization method. There is another reason not often 
mentioned, that can also cause problems in finding the LLE 
solution. It is desirable that the dimensionless mixture Gibbs 
energy function (GM/RT) give a very good definition of the 
two equilibrium points, as is shown in Figure 1( side a) for a 
binary system, where the points with the lower common tan­
gent line are clearly defined. We have, however, verified that 

XII 
1 

X I 
I 

XII 
I 

0 .------~-----,----, 

QM/RT 

The two-liquid phases and the c-com­
ponent equilibrium problem can be inter­
preted geometrically in the dimensionless 
Gibbs energy of mixing (GM/RT=gM) vs. 
composition space. In this context, the so­
lution requires determination of the minor 
common tangent line/plane/hyperplane 
to the QM/RT curve/surface/hypersurface 
at two points ( compositions )-without 
intersections to such curve/surface/hy-

0 x (molar fraction) 0 x (molar fraction) 
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(a) (b) 

Figure 1. Different possibilities for dimensionless Gibbs energy of mixing (GM/ 
RT) for a binary system: a) good definition, and 

b) poor definition of the equilibrium points. 
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for many systems the QM/RT function obtained with NRTL or 
UNIQUAC models is very linear between equilibrium points 
[Figure 1 (side b)]. This poor definition of the equilibrium 
solution can have dramatic consequences in the tie-line cal­
culations, but the dimension of the problem also depends on 
the algorithm used to find the equilibrium solution. 

The K-value method is affected by this problem. The conse­
quence on LLE calculations in ternary systems, for example, 
is that many solutions corresponding to very low values of 
the activity objective function 

3 

O.F.(a) = L (ai -ai1)2 (3) 
i=l 

can be obtained and, therefore, wrong tie-lines are calculated. 
On the other hand, the probability of this problem arising 
increases when equilibrium compositions are closer to each 
other. 

An Example 
The following example illustrates this problem: the metha­

nol (1) + diphenylamine (2) + cyclohexane (3) system at 
25 °C. More precisely, the tie-line obtained from the global 
mixture M (z

1 
= 0.5365; z

2 
= 0.0230; z

3 
= 0.4405) will be 

calculated. The NRTL model is used to calculate the activity 
coefficients, with a=0.2 and the values for the binary interac­
tion parameters obtained from DECHEMA Chemistry Data 
Series[3l (Table 1). 

The Solver package of Microsoft Excel 2000, accessible 
to all the students at Alicante and very easy to use, has been 
used to solve the problem. In Figure 2, some of the solu­
tions obtained using different initial-guess values are shown 
together with the experimental data. Obviously, only one of 
the calculated solutions corresponds with the true tie-line. For 
this system, there is not a good agreement between experi­
mental and calculated tie-lines. This fact is not relevant for 
our discussion, but is only an example of the limitations of 
the NRTLmodel. What we are concerned with is how wrong 
tie-lines can be obtained that correspond with very low values 
of the activity objective function (i.e. O.F.(a)<l0 12

). Even in 

N 
X 

0,05 
-+-exp 

0,04 
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0,02 

---false cal 
-+-false cal 

~false cal ~ 
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0,01 

0 +---.,..----,----,-----r---r----r---,---.,..----,-----l 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

X3 

Figure 2. Comparison between tie-lines: experimental 
and calculated with NRTL. False calculated tie-lines 

are included corresponding to O.F.(a)<l0-12 • 
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TABLE 1 
NRTL Binary interaction parameters (K) for methanol (1) + 

diphenylamine (2) + cyclohexane (3) at 25 °C. 

A12= 873.57 A21= -1245 

A13=379.39 A31= 578.07 

A23= -987.32 A32= -856.11 

this example, if the true calculated tie-line is considered with 
five significant figures for the molar fractions, the value of the 
objective function is O.F.(a) = 8.75 · 10 10

, higher and worse 
than those obtained for false calculated tie-lines. 

The previous example shows that sometimes the isoactivity 
criterion is not sensitive enough to calculate equilibrium data 
and, as a consequence, problems in finding the true solution 
can arise depending on the method or algorithm used for the 
optimization. 

MODIFICATION OF K-VALUE METHOD FOR 
LLE CALCULATIONS 

The K-value method can be modified to avoid false solu­
tions and converge more efficiently to the equilibrium solu­
tion. A possible modification adds another contribution to the 
objective function, which considers the deviation of the minor 
tangent line to the QM/RT curve common to two compositions, 
obtained in the sectional plane that contains the two points 
considered as potential equilibrium points in each iteration. 

When the true tie-line is calculated, both of the following 
conditions are satisfied: 

1. The activities of the three components in the two liquid 
phases are equal (isoactivity). 

2. The two liquid phases have a common tangent line to 
the gM curve. 

Therefore, the difference between false and true tie-lines, 
all with very low activity objective function values, is that 
false tie-lines have no common tangent line. We have checked 
this second contribution to the objective function, and found 
it is much more sensitive to very small deviations of the tie­
line. The common tangent line contribution to the objective 
function is: 

O.F.(t)= 18gMY _IBgMyi + 
l ox3 Jp,T,D l ox3 Jp,T,D 

(4) 

where D is the slope of the line through the points I and II, 
calculated as 

(5) 
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This means the partial derivatives of the dimensionless Gibbs 
energy of mixing (gM) are calculated in the direction given 
by the line from I to II compositions, one that also contains 
the overall mixture M. 

The combined objective function 

O.F. = O.F.(a) + O.F.(t) (6) 

is sharper than the activity objective function, improving the 
convergence of the optimization and avoiding false solu­
tions. This will be illustrated using the example previously 
presented. When the same calculation has been carried out, 
but the activity objective function [O.F.(a)] changed to the 
combined objective function (O.F.) that also considers the 
common tangent line condition [O.F.(t)], the true tie-line 
is always calculated far from the solution-even with bad 
initial guesses. 

For a better understanding of the behavior of both objective 
functions, we have calculated and represented the minimum 
values of both functions [O.F.(a) and O.F.] around the solu­
tion (Figure 3) using a sheaf of straight lines ( defined by the 
a-angle) passing through the common point corresponding to 
the composition of the ternary global mixture M, very similar 
to the vector method explained in the next section. [ll 

Figure 3 shows that for all the a-angles around the true 
tie-line solution it is possible to find two conjugated points 
that satisfy the mass balance and give a very low activity 
objective function value: O.F.(a)<l0 12

• These results show 
the magnitude of the problem, from which two very important 
consequences can be derived: 

C: 
0 

-.;:::; 
(.) 
C: 
::I -a, 
> 

-.;:::; 
(.) 
a, 
'E 
0 

1. When the isoactivity criterion is used as the equi­
librium condition, we should be very strict in the 
requirements for activity equalities. 
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- O.F.=O.F.(a)+O.F.(t) 
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\ 

\ 
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Figure 3. Objective function values [O.F.( a), O.F., and 
O.F.( a) using the vector method] vs. a-angle for the ter­

nary tie-line calculation example. 
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(a) 

Figure 4. ( a) Graphical explanation of the vector method 
proposed to calculate the tie-line obtained from the 

initial mixture M. (b) Scheme showing the GM/RT 
curve in a line 1 between rand s, and the two 

common tangent points I and II. 

2. The addition of the common tangent line objec­
tive junction to the isoactivity condition improves 
convergence of the optimization because a sharper 
minimum is obtained (Figure 3). 

THE VECTOR METHOD FOR 
LLE CALCULATIONS 

The vector method is not an alternative equilibrium condi­
tion, but a method for directing or controlling the search for 
the unknown compositions to find the true tie-line. The vector 
method needs an equilibrium condition such as the isoactiv­
ity criterion, the minimization of the global Gibbs energy of 
mixing, or the common tangent plane. 

In the previous calculations, the iterative procedure to 
obtain the unknown compositions is directed by the optimi­
zation algorithms included in the Solver. Therefore, in those 
calculations, the vector method has only been used as a tool 
to study the values of different objective functions in the area 
around the solution. In this section, a different procedure to 
calculate the tie-line has been evaluated. In this procedure, an 
adaptation of the vector method proposed by Eubank, et al.,l1l 

is used as aguidedLLE search. This method is schematically 
represented in Figure 4. 

Consider the ternary system 1-2-3, where the binary 1-3 is 
partially miscible and the other two binaries, 1-2 and 2-3, are 
completely miscible. The problem is to find the LLE tie-line 
that connects the compositions generated from the hetero­
geneous global mixture M. The tie-line for the 1-3 binary 
system must be previously known [i.e., a, bin Figure 4(a)]. 
If not, it will be calculated using, for example, the isoactiv­
ity criterion. With the binary tie-line and the initial mixture 
M, the two lines, rands, are obtained, which limit the zone 
where the ternary tie-line (if it exists) will be confined (shaded 
area in the Figure 4(a)). The a-angle is defined to character­
ize any lines from r to s with the common point M. This is a 
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modification of the procedure presented in the original paper, 
where the a-angle (-90° ,+90°) was not limited. The benefit 
is that the tie-line search is restricted to a more limited area, 
where the solution is probably located, improving the con­
vergence of the calculation. In any of the lines (1) between r 
to s, the dimensionless mixture Gibbs energy function (gM) 
can be calculated using, for example, the NRTL equation for 
excess contribution. 

At this point, Eubank, et at.,[1l proposed the area method. 
For a constant value of the a-angle, this method consists of 
locating the two points (1 and II inFigure4(b)) where the area 
(A) confined between the tie-line and the gM is the largest in 
absolute value. This condition is equivalent to locating the two 
points with the lower common tangent to the gM function on 
the fixed direction, 1. Next, the a-angle for the tie-line must 
be found using an equilibrium condition. There are several 
conditions that can be used as the LL equilibrium condition, 
when common tangent points such as I and II are calculated 
as a function of the a-angle value. 

Representative conditions are: 

1. The isoactivity condition. 

2. The minimization of the overall Gibbs energy 
of mixing. 

3. The minor common tangent plane criterion. 

In this respect, note that the global maximum of the area A, 
among all maxima obtained at different a-angles, is not an 
equilibrium condition to find the tie-line a-angle, as discussed 
by Elhassan, et. a[.[5l 

Next, the results obtained from combining the vector meth­
od with two different equilibrium conditions-isoactivity, 
and minimization of the overall Gibbs energy of mixing-are 
presented for the example previously discussed. 

The lsoactivity Condition 

In Figure 3, the values of the activity objective function, 
O.F.(a) using the vector method calculated by comparing the 
two points with a minor common tangent line for different 
values of the a-angle, have been graphically represented as a 
function of the a-angle for the methanol ( 1) + diphenylamine 
(2) + cyclohexane (3) system at 25 °C, and the mixture 
point of the previous example. The comparison in Figure 
3 of the three different approaches used to find the ternary 
tie-line shows that a sharper minimum, corresponding with 
the "true" tie-line obtained from the global mixture con­
sidered, is obtained when the vector method is used. Using 
this method, the true solution is obtained without multiple 
or false solution problems. 

On the other hand, it is very important to underline that 
when the vector method is used both the isoactivity and com­
mon tangent line conditions are not simultaneous [as is the 
case of Eq. (6)] but sequential: 

1. The two compositions 1 and 11 in Figure 4, with the minor 
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common tangent line, are obtained for each a-angle. 

2. The minimum of the activity objective junction, cal­
culated comparing these two compositions [Eq. ( 3)], 
as a junction of the a-angle, is located using, e.g., the 
Newton-Raphson method. 

Therefore, when the isoacti vity condition is combined with 
the common tangent line criterion, either simultaneously 
[Eq. (6)] or sequentially (vector method), a more efficient 
equilibrium calculation can be carried out, avoiding false 
solutions with very low values of the activity objective 
function. 

Minimization of Overall Gibbs Energy of Mixing 

The vector method with the equilibrium condition based on 
the minimization of the overall GEM has also been evaluated. 
When the lower common tangent points to the (gM) function 
are obtained in each line from r to s, the value of the dimen­
sionless GEM for the overall composition M can be calculated 
(gTL in Figure 4(b) where TL denotes the tangent line). The 
minimum of the gTL curve vs. a-angle corresponds with the 
minimization of the global Gibbs energy and, therefore, with 
the true tie-line obtained from the overall composition M. 
The results obtained applying this procedure to the previous 
example are shown in Figure 5. The procedure converges to 
the solution without false tie-line problems. The false tie-lines 
obtained for this system using only the isoactivity criterion 
have also been included in Figure 5. 

a-angle 
-0.41 

3. 5 3.10 3.15 3.20 3. 5 
-0.411 

-0.412 o False tie-lines 

-0.413 

-0.414 

..J 
I- -0.415 

C') 

-0.416 

-0.417 

-0.418 

-0.419 

-0.42 

Figure 5. Dimensionless global Gibbs energy of mixing 
obtained from the common tangent line (gTLJ as 

a function of the a-angle for the ternary 
tie-line calculation example. 
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TOPOLOGICAL ANALYSIS OF TERNARY GM 
CURVES AND SURFACES 

The MATLAB (Math Works, Inc.) tool for the three-dimen­
sional representations is used by the students to represent 
the dimensionless GEM (gM) in all the composition space. 
Figures obtained are discussed in the computer laboratory, 
while looking for the best views to see the most important 
topological aspects of this function. In Figure 6, one of these 
representations is shown as an example that corresponds with 
the system methanol (1) + diphenylamine (2) + cyclohexane 
(3) at 25 °C. The gM surface for this system is very flat, which 
favors the false solution appearance. The three false tie-lines 
for this system have been included and a magnification is 
shown. 

Furthermore, the sectional plane of these 3D figures passing 
through the calculated tie-line can be represented to validate 
the tangent line condition and show the form of the QM/RT 
surface in the direction of the tie-line. 

CONSTRUCTION OF LLE DIAGRAMS 
After one of the previous strategies for calculating one tie­

line is implemented in the computer, the construction of LLE 
diagrams is carried out by the successive calculation of tie­
lines, until the homogeneous region is reached. For example, 
the procedure sketched in Figure 7 can be used to obtain 
the next tie-lines. After the first ternary tie-line is calculated 
from the initial mixture M

1
, its middle point is obtained and 

a new initial mixture point M
2 

is considered, maintaining 
the same ratio of molar fractions in components 1 and 3, and 
increasing component 2 by a constant amount (Lixz). The new 
initial mixture, M

2
, will be the heterogeneous composition 

for the calculation of the second ternary tie-line, and so on 
for mixture points~' M

4
, M

5
, ... until the homogeneous 

region is reached. 

If the vector method is used for the LLE calculation, the 

.....J -0.5 

b'.: z _, 
1-
0::: -1 ,5 

E 
(.'.) -2 

•2.5 

-3 

' 

Mixture Gibbs Energy Surface 

0 O x3 

Figure 6. Representation of GM/RT surface for methanol(1) + 
diphenylamine(2) + cyclohexane(3) at 25 t:', using the NRTL 

equation, and a magnification of the region where the 
true and false tie- lines are located. 
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2 

1 

Figure 7. Graphical explanation of a possible 
method to set new initial mixtures to 

construct the entire LLE diagram. 

3 

maximum and minimum values of a-angles that limit the 
area where the solution is confined must be calculated using 
the information of the previous tie-line calculated. As an 
example, in Figure 7 this area is shown where the tie-line 
passes through the initial mixture M

2
, where the limiting 

lines, r
2 

and s
2

, are obtained connecting the point M
2 

with the 
conjugated phases of the first tie-line through M

1 
(i.e., a

1
, b

1
), 

previously obtained. 

This sequential procedure finishes when the overall mixture, 
Mi, is in the single-phase region. To detect this situation, we 
propose evaluating the sign of the second derivative of gM 

to know whether two common tangent points exist. The 
method we use is an extension for ternary systems of the 
condition for the stability of a binary mixture. 

For a homogeneous binary mixture at constant T and 
p, the second derivative is always positive [Figure 8(a), 
next page]: 

la;:~ J T > o 
p, 

(7) 

On the contrary, for a global mixture that splits into two 
liquid phases, the second derivative has negative values. To 
be exact, the negative area in the representation of ( a2gM / 
ax2

)PT vs. x corresponds to compositions located between 
the two inflections points, A and B, on the gM curve shown 
in Figure 8(b). 

This property of the second derivative can be extended 
to the ternary systems and adapted to the vector method. 

223 



For a constant value of the a-angle (or the slope D), the 
system can be considered as pseudobinary and, therefore, 
if the second derivative (a2gM / ax2

\,T,D is always positive 
in the sectional plane that corresponds with the a-angle 
set, no two common tangent points to the gM will be found. 
The situation will be similar to that represented in Figure 
8(a) for a binary system, and the next a-angle value will 
be considered for the tie-line search. When the mixture 
point, M, is within the single-phase region, the sign of the 
second derivative is always positive for all the values of 
the a-angle, from the minimum to the maximum one, and 
the tie-line calculation procedure has finished. 

Also, we use the second derivative criterion with another 
different purpose, to limit the composition values where the 
two common tangent points must be located. For example, 
if the situation shown in Figure 8(b) is considered, the 
search will be confined to the compositions from x = 0 to 
the point A, for one phase, and from the point B to x= I for 
the conjugated phase. Therefore, the compositions located 
between the two inflection points represented as A and B 
are removed from the calculations, thus avoiding possible 
trivial and false solutions and making the convergence of 
the calculations easier. 

Considering all the information previously presented, students 
construct the LLE diagram of the methanol (I) + diphenylamine 
(2) + cyclohexane (3) ternary system at 25 °C, used to illustrate 
all the different parts discussed here. The results obtained are 
available on the Web (<http://iq.ua.es/~gcef/SM_TFIS.pdf>) 
as supplementary data to this paper, in Table IS. Furthermore, 
sectional planes passing through the calculated tie-lines in 
Table IS are represented in Figure IS for the best view of 
the gM function, and also to validate the results obtained from 
the common tangent line criterion viewpoint. For all sectional 
planes that contain the ten calculated tie-lines, the equilibrium 
points have a common tangent line to the gM curve. This is a 
necessary, but not sufficient condition, for ternary LLE and 
can be helpful to reject false solutions. 

Also, in the evolution of tie-lines I to 10, students can 
observe how the cavity between the Gibbs energy curve and 
the common tangent line is decreasing [lined area in Figure 
I(a), showing how the LL region is disappearing, the limit 
situation being similar to that represented in Figure I(b)]. 
The difficulties found in calculating tie-lines very close to 
the plait-point are explained in this context. 

CONCLUSIONS 
An exercise to compute LLE data and to construct the phase 

diagram for ternary systems is presented. The NRTL equa­
tion is used to model the activity coefficient, but any other 
model can be used and the same conclusions would be made. 
Some problems are illustrated that arise when the isoactivity 
equilibrium condition is used in the LLE calculations. A much 
more efficient condition is obtained when isoactivity is com-
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Figure 8. Variation of gM, (dgM I dX)p,T and (d2gM I ax2Jp,T 
with composition for a binary system: (a) completely 

miscible binary, and (b) partially miscible. 

bined with the common tangent line criterion, avoiding false 
solutions that correspond with very low values of the activity 
objective function. The Solver optimization tool included in 
the Excel worksheet can be used by students to solve this 
LLE exercise. The successive calculation of tie-lines allows 
the students to obtain the ternary composition diagram. Also, 
3D figures are represented to discuss the topological aspects 
of the dimensionless Gibbs energy of mixture function (gM) 
and to validate the results obtained from checking the common 
tangent line criterion. Two ideas should be emphasized: 

1. The isoactivity condition must be used very carefully 
for LLE to avoid false solutions. 

2. The topological concepts related with the equilibrium 
condition formulated on the basis of the GM/RT junc­
tion are very useful to validate the obtained solutions. 
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