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An important question stimulated the fundamental de
velopment of multicomponent transport theory: How 
many independent transport properties characterize 

coupled diffusion? The answer was provided by Onsager, who 
used fluctuation theory to find reciprocal relations among the 
transport coefficients. The Onsager reciprocal relation connects 
thermodynamics, transport theory, and statistical mechanics. 
To illustrate this connection, a relation is derived here for the 
Soret and Dufour effects in binary ideal-gas diffusion. 

Reciprocal relations may be appropriately introduced in 
graduate courses on thermodynamics, transport, or statistical 
mechanics. The subject can provide a capstone to a thermo
dynamics course, where it shows how thermodynamic meth
ods extend to transport processes. In a transport course, the 
eventual development of reciprocal relations can motivate a 
formulation of thermodynamically consistent multicomponent 
transport laws. 

Statistical mechanics is probably the most relevant field. 
As well as showing the importance of fluctuation correlations 
when analyzing systems near equilibrium, the reciprocal 
relation introduces several elementary properties of equilib
rium correlations. In a statistical context, the derivation also 
provides a means to review topics from thermodynamics 
and transport, illustrating how these seemingly disparate 
fields relate. 

This discussion follows the method that Onsager employed 
in his seminal papers on irreversible processes_[!, 2l By inspec
tion of the system's local energy dissipation, macroscopic 
flux laws are developed to relate diffusional fluxes to ther
modynamic driving forces. Conservation laws for heat and 
mass then provide a set of differential equations that describes 

how macroscopic nonequilibrium states evolve. The Onsager 
regression hypothesis allows this system of equations to be 
applied to the time evolution of correlations between mi
croscopic fluctuations of composition and temperature. A 
reciprocal relation arises from the principle of microscopic 
reversibility, which requires symmetry of equilibrium fluc
tuation correlations. Equilibrium statistical mechanics can 
then be used to express the reciprocal relation in terms of 
macroscopic properties. 

Flux laws that account for the Soret and Dufour effects in a 
binary gas include four phenomenological properties. These 
are the binary diffusivity 0f

2
, the thermal conductivity k, and 

two additional coefficients for the Soret and Dufour effects. 
Onsager's procedure provides a reciprocal relation among 
them, showing that only three are independent. 
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FLUX LAWS 

Flux laws must satisfy several requirements. Near equilib
rium, fluxes are linear with respect to diffusion driving forces, 
and vice versa. Also, when all forces are zero, all fluxes are 
zero. Proper diffusion laws should involve kinematically 
independentfluxesandthermodynamicallyindependentdriv
ing forces. 

The diffusion of component i can be induced by gradients 
of chemical potential µi (Fickian diffusion), temperature T 
( the Soret effect), or pressure p (centrifugation). A generalized 
thermodynamic force which drives the flux of i is 

( 1) 

where ci is the concentration of i, Mi its molar mass, and Si its 
partial molar entropy; pis the density. The term with Vp cor
rects for the equilibrium chemical potential gradient of pure i 
in a gravitational or centrifugal field; the term with VT makes 
di independent of the reference state for entropy in µi. Because 
the Gibbs-Duhem equation requires that Ii di= 0, the number 
of independent mass-transfer driving forces is one fewer than 
the number of components. 

For a binary system, the entropy-continuity equation is 

p DS = -V .( ~+ S1J1 + S2J2 I+ g 
Dt l T ) 

(2) 

where tis time, § is the specific entropy, Ji is the molar flux 
of i relative to the mass-average velocity, and g is the local 
rate of entropy generation; q' is a derived quantity, obtained 
by subtracting the latent heat carried by diffusing species from 
the total heat flux.* This equation can be manipulated with 
the material, momentum, and energy continuity equations, the 
first law of thermodynamics, and vector identities to eliminate 
all of the substantial derivatives. The energy dissipation per 
unit volume, Tg, then takes the formt 

Tg=-q'-VlnT+(v 1 -vz)-d 1 (3) 

where v
1 
and v

2 
are the component velocities. Thus q' and 

- V lnT arise naturally as a flux and driving force associated 
with heat transfer. 

To write general flux laws for an isotropic system, the two 
fluxes in Eq. (3) can be related to the two driving forces in 
linear, homogeneous relations, with four phenomenological 
proportionality constants (i.e., diffusion coefficients), L , qq 
Lq 1, L1q, and L 11 : 

q' -L"" Vln T + L" 1d 1 

-L," Vln T + L 11 d 1 

(4) 

Here L
1
q accounts for the Soret effect, and Lql' the Dufour 
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effect. (In an anisotropic system, each of the Lii would gener
ally be a tensor.) 

For a binary ideal gas at uniform pressure, Eqs. (4) be
come 

q' -kVT-RTcTLq1Vy1 

~ -L1"VlnT---Vy1 

(s) 

Y,Y, 

where yi is the mole fraction of component i and cT = c1 + cz- In 
Eqs. (5), L /T has been identified ask (the thermal conduc-qq 
tivity), and RT L

11 
as 0f

2 
/y

1
y

2 
(proportional to the binary 

diffusivity), so that Fourier's and Fick's laws appear when 
one of the driving forces is absent. The reciprocal relation 
allows a restatement of these flux laws in terms of only three 
transport properties. 

TRANSPORT AND MOMENTS 

Later it will be important to know how conservation laws 
for mass and energy control system evolution. This can be 
elucidated by describing a transient macroscopic variation 
within the system. General solutions of the continuum trans
port equations for arbitrary initial variations of composition 
and temperature specify how composition changes, with 
the assumption in the present example that the system is at 
uniform pressure. 

Continuity equations govern both components and the 
thermal energy. The choice of system dictates an isobaric 
energy equation. Due to isotropy, it is sufficient to treat dif
fusion in one direction. To simplify the analysis, consider a 
one-dimensional slab of length L. Assume that displacements 
from equilibrium are sufficiently small that the governing 
equations can be expressed in forms linearized around a final 
equilibrium state, denoted with a superscript co. 

A difference between the two equations that express compo
nent continuity yields a single equation in terms of (v 

1 
- v z), and 

the sum of mole fractions, y
1 
+ y

2 
= 1, can be used to eliminate 

derivatives of Yr Thus two transient equations of the form 

1 aT kw a'T RC a' ql Y, +----
r at c;c;r ax' coo ax' 

(6) p 

ay, y~y;L:" a'T Q)I'. 00 a'y1 + --
at r ax' 12 ax 2 

govern y
1 

and T. Here x denotes the position within the slab. 

It is preferable to simplify Eqs. (6) so that they depend only 

* If the tntal heatfiuxisq, thenq' = q- X; Ii, J;, where Ii, is the partial 
rrwlar enthalpy of i. 

t For a simple example of this procedure, see Bird, Stewart, and 
Lightfoot/31 A detailed derivation is given by Hirsch/elder, Curtiss, 
and Bird/41 
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on time. To do this Onsager examined the moments of y 
1 
and 

T - that is, their distributions integrated over position. The 
slab is closed and insulated; its total contents of material and 
energy are constant in time. This manifests itself as a property 
of the moments, such as 

L 

J [ y 1 ( t, x )- y~] dx = 0 (7) 

A similar equation holds for [T (t, x) - T00

]. 

Fourier series obey the properties of the moments and can 
be used to describe y 

1 
and T. Cosine series meet the additional 

requirement that both fluxes are zero at x = 0 and L. Series 
expansions of the temperature and composition distribution 
are given by 

T-T
00 

~am (t)cos( m~x) r 
(8) 

~bJt)cos( m~x) Y, -y, 

These have been written so that both a and b are dimen-
m m 

sionless. 

Substitution of Eqs. (8) into Eqs. (6) yields a system of 
ordinary differential equations. To separate the Fourier 
components by wave number m, multiply each equation by 
cos(mnx/L) and integrate with respect to x from Oto L. The 
orthogonality of the cosine function shows that different 
harmonics are decoupled, and one obtains 

(9) 

where,:= m2 n2 t/L2. Eqs. (9) can be solved directly, yielding 
functions that describe how the amplitudes of arbitrary initial 
distributions decay with time. This general formulation of the 
macroscopic problem sets the stage for statistical analysis. 

STATISTICAL MECHANICS 
AND TIME CORRELATIONS 

At macroscopic equilibrium, constant values T = T00 and 
y1 = y~ prevail throughout the slab. This view belies the 
microscopic reality. As time passes, particles move randomly, 
causing local variations in the temperature and composition. 
Imagine taking a snapshot of the slab at equilibrium and 
mapping out T and y1 with position; the distributions will be 
nearly, butnotexactly, uniform. Suchan instantaneous sample 
is called a fluctuation state. Equilibrium itself is an aggregate 
of transient fluctuation states. 
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Reciprocal relations may be appropriately 
introduced in graduate courses on thermody
namics, transport, or statistical mechanics. 

Onsager's regression hypothesis states that fluctuations 
evolve according to the laws that govern macroscopic varia
tions. In practice, the regression hypothesis allows am and bm 
to be used as descriptors of microscopic states. For instance, 
it says that Eqs. (9), which govern macroscopic variations, 
also apply to transient fluctuation states. 

The total set of available fluctuation states is called the en
semble. In a fluctuating equilibrated system, the macroscopic 
properties differ from those of a system with uniformly dis
tributed intensive properties. Averages over the ensemble of 
fluctuation states quantify how the macroscopic properties of 
a fluctuating system differ from those of a uniform system. 

Correlations measure the degree to which two attributes 
of a system vary together. The ensemble average of a pair 
of fluctuations, such as (am bm ), indicates how am and bm are 
correlated within the ensemble- that is, for a fluctuation state 
selected at random, how much one expects the value of am to 
correspond with thatofbm. With the regression hypothesis, the 
equations from transport theory can also be used to analyze 
fluctuation correlations. 

The average ( am (TO) bm (TO)) defines the initial correla
tion between am and bm at time i:

0
• This quantifies the degree 

to which two fluctuations are expected to be correlated for 
instantaneous observations of the system. A more general 
correlation involves fluctuations observed at different times. 
The time correlation between am at ,:

0 
and bm at a later instant 

,:0 + ,:, 

(10) 

is expressed with the shorthand notation Cab (i:). Note that Cab (0) 
represents the initial correlation, which is also written with 
the shorthand notation C~b-

To apply the regression hypothesis toEqs. (9),multiply each 
successively by am (i:

0
) and bm (,:

0
), then take the ensemble 

average,* yielding four differential equations for the time 
correlations. Then find solutions of this system for arbitrary 
initial conditions. With the simplifying notation 

a = __J(_ ± .®;'; and 
± 2c~c; 2 

2 y~y;RL:qL~l 
a_+ e 

p 

(11) 

:f: For the time being it is sufficient to note that ( ) is a linear operator. 
The initial correlations section discusses the averaging operation 
in more detail. 
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the time correlations become 

caa ( 1:) = C~ae-ex+" [ cosh( a 01: )- :: sinh( a 01:)] 

eR CO ql -ex+1 "nh( ) - ab ------;:,-;;;- e Sl <Xo 1: 
a 0Cr 

Cba ( 1:) = C~ae-ex+" [ cosh( a 01: )- :: sinh( a 01:)] 

eR 
-C0 ~ e -ex+ 1 sinh ( a 1:) bb Coo 0 

<Xo P 

Cab ( 1:) = C~be-ex+" [ cosh( a 01:)+ :: sinh( a 01:)] 

Loo oo oo 
Co 1qY1 Y2 -ex, .nh( ) - aa e + Sl a 01: 

<Xo 

Cbb ( 1:) = C~be-ex+" [ cosh( a 01:) + :: sinh( a 01:)] 

Loo oo oo 
co 1qY1 Y2 -ex+1 "nh( ) (12) - ba e Sl <Xo'l: 

<Xo 

Initial correlations decay exponentially, with decay constants 
(a++ a0) and (a+ - a 0). (Thermodynamic stability requires 
that both constants be positive.) 

MICROSCOPIC REVERSIBILITY 
AND RECIPROCAL RELATIONS 

In an equilibrium ensemble, time correlations have symme
try properties that lead to reciprocal relations. These properties 
arise from the principle of microscopic reversibility. 

Onsager's interpretation of this principle is that, at equilib
rium, molecular processes occur with equal likelihood in the 
forward and reverse directions. That is, the expectation that 
an event observed now will be followed ,: later by a second 
event is the same as the expectation that it was preceded ,: 
ago by the second event, or 

This property is also called time-reversal symmetry_l5l 

Because equilibrium is a stationary condition, time correla
tions are insensitive to shifts of ,:0 in Eq. 10. Replacement of 
i:0 with i:0 + ,: leaves correlations unchanged. Thus 

(am (1:o)bm (1:0-1:))=(am (1:0 +1:)bm (1:0)) (14) 

which is also known as the principle of time-translational 
invariance. 

With Eq. (13), the principle of time-translational invariance 
can be used to show 
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Figure 1. Qualitative behavior of the decay of correlation 
C

00 
with correlation time r . 

(am (1:o)bm (1:0 +1:))= (am (1:0 +1:)bm (1:0)) 

or cab(1:)=Cb,(1:) (15) 

which phrases the principle of microscopic reversibility: the 
expectation that a first event observed at ,:0 will be followed 
,: later by a second event is the same as the expectation that 
the second event observed at ,:0 will be followed ,: later by 
the first. [6l 

Figure 1 presents the qualitative behavior of time correla
tion Caa The regression hypothesis showed that correlations 
decay exponentially. The decay is symmetric in the forward 
and reverse directions because of microscopic reversibility. 

A reciprocal relation is obtained directly from the statement 
of microscopic reversibility in Eq. (15). Equating cab to cba 
from Eq. (12) relates the transport properties to the initial 

correlations c~a ' c~b ' and c~b (= c~a) through 

c
00 00 00 

( 0 j [ coo Q)I',

00 

00 l ( 0 j Loo = rY1 Y2 caa Loo + _p_l_2 -~ cab 
ql R co lq R R 00 co 

~ ~ ~ 
(16) 

This is the most general statement of the reciprocal relation 
for thermal diffusion in an isotropic, isobaric, binary ideal-gas 
mixture. All four of the transport coefficients are involved. 
The result is independent of,: ; it is also independent of m, 
as shown shortly. 

INITIAL CORRELATIONS 
To get the magnitudes of the initial correlations in terms of 

macroscopic quantities, Onsager applied statistical methods to 
equilibrium fluctuations, referencing Einstein's statement that 
fluctuation states are equally probable_[7J This axiom allows 
the probability density of fluctuation states in the ensemble 
to be simply related to a thermodynamic potential. Once 
the probability density is known, it can be used to compute 
ensemble averages. 
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Because the system in question here is adiabatic, the dis
tribution of states within the ensemble is determined by the 
entropy S. The principle of equal probability shows that the 
entropy of a system with Q available states is given by 

S = kB lnQ (17) 

where kB is Boltzmann's constant. Correlations between fluc
tuations introduce some microscopic order; therefore, when 
the composition and temperature fluctuate in an adiabatic 
system, the entropy does as well. If entropy itself fluctuates, 
Eq. (17) suggests that the probability density of fluctuation 
states within the ensemble, p, can be written as 

(18) 

where N is a normalization factor to make the sum of p over 
all accessible S equal to unity. 

The ensemble average of a property f, (f) , is given by 
integrating fp over all states (over all values of am and bm, at 
every m, at a given instant). For instance, 

To implement integrations like this one, S must be stated in 
terms of the fluctuation amplitudes am and bm. 

In the present example of a binary ideal gas, the system 
entropy can be expressed as an integral over the slab volume. 
It depends on T and y

1 
through§ 

For small displacements from uniform distributions, S can be 
found in terms of a and b as follows. Let S00 be the system 
entropy when y

1 
and T aremuniform. Express y

1 
and Tin the 

integrand of Eq. (20) as linear perturbations around Y~ and 
T00

• Then insert the Fourier series from Eqs. (8) for the linear 
perturbations and perform the integration. Constant terms 
contribute to S00

, and linear terms vanish, leaving only qua
dratic terms. (For large systems, terms of higher than second 
order are negligibly small.) Thus 

(21) 

where~ is the total number of gas molecules in moles. This 
form of S has the correct qualitative properties; any nonzero 
a (i: ) orb (i: ) lowers the entropy from its maximum value 

m O m 0 
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when am (i:0) = bm (i:0) = 0. 

By following the definition of the ensemble average, with 
f = am (i:

0
) bm (i:

0
) and p given through Eqs. (18) and (21), one 

finds that the cross-correlations are zero, 

c0 =C0 = 0 ab ba (22) 

The other initial correlations, found with f = am (1:
0
) am (1:

0
) 

and f = bm (i:0) bm (i:0), are 

c0 = ~ and 
aa y~y; 

o Ame; (23) Cbb=--
R 

Note that they are always positive. In these expressions, Am 
is a constant, which depends in a rather complicated way on 
the coefficients in Eq. (21), as well as S00 and the probability 
normalization factor N. More significantly, Am may depend 
on m-but its specific value is never needed because Eq. 
(16) involves only ratios of correlations. Thus the prefactor 
cancels, and the reciprocal relation is independent of the 
wavenumber. 

Values of the initial correlations from Eqs. (22) and (23) 
can be inserted into Eq. (16), revealing that 

(24) 

This establishes the desired reciprocal relation. The transport 
coefficients for the Soret and Dufour effects equate. 

Proper application of Onsager's principles, as demonstrated 
above, may not always lead to such a simple result. In general, 
a reciprocal relation yields only the same number of relation
ships among transport properties as a symmetry of the matrix 
L. The symmetry expressed by Eq. (24) arose from Eq. (16) 
in large part because the system is an ideal gas, for which the 
fluctuation correlations have particularly simple properties. 
When considering reciprocal relations for nonideal gases or 
liquids, activity coefficients must be incorporated into the 
constitutive laws for chemical potential. These additional 
thermodynamic relations make activity-coefficient gradients 
appear in Eqs. (5), and can lead the cross-correlations to be 
nonzero, complicating the analysis somewhat.[8l It has not 
been established conclusively that this complication leads to 
transport-coefficient asymmetry. 

DISCUSSION 
Onsager reciprocal relations are a compelling topic for 

study because of the important physical concepts involved, 
the generality of their derivation, and the diverse fields which 
they interrelate. 

§ For simplicity, the possible dependences of c T and C, on y 
1 

and T 
have been neglected while deriving Eq. (20). 
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In this analysis, the mass-transfer driving forces were ex
pressed in terms of mole fractions, and the flux law for mass 
transfer was expressed relative to the velocity of component 
2. But Eq. (16) results if flux laws are written in terms of any 
other complete set of composition variables (mass fractions, 
molar concentrations, etc.), or with any other reference veloc
ity for the fluxes (the mass-average velocity, number-average 
velocity, etc.). When linearizing around a uniform state, the 
same reciprocal relation is obtained no matter which variables 
are considered. 

To find expressions for the initial correlations, the system 
was assumed to be adiabatic. For isothermal, isobaric systems 
one should express the probability density of states in terms 
of the Gibbs free energy; for isothermal systems with fixed 
volume, one should express p in terms of the Helmholtz free 
energy. This does not affect reciprocal relations for ideal-gas 
mixtures, but in nonideal cases the thermodynamic potential 
chosen for ensemble averaging may affect the initial cor
relations. [SJ 

Another issue is that the initial correlations appear to have 
the same value at every m. Since m ranges to infinity, this 
seems to say that the sum of fluctuation correlations is infinite. 
In fact, the summations in Eq. (21) must terminate at some 
large value of m, where the wavelength of fluctuations ap
proaches molecular dimensions. The macroscopic theoretical 
result which was used to derive Eq. (21) does not properly 
describe this regime. 

The Onsager reciprocal relation is often cited as a general 
proof of cross-coefficient symmetry in coupled transport 
laws. It is important to realize that microscopic reversibility, 
which implies time-correlation symmetry, does not necessar
ily imply a consequent symmetry of macroscopic transport 
properties. Given thermodynamically rigorous transport laws, 
it may be correct to assert transport-coefficient symmetry in 
macroscopic transport models. But no statistical proof based 
on the regression hypothesis substantiates this assertion for 
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the equations typically used to describe simultaneous heat, 
mass, momentum, and charge transport within nonideal, mul
ticomponent solutions. This issue was first raised by Coleman 
and TruesdeW9l and has stood umesolvedfor almost SO years. 
Recent attempts have been made to address the problem, but 
at present the discrepancy remains.[8, 10, 11 l 
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