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The last few lectures of an undergraduate class in fluid 
mechanics offer instructors an opportunity to teach 
students some advanced topics that go beyond the 

traditional course material. [ll Fluid-particle flows, where both 
the fluid and particle are in motion, are prevalent in many 
industries including the chemical, materials, and energy 
industries. [ZJ In the pharmaceutical and biotechnology indus
tries, which are hiring unprecedented numbers of chemical 
engineers, nearly all manufacturing facilities involve multiple 
processing steps that include fluid-particle flows. In spite of 
the industrial importance of fluid-particle flows, they are 
rarely covered in any depth in a fluid mechanics course_[3l 

Moreover, it is difficult to find examples of fluid-particle 
flows where undergraduates have the necessary background 
to handle the equations and analysis that is necessary if more 
than a survey of the material is to be achieved. 

The hydrodynamic stability of a fluid in motion is a fun
damental concept in fluid mechanics_[4l In an undergraduate 
fluid mechanics class, students are usually introduced to hy
drodynamic stability during discussions of the transition from 
laminar to turbulent pipe flows Pl but a detailed understanding 
of hydrodynamic stability is not critical for most single-phase 
flow examples. In multiphase flows, however,flow instabili
ties, density waves, and nonuniform flows are generic. Thus 
controlling and understanding flow instabilities is crucial for 
numerous industries that process fluid and particles. 

Here we present a fluid-particle example, a gas-fluidized 
bed, that has been taught at Rutgers in the fluid mechanics 
class. It relies on a student's knowledge of the Navier Stokes 
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equations together with Taylor series and complex numbers 
to perform a fluid-particle stability analysis. At Rutgers, 
students have already learned Taylor series and complex 
numbers in a previous math class by the time they take the 
fluid mechanics class in their junior year. The fluid- particle 
flow problem presented for analysis has been simplified as a 
single-phase compressible fluid acted upon by a force repre
senting the fluid-particle drag force, and analytical solutions 
can be obtained for this simplified system. Thus the model 
looks like the Navier Stokes equations with an extra term. The 
problem could be easily implemented in a Fluid Dynamics or 
Transport Phenomena course in the chemical or mechanical 
engineering curriculum or an Applied Math course in Fluid 
Dynamics. In general, we would like to provide students with 
a fundamental understanding of fluid-particle flows and linear 
stability theory. 
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Figure 1. Fluidized bed. 

In fluid mechanics, stable flow is best described as flow that 
will be maintained in spite of small disturbances or perturba
tions to the flow. The flow is unstable if a small disturbance 
will lead to the flow to progressively depart from the initial 
base state.[6l The study of hydrodynamic stability thus involves 
determining when the state of fluid flow becomes unstable 
to small perturbations, and how instabilities evolve in space 
and time. [4, 7l 

In stability theory, flow behavior is first investigated by 
performing a linear stability analysis of steady state solutions 
satisfying appropriate equations of motion and boundary 
conditions. The stability of such a system is determined by ex
amining its reaction to all possible infinitesimal disturbances 
to basic steady flow. These results provide the groundwork 
for further investigation of development of instabilities and 
evolution of unstable waveforms. Since these methods of 
analysis involve the linearization and numerical integration 
of nonlinear partial differential equations of motion, this can 
lead to many technical difficulties in all but the simplest of 
flow configurations, and thus is difficult for undergraduate 
students. To avoid these difficulties, the following problem 
demonstrates how the stability of a two-phase flow system can 
be examined using a single-phase compressible flow model, 
which has been shown to capture the salient features of insta
bility development in the physical system it represents. 

PHYSICAL PROBLEM 
The gas-fluidized bed consists of a vertical column contain

ing particles supported by a porous bottom (distributor) plate 
(Figure 1 ). When a gas is introduced to the column through the 
distributor, the particles remain stationary until the drag force 
exerted by the upward flow of gas is balanced by the weight 
of the bed. At this point, the particles become mobilized, and 
the bed transitions from being packed to fluidized. In some 
cases, the bed can expand uniformly at points beyond the mini
mum fluid velocity umr with relatively little particle motion 
(see Figure 2a depicting uniform or particulate fluidization). 

180 

For most cases, however, uniform fluidization is restricted 
to a narrow fluidization velocity range bounded by umr and 
the commencement of bubbling, umb' At this point, the bed 
becomes hydrodynarnically unstable to small perturbations 
and lends itself to the formation of vertically traveling void
age waves that can become spatially amplified in the bed and 
bring about complex and turbulent flow behavior (see Figure 
2b depicting bubbling or aggregative fluidization). 

In the fluidization research, instability behavior in gas
fluidized beds has been examined by hydrodynamic stability 
analysis since the early 1960s. Flow instabilities in these 
systems are in the form of "traveling waves." The physical 
manifestation of the traveling wave solution in a fluidized bed 
takes the form of particle free voidage waves (e.g., bubbles, 
slugs, and other waveforms), as well as dense particle-cluster 
formations, which can move violently throughout the bed 
and dramatically impact process performance and safetyl2l 

(see Figure 2b). Since fluidized beds are of tremendous im
portance in industry, the onset and behavior of the unstable 
flow regime must be well characterized by analysis of the 
equations governing fluid and particle flow. 

Continuum arguments have been used to develop equations 
of continuity and motion for describing the behavior of the 
fluid and particle phases in a similar way to the development 
of the Navier-Stokes equations for Newtonian single phase 
flows_[sJ The multiphase continuum approach has been used 
quite successfully for predicting the onset and propagation 
behavior of instabilities in gas-fluidized beds. Recently, it has 
been shown that the salient features of instability develop
ment in gas-fluidized beds predicted using the multiphase 
continuum approach are also captured using a single-phase 
flow model for a compressible fluid acted upon by a density 
dependent force provided by the drag force. [9, 10J This simpli
fied model takes a form similar to the Navier Stokes equations 
for fluid flow. While this problem is quite significant in itself 
for gaining physical insight into the development of density 
waves in fluidized beds, it also presents an opportunity for 
chemical engineering students to develop analytical skills for 
examining the hydrodynamic stability of a fluid-particle flow 
using a simple flow model. 

MODEL EQUATIONS 
The underlying assumption of the Johri & Glasser[9

, 
10J model 

is that a nonuniform suspension of particles fluidized by a gas 
can sometimes behave (in the continuum) like a Newtonian 
compressible "fluid" whose motion can be related to the 
solids in a fluidized bed. From this point on the term "fluid" 
will be used in this context where "gas" refers to the fluidiza
tion medium. Based on the assumption that the inertial and 
viscous force terms in the gas phase equation are negligible, 
these authors simplified the multiphase model to equations 
of continuity and motion for a single fluid having variable 
density. Continuum equations of continuity and motion for 
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the fluid are respectively written as[10l: 

: +V·(py_)=O 

pl~ +y•Vy_J= .E-V ·g+ p~ 

where the density of the Newtonian fluid (p) varies linearly 
with the solids volume fraction ¢ as p = P/P , and Ps is 
the absolute particle density. The fluid velocity vector is 
represented by y_ ; g is the fluid phase stress tensor; and ~ 
is the gravity force vector. The density dependent force .E 
represents the drag force exerted on the particle assembly by 
the gas flow. Eqs. (1) and (2) represent equations of continu
ity and motion for a compressible fluid and are exactly what 
students would be exposed to in a course in fluid mechanics 
except for the additional density dependent force, ,E . 

Continuum arguments provide constitutive relations for the 
various terms. Johri & Glasser[lOJ adopted a suitable closure for 
g motivated by the work of Anderson & Jackson,D1l which 
takes a form analogous to that for a Newtonian fluid: 

g=PJ-µ[vy+(vy_f-¾(v•y)J] (3) 

whereµ is the viscosity of the fluid (assumed to be constant 

Particulate Fluidization 
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in this analysis), and Pis the pressure, which is dependent on 
particle volume fraction¢, or, in this case, p . This pressure 
term is analogous to the pressure of an ideal gas, which is 
a function of gas density. We will examine flow only in the 
vertical dimension (x), in which case there is no variation in 
the other two directions (y and z) thus equations 1 and 2 are 
written as: 

l av av J BP l 4 J a
2

v p -+v- =--+F+µ - --pg 
8t ox ox 3 8x2 

(s) 

where v=vx and F=Fx. Linear forms for F and Pare adopted 
and these represent the simplest possible forms capable of 
capturing the hydrodynamic instability: 

F=Ap+B; P=Ep 

where A, B, and E are appropriately assigned constants 
consistent with experimental evidence of gas-fluidized bed 
behavior. 

LINEAR STABILITY ANALYSIS PROCEDURE 

As stated in the Introduction, hydrodynamic stability of a 
system is first investigated by linear stability analysis (LSA) 
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Figure 2a. (left) Particulate fluidization. 

Figure 2b. (above) Aggregative fluidization. 
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of steady state solutions satisfying the governing equations. 
We therefore begin with a linear stability analysis of the steady 
state solution. Students should perform each of the following 
steps (in their entirety) either individually or in small groups 
of two to three students. Discussion is strongly encouraged 
during the analysis to provide the students with insight into 
the system's physical behavior. Topics for discussion are 
provided within the text. 

Steady State Solution: Prove that the simplest solution 
to the set of coupled nonlinear partial differential Eqs. (4) 
and (5) represents a spatially uniform state of static "fluid" 
where the density dependent force Fis balanced by the gravi
tational force of the fluid. In particular, show that under these 
conditions v 0=0 , p= p0 and F0= p0g, where p0= P/Po and the 
subscript 'O' is used to designate conditions at steady state. 
Find numerical solutions for the steady state values of ¢

0 
and 

F
0 

in dilute beds having p
0
=220 and 440 kg/m3 and dense 

beds with p0=1100, 1210, and 1320 kg/m3 when ps=2200 
kg/m3

• Find the constant B which is chosen in accordance 
with F

0 
= p

0
g for each of these bed conditions and write 

functional forms for the linear closure for F using parameter 
values from Table 1. 

Linearization: Impose perturbations p' and v' on the 
steady state solution representing infinitesimal changes in 
density and velocity: 

p=p0 +p' v=v
0
+v' 

RewriteEqs. (4) and (5) in terms of the perturbation variables, 
and perform a Taylor series expansion about the steady state 
solution. Since the perturbations are assumed to be both small 
and smoothly varying in space and time, their derivatives are 
also small. By neglecting terms in the series involving powers 
of perturbation variables greater than one, and eliminating 
products of perturbation variables, the students should obtain 
the following linearized equations in perturbation variables 
p' and v' : 

ap' av' -+p -=0 
ot O ox 

ov' ,ap' [ I l I l4J82

v
1 

p -=-P -+ F -g p +µ - -=0 
0 8t O ox O 3 8x2 

(s) 

where: 

We seek a solution to Eqs. (7) and (8) in the form of plane 
waves since in real fluidized beds the development of the 
density waves can be observed in the bed: 

p' = pexp( st )exp( i"') v' = vexp(st)exp(i"') ( 10) 

where p and v are (complex) amplitudes of the pertur-
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bations in density and velocity respectively, and "' is the 
wavenumber of the disturbance (in one dimension x), having 

real components, whose wavelength ,\ = 21r I H. In general, 
s is complex, s = CT± wi , where the imaginary part is used 
to determine wavespeed (c) according to the relationship 
c = w I"' ' and the real part determines the growth or decay 
rate of the wave with time. If a is positive, the perturbations 
grow in time and the base state is unstable, and if a is nega
tive, the perturbations decay and the base state is stable [see 
Eq. (10)]. That is, for a positive a the base state solution will 
not be observed in practice. 

Computational Analysis: By combining Eqs. (7) and (8), 
we can reduce the linearized PD E's to a single algebraic equa
tion ins by performing the following steps: take the 8 I ox 
of Eq. (8); substitute into the resulting equation using the 

expressionfor ov' I 8x8t, 8 3v 1 I 8x3 obtainedfromcontinuity 
Eq. (7) and its derivatives to eliminate v'. The student should 
obtain a single differential equation in the density perturba
tion variable p' : 

_a2p1 =-P'a2p1 +[F'- lap' J 4µ I a3p' =0 
8t2 0 8x2 0 g ox l 3p

0
) 8t8x2 

(11) 

A solution for p' in the form of Eq. (10) and its derivative 
forms are then introduced into Eq. (11) to obtain a quadratic 
expression ins whose roots are given by 

(12) 

The resulting growth rates is thus a function of parameter val
ues p

0
, µ, F;, and P; and the wavenumber of the disturbance 

"'· Moreover, sis complex indicating disturbances propagate 
through the bed in the form of traveling waves. From Eq. 12, 
it is clear that we have analytically solved the problem, and 
numerical analysis used in most multiphase flow simulations 
is avoided. This will greatly reduce the mathematical difficulty 
and help students to focus on the stability theory and the prob
lem itself instead of the numerical analysis. Note that a sign 
error was made in Eq. (23) of Johri & Glasser[lOJ and Eq. (18) 
of Johri & Glasser[9l where the last term under the square root 
should be - not+. This error resulted in negative computed 
wavespeeds. Johri & Glasser[lOJ discusses the implications 
of wavespeed direction with respect to fluid flow in order to 
physically justify their findings. Correct signage, however, 
[as shown in Eq. (12) of this manuscript] results in computed 
wavespeeds of equal magnitude to Johri & Glasser results, but 
in the direction of fluid flow and physically realizable. 

RESULTS 

Since we are interested in distinguishing waves that become 
amplified in the bed from those that are damped out, the student 
should proceed to plot the real part of the growth rate a versus 
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wavenumber '"" using parameter values from Table 1. These 
values were chosen to represent glass beads a few hundred 
micron in diameter fluidized by air. Here, closures for F and P 
fromEq. (6) are used where F;=A and P;=E. To examine the 
density effect, the students should compare the linear stability 
of steady state solutions having low fluid densities, p

0
=220 

and 440 kg/m3 (representing dilute fluidized beds) with steady 
states having high fluid densities, p

0
=1100, 1210, and 1320 

kg/m3 (representing particle dense fluidized beds). Results for 
a high density fluidized bed ( p

0
=1100 kg/m3) are shown in 

Figure 3 where the real part of the growth rate a is plotted as 
a function of wavenumber '"" . Students should independently 
generate linear stability curves for each p

0 
value condition 

using Mathematica, MatLab or equivalent. 

As shown in Figure 3, the curve has positive growth rate a 
for a range of wavenumbers beginning at '"" =0. The growth 
rate then goes through a maximum at am, and then decreases 
to zero at a critical wavenumber '""c· Physically, this represents 
the boundary between disturbances, which become amplified 
as they propagate through the bed from those that are damped 
out. Note that the use of linear closures results in the system 
becoming more unstable as fluid density is increased, that 
is, the critical wavenumber '""c and maximum growth rate 
am both increase with an increase in p

0
. This is because the 

inertial terms, which drive the instability, increase with an 
increase in density. 

Points for discussion: What do the density dependent force 
terms physically represent? Use Figure 1 to illustrate that 
as particles move closer together in the bed to form a more 
densely packed region, the interstitial gas velocity increases 
between particles resulting in an increase in particle "drag." 
How significant is the effect of closure in the dilute and dense 
flow regimes? How might the magnitude and direction of this 

In spite of the industrial importance 
of fluid-particle flows., they are 
rarely covered in any depth in a 
fluid mechanics course. 
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Figure 3. The real part of the growth rate CT (with units 
of 1/s) versus the vertical wavenumber '"" (with units of 
1/m), computed by a linear stability analysis about the 

uniform state using linear closures for F and P evaluated 
at p

0
= 1100 kglm3

• 

TABLE2 

ChE 303 Linear Stability Survey 

force term serve to damp out or 
amplify unstable voidage waves? 
Discuss the physical significance 
of competing density effects with 
respect to stability. Why would an 
increase in the pressure gradient 
(as opposed to pressure) serve to 
stabilize the bed? How might one 
conceive of the origin and growth 
of low density cluster-like insta-

Number of students in each category (total student number= 28). 

Strongly Neutral Strongly 
Disagree Agree 

Category 1 2 3 4 5 

QI 14 11 3 

Q2 8 13 7 

Q3 3 9 10 6 
TABLE 1 

Parameter Values for the Q4 1 10 8 9 

Linear Closures QI: I learned a great deal in the lecture. 

Po 1100kg/m3 Q2: The lecture helped me understand that just because a solution is obtained using a 
µ 0.665 kg/(m.s) momentum balance doesn't mean it will be observed in practice. 

A 14.7m/s2 Q3: I feel I had adequate math background to understand the mathematical concepts 

E 0.03J/kg put across in the lecture. 

Cb 0.173m/s Q4: I recommend teaching this material to the class next year. 
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bilities versus that of bubble-like high density instabilities, 
and how is this analogous to the behavior of a compressible 
fluid? What would be the physical manifestation of unstable 
waveforms in low density and high density flow of a com
pressible fluid? What is the role of the density dependent 
force, and what effect does its closure form have? The reader 
is referred to Johri a& Glasser9, 10J for further discussion of 
the physical situation. 

EVALUATION 
The stability theory discussed in this paper has been taught 

in a chemical engineering course: Transport Phenomena I, 
at Rutgers University in 2005 and 2006. To spur students' 
interest in the stability theory, we played experimental videos 
in the beginning of the class to show the development of the 
density waves, such as bubbles and slugs in fluidized beds. 
Such videos are available on a CD from RhodesY 2l Student 
feedback in 2006 was obtained by issuing a questionnaire 
(see Table 2, previous page), in which students had to state 
to what extent they agreed with four statements on a scale 
ranging from 1, "strongly disagree," to 5, "strongly agree." 
Generally, we obtained positive feedback from students. A 
fair number of students felt that they learned a lot from this 
lecture (QI andQ2in Table3), and would recommend teach
ing this material to the class next year (Q4 in Table 3). Some 
of the comments from students included "I really enjoyed this 
class. It really sparked my interest in chemical engineering," 
"I think the explanations were valuable and showed a great 
deal of importance," and "It was good because it connected 
several courses. It is always good to see applications that 
span different classes." Most students believed that they had 
adequate math background to understand the mathematical 
concepts put across in the lecture (Q3 in Table 3). Several 
students, however, also pointed out that one lecture is not 
enough to fully understand the stability theory material. Such 
comments included "Maybe there was less time for all that 
material," and "It is a good beginning to understanding the 
material that will grow more in depth." We will focus on this 
point in future classes. 
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CONCLUSION 
We have presented a simple example of an industrially rel

evant fluid-particle flow problem, which introduces students to 
methods oflinear stability analysis involving nonlinear partial 
differential equations. This example demonstrates how the 
stability of a two-phase flow system can be examined using 
a simplified single-phase compressible flow model, which 
has been shown to capture the salient features of instability 
behavior. Students are expected to perform each step of the 
analysis, and points for classroom discussion have been noted 
to provide physical insight into the mechanistic features as
sociated with unstable flow behavior and the physical mani
festation of unstable waveforms. 
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