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INTRODUCTION

Hierarchical or nested design methodology helps 
engineers identify different sources of variation 
within their data.  Essentially, the methodology can 

be viewed as a variance decomposition technique, where the 
overall variance is separated into several components; the goal 
is to locate the most significant sources of variance.  For any 
process with multiple steps or stages, it can be useful to know 
whether the variance is equally a result of all operating stages, 
or if select process steps contribute most of the variance. 

The hierarchical design methodology and subsequent analy-
sis are very general and can be applied to many fields of study.   
However, this approach is often overlooked in the chemical 
engineering undergraduate curriculum.  We suggest that it is a 
valuable tool for students to add to their background and that 
it can be taught alongside other chemical engineering concepts 
to make good use of precious teaching time.  In addition to 
expanding their knowledge base, students can also develop 
improved problem analysis and investigation skills, gain labo-
ratory experience, and advance their communication skills.

The general concept can be introduced to students with a 
straightforward thought experiment: consider synthesizing 
some material and then analyzing the material using a prop-
erty characterization technique in the lab.  If we replicate the 
synthesis process and the characterization technique several 
times, we will not always obtain exactly the same outcome!  
Common sense dictates that there will be variability observed 
between genuine, independent replicates.  Variability can 
be imparted to the measured property from several possible 
sources of error; students can likely identify most of these 
themselves.  Sources of error may include random fluctuations 
in the operating conditions between batches/reactors, hetero-
geneity in the reactor as samples are collected, inconsistencies 
in the analytical technique, and so on.  

The original motivation for integrating chemical engineer-
ing concepts (specifically polymer reaction engineering con-
cepts) and the hierarchical design methodology came about 
during experimental design and data analysis in graduate 
student research.  Each experimental stage of polymer syn-
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thesis and characterization can introduce new sources of error, 
and this provides a tangible way for students to identify and 
quantify potential variability.  Gradually and progressively, 
the same methodology was introduced in other settings, 
including undergraduate student research projects, senior 
design projects, and lab data analysis in statistics courses.  
The most recent iteration of this approach was in the context 
of an independent research project course.  As such, the in-
structor team and the participants had the flexibility of shifting 
between the academic/theoretical side and the experimental/
laboratory side of the project.

This background is intended to provide some historical 
context, but the approaches used thus far should by no means 
be seen as the only methods of delivery.  In fact, the meth-
odology that is described in what follows is very versatile; it 
could be used as part of an undergraduate laboratory course, 
a lecture-based statistics course, a senior undergraduate 
research project, or in different stages of graduate student 
research.  In order to ensure that readers see potential to use 
this approach in a variety of settings, we have kept the con-
textual details rather general.  Of course, individual instructors 
could adapt the project at their discretion, especially given 
the diversity of student backgrounds, laboratory capabilities, 
and course timelines.

As instructors and/or researchers, we can encourage stu-
dents to explore the power of hierarchical design methodol-
ogy through statistical design of experiments, synthesis of 
polymeric materials, and/or subsequent characterization steps.  
The real-world application of a seemingly complicated statis-
tical analysis methodology can help students understand the 
relevance of the approach, recognize the methodical simplic-
ity of the analysis steps, and (more importantly) appreciate 
the inherent variability in experimental work.  It is our hope 
that the description of the methodology and the 
examples that follow will provide instructors 
with the tools that they need to integrate these 
important topics into undergraduate (and gradu-
ate) chemical engineering courses.

PROJECT DESCRIPTION
Hierarchical experimental designs published 

by Dubé et al.[1] and D’Agnillo et al.[2] have 
investigated the reliable measurement of er-
ror at different steps of polymer synthesis and 
characterization.  Their studies demonstrated 
that important sources of error in such inves-
tigations include the polymerization process, 
sample heterogeneity, and inconsistencies in 
characterization (specifically gel permeation 
chromatography, GPC). Polymerizations do 
not necessarily occur homogeneously in a 
reactor; depending on which part of the reac-

tor the sample is taken from, there may be variability.  For 
example, a different viscosity distribution may occur due to 
a heterogeneous mixing distribution.  Furthermore, identical 
measurements from GPC are not expected, even for identical 
samples, due to random variability from test to test.  Fortu-
nately, using a hierarchical experimental design, it is possible 
to quantify different sources of variance by taking replicate 
measurements at each nested level.

The main project described herein and further illustrated 
in Example 1 involves the synthesis of polymeric materials 
and the subsequent determination of polymer molecular 
weight averages.  The investigation includes four different 
experimental steps (or four “levels”) where error might be 
introduced (see Figure 1): 

1.	 The preparation of concentrated “stock solutions,” 
which are pre-established formulations with mono-
mers in solution

2.	 The adjustment of each “pre-polymer solution” to 
achieve desirable reaction conditions (pH modifica-
tion, for example) and the subsequent polymerization

3.	 The collection of several samples from each polym-
erization

4.	 The preparation of polymer samples for molecular 
weight analysis via dissolution and the characteriza-
tion process itself via GPC

By convention, the lower levels are said to be nested in 
the higher levels.  Thus, the lowest level in a nested design 
is usually the measurement itself; in this case it refers to the 
GPC analysis.  As shown in Figure 1, the GPC analysis results 
(tests) in this study are nested within the samples, which are 
nested within the solution and synthesis step, which are in turn 
nested within the different formulations (monomer composi-
tion in the initial stock solution).

Figure 1.  Example hierarchical design for the synthesis and analysis of 
polymeric materials.
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For each stock solution, at least two independent replicates 
are required at each step; note that Figure 1 shows three inde-
pendent replicates at the GPC level.  In theory, the number and 
nature of experimental steps (“levels”) could vary as well, but 
the process is described here to give a sense of the project’s 
scale.  In any case, once the specific experimental steps are 
identified, students need to become familiar with each process 
so that they can hypothesize the potential sources of error.  
Familiarization can be accomplished through a combination 
of literature searches and in-lab training; helpful resources 
include references[1-4] for the statistical background and refer-
ences[5,6] for the experimental synthesis and characterization 
background. 

In step 1, for example, students are assigned a particular 
stock solution formulation.  They are able to prepare the so-
lution using straightforward lab procedures, including using 
molar concentrations and volumes to determine mass, weigh-
ing monomers, transferring monomers to volumetric flasks,  
and dissolving monomers in a pre-specified volume of water. 
Most students recognize that intentional variation may occur 
with varying stock solution recipes, but that unintentional, 
inherent error may also be introduced during the weighing and 
transferring of monomers into the volumetric flasks.  In this 
case terpolymers of 2-acrylamido-2-methylpropane sulfonic 
acid, acrylamide, and acrylic acid are the product of choice.[5]  

The monomer quantities in the stock solution are intentionally 
varied between investigations; more details will be provided 
in Example 1.  However, the same approach could be applied 
to any number of other polymerization studies.

Similarly, students identify sources of variation in preparing 
their stock solutions for synthesis (step 2) as they adjust the 
reaction conditions, add initiator, separate the solution into 
smaller aliquots, and place their samples in a warm shaker 
bath.  Separation into several smaller aliquots allows for the 
synthesis of the same polymer product to occur in several dif-
ferent vials simultaneously.  Additional experimental details 
have been provided elsewhere.[5,6]  Step 3 requires students 
to remove samples from the water bath at pre-specified times 
and to stop the polymerization reaction using ice and/or an 
inhibitor injection.  As they isolate the samples and allow them 
to dry, they are tasked with identifying additional sources of 
error in the experimental process.  This step is intended to 
establish the consistency of the polymerization, including the 
equal distribution of pre-polymerization solution components 
and the repeatability of the polymer isolation process, across 
several simultaneously synthesized polymer samples.

Finally, in step 4, polymers are prepared for molecular 
weight analysis via gel permeation chromatography (GPC).  
Since the polymeric material obtained is in powder form, small 
quantities of the polymer must be dissolved in a pH 7 buffer 
liquid (mobile phase), filtered, and injected into the GPC.[6]  At 
this final stage students may identify long dissolution times, 
difficult sample filtration, randomized sampling order, and 

day-to-day variability as some of the potential sources of error.
Depending on time allotted for the project or lab session, 

students may collect experimental data themselves, or the data 
collection may be divided up and assigned to smaller groups.  
For example, instructors might consider one formulation per 
group, or even one “level” per group, where one group of 
students focuses on stock solution preparation while other 
students focus on GPC. Or, if time is extremely limited, stu-
dents may even evaluate pre-existing data sets (see Example 
3 in what follows).  However, it is important for students 
to understand where all of the experimental information 
comes from, even if they do not collect the data themselves. 
Inevitably, if students are not solely responsible for collect-
ing experimental data, they may identify the primary source 
of error as “group-to-group variability” or “operator error”.  
While this is a relevant source of error, it is by no means the 
only contributing factor.  Thus, to ensure that students fully 
explore the potential sources of error, a related group brain-
storming activity is recommended.  This discussion would 
best be placed after data collection (or, at least, after reviewing 
the experimental procedure in a case study) and before data 
analysis, so that sources of variability are informed by physical 
observations.  Of course, it would also be beneficial to revisit 
the brainstorming activity after analysis, as time allows, to 
ensure that the results make physico-chemical sense.

STATISTICAL BACKGROUND

Any instructor wanting to introduce this type of project will 
need some background in statistics.  The basic analysis steps 
are presented herein, but interested readers may want to refer 
to standard statistics textbooks[3,4] for additional information.  
In this section generalized equations are provided for context, 
but the examples that follow provide more concrete applica-
tions of the statistical analysis procedure

In order to keep track of the experimental levels, it can be 
helpful to refer to each level generally from highest to lowest 
in alphabetical order (i.e., as per Figure 1, formulation = A, 
synthesis = B, sample = C and GPC = D).  We can decompose 
or partition the total variability into the parts assignable to 
the various sources of error by calculating a sum of squares 
for each level of nesting.  The variances associated with each 
level/step/part/component are designated herein as mA, mB, 

mC, and mD.  Each observation is defined as yabc1, yabc2, …, 
yabcd, where there are D replicated analytical tests made on 
the Cth sample, Bth synthesis, and Ath formulation.  The mean 
squared error at the lowest level of a nested design, mD  in this 
case, is defined as the pure error mean square   and it should 
be calculated first (as per Eq. 1). 
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In Eq. 1 yabc						 	 	 	
	
σD
2 	 	 	
	
	
±1.96 mD	 	

 is the average (mean) of all analytical tests at 
the Cth level.  That is, yabc						 	 	 	

	
σD
2 	 	 	
	
	
±1.96 mD	 	

 is the average of GPC outputs 
(measurements) for a specific sample, which was in turn 
prepared from a specific stock solution and synthesis process.  
Since mD is the lowest level of the design, it is an unbiased 
estimate of 

yabc						 	 	 	
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±1.96 mD	 	

, which is the component variance due to the 
GPC step alone.  

yabc						 	 	 	
	
σD
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±1.96 mD	 	

 has ABC(D-1) degrees of freedom and 
is used in conjunction with a level of significance (related to 
statistical confidence), α, to obtain an error band for the in-
strument.  As long as the data points are normally distributed, 
the instrument error can be expressed as 

yabc						 	 	 	
	
σD
2 	 	 	
	
	
±1.96 mD	 	 at 95% 

confidence within the range of the experiment.
The purpose of doing a nested experiment is to obtain a 

measurement of the variance at every level where error can 
be introduced.  To solve for the variance in the samples, the 
mean square must be calculated for the next level, mC , which 
is expressed according to Eq. 2.

In Eq. 2 yab	 is the average of all measurements at the Bth 

level for any independent synthesis.  Using Figure 1 as a 
general example, yab	 would be the average of all GPC mea-
surements taken for sample 1 and sample 2 from a specific 
synthesis.  Due to the nested nature of the experiment, mC is 
not an estimator of 
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 alone but needs to be corrected accord-
ing to Eq. 3.

The variance associated with the polymer synthesis step is 
the next (higher) level in the hierarchical design.  To solve 
for the variance at this level (
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), mB can be calculated as per 
Eq. 4.

In Eq. 4 
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 is the average of all replicates for each formula-
tion.  It then follows that the component variance of the solu-
tion level is expressed according to Eq. 5.

The highest level of variability in this experiment is quanti-
fied by the mean squared error of the formulation, mA, which 
is calculated according to Eq. 6.

Here, 
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 is the grand average, or the average of all observa-
tions. To correct for 
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In principle, this approach could continue to “N” levels. 
However, 3 to 4 levels or stages are typical.  The patterns 
are summarized in a generalized ANOVA table for clarity 
(see Table 1).

After building an ANOVA table, the next step is to deter-
mine whether or not the variance is significant at each level. 
A series of sequential F-tests can establish the validity of the 
null hypothesis, on the basis of 95% confidence, to determine 
whether or not the error value at a given level might be zero.  

The null hypothesis for the F-test is that the ratio of two 
variances (shown in Eq. 8) is unity, or that the variance com-
ponent (

σi
2	
	
σi
2 = 0	) at the higher level does not provide a significant 

contribution to the overall variability.  Therefore, if the Fobs 
< Fcrit, where Fobs may be FA/B, FB/C, FC/D, etc. as shown in Eq. 
8, we fail to reject the null hypothesis. Thus, we can conclude 
that 

σi
2	
	
σi
2 = 0	 = 0 and that the error associated with the level being 

evaluated is not significant.

The alternate hypothesis is that mi > mi+1 (mC > mD, for 
example).  If the variance at a higher design level is signifi-
cantly larger than the next lowest level (if mC is significantly 
larger than mD, for example), then the variance component at 
that upper design level provides a significant contribution to 
the overall variability, and 
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2 = 0	 > 0. 

The F-probes (or Fobs values) shown in Eq. 8 all have de-
grees of freedom in the numerator (ν1) and denominator (ν2) 
according to their mean squared values; recall Table 1.  If, 
for any level, Fi/i+1 is larger than the critical Fν1,ν2 distribution, 
then level i is identified as a significant source of variability. 

It is important to note that these hypothesis tests represent 
an overall analysis.  F-testing cannot be used to determine 
whether a certain subset of replicates is statistically similar.  
For example, if GPC analysis was performed on “D” sepa-
rate days and the data on a specific day were believed to be 
compromised, F-testing would only show that the “D” level 
showed significant variability; it could not be used to identify 
which day was introducing bias.  In such cases it may be of 
interest to remove all the data from that day, i.e. changing from 
a “A×B×C×D” to a “A×B×C×(D-1)” resolution experiment, 
and repeat the analysis.  Alternatively, one might consider 
re-evaluating the data using blocking; all data collected on 
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TABLE 1
Generalized ANOVA Table for a Nested Design with Four Levels

Source Sum of Squares Degrees of
Freedom MS Expected Value of Mean 

Square (MS)
Component 

Variance Estimates

Average 1

Formulation A-1 mA

Solution A(B-1) mB

Sample AB(C-1) mC

GPC ABC(D-1) mD

Total ABCD

a particular day could be subdivided into a block.  In such a 
case, variability between days could be evaluated.  However, 
by focusing on day-to-day variability, it would not be as 
straightforward to quantify variability due to formulations, 
solutions, and samples.  Therefore, there are several “what-if” 
scenarios that one can investigate based on a specific dataset, 
depending on the intended outcome.

CASE STUDIES

To demonstrate the application of this project, three specific 
examples are presented in different levels of detail.  These case 
studies are intended to clarify the analysis steps and will give 
instructors some additional background if they would like to 
incorporate such a project into their courses.

The polymerization processes described herein are relevant 
to a variety of important applications; the complexity of each 
case is representative of a real-world problem.  These cases 
are intentionally non-trivial and should be appropriate for 
upper-year undergraduate students.  We have highlighted 
multicomponent polymers and polyelectrolytes (Example 1), 
crosslinked polymers (Example 2), and high-temperature GPC 
for polyolefin characterization (Example 3).  Exploring such 
processes promotes critical thinking and provides valuable 
troubleshooting opportunities for students.  These compli-
cations make the analysis more realistic, which we believe 
increases students’ motivation and enhances their ability to 
apply these concepts in real-world situations. 

Example 1
The first example highlights the terpolymerization of 

2-acrylamido-2-methylpropane sulfonic acid (AMPS), acryl-
amide (AAm) and acrylic acid (AAc). AMPS/AAm/AAc is a 
water-soluble polymer that can be used as a viscosity modi-
fier in chemical enhanced oil recovery, and the effectiveness 
of the viscosity modification is dependent on the molecular 
weight averages of the polymeric material.  Thus, there is 
real-world motivation to obtain accurate molecular weight 
averages for the materials produced; it is important to know 
which steps of the synthesis and characterization process are 
introducing the most error.

As described generally earlier, the polymerization of AMPS/
AAm/AAc can be broken down into four main steps: stock 
solution preparation for a pre-specified formulation, pre-
polymerization solution preparation and synthesis, sampling, 
and characterization (GPC).  As shown in Figure 2, the project 
included three unique formulations, which are arbitrarily 
labeled J, K, and L.  The synthesis of each formulation was 
independently replicated (synthesis replicates are designated 
by “R”), and two samples were taken from each synthesis.  
Finally, the molecular weight average of each sample was 
characterized via GPC three times.  For each GPC charac-
terization, an aliquot was dissolved in the mobile phase (pH 
7 buffer) over several days, filtered, and transferred into a 
single GPC vial.  The entire sample preparation process, 
from taking an aliquot to filling the GPC vial, was repeated 
for each test.  Thus, each GPC injection was from a unique 
GPC vial; three GPC vials were used for each sample, and 
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twelve vials were used for each formulation.  Characterization occurred 
in random order over the course of three days, with daily recalibration of 
the system using well-characterized standards.

For this investigation the formulations (at the highest level) were 
intentionally varied, as shown in Table 2.  Varying formulations pro-
vided information about how the initial concentrations of component 
monomers might affect the molecular weight (or other properties not 
discussed herein) of the resultant terpolymer.  However, all subsequent 
steps, namely synthesis, sampling and GPC, were kept consistent to the 

extent possible.  Experimental details have been 
provided elsewhere.[5,7]

Once the synthesis of all samples and the 
subsequent characterization were completed, 
students were tasked with selecting which data-
set or datasets to work with.  Unlike typical 
chemicals whose molecules all have the same 
molecular weight, the molecular weights of 
polymers are typically not uniform; polymeriza-
tion reactions create chains that generally have 
different lengths and configurations, leading to 
different molecular weights.  Thus, GPC analy-
sis provides the determination of several mo-
lecular weight averages, including number-av-
erage molecular weight (Mn	

	
Mw	

	
Mp	

), weight-average 
molecular weight (

Mn	
	

Mw	
	

Mp	

), and peak molecular 
weight (

Mn	
	

Mw	
	

Mp	), as well as the polydispersity index 
(PDI) and the bulk intrinsic viscosity.  Therefore, 
students investigated the relevance of each vari-
able before selecting which dataset to work with.
One student justified their decision to analyze 

Mn	
	

Mw	
	

Mp	 
as follows:

“The terpolymer AMPS/AAm/AAc is 
known to have a relatively broad molecu-
lar weight distribution.  The molecules in 
the very high molecular weight tail of the 
distribution may not even elute from the 
column, thus leading to an underestimation 
of 

Mn	
	

Mw	
	

Mp	

 and PDI.  [The underestimation] is 
due to electrostatic interactions between 
polyelectrolytes and GPC column inter-
nals, which were also observed for the 
copolymer AAm/AAc.[8]  Since Mn	

	
Mw	

	
Mp	

 empha-
sises the number of molecules in the in-
jected samples (which is not changing), it 
is not the most reliable average.  Hence, 
the most trusted representation was the 
peak molecular weight, 

Mn	
	

Mw	
	

Mp	 .” 
In general, most students recognized that 

Mn	
	

Mw	
	

Mp	
would provide the most useful data in this case, 
especially based on prior work in the area.[6-8]  
However, the same statistical analysis could be 
performed on any of the other variables.  A 
sample data set for 

Mn	
	

Mw	
	

Mp	 is used for the remainder 
of this example, but results would of course vary 
from one project/group to the next.

The next step was to evaluate the data from the 
3×2×2×3 hierarchical characterization of 

Mn	
	

Mw	
	

Mp	, as 
per Figure 2.  As described in the discussion sur-
rounding Table 1, the generalized ANOVA table 
and related F-tests were employed.  As shown in 
Tables 3 and 4, significant differences in vari-
ances were detected only at the formulation level.

Figure 2.  Four-stage nested design for the terpolymerization of 
AMPS/AAm/AAc.

TABLE 2
Experimental Conditions for Terpolymerization Formulations

Formulation fAMPS,0/fAAm,0/fAAc,0 [M] (mol/L) [I] (mol/L)

J 0.20/0.40/0.40 1.0 0.004
K 0.21/0.69/0.10 1.5 0.009
L 0.10/0.75/0.15 1.5 0.009

fi,0 = initial mole fraction of monomer i, [M] = overall monomer concen-
tration, [I] = initiator (4,4'-azobis(4-cyanopentanoic acid)) concentration
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The F-testing results in Table 4 provided initial evidence 
that significant differences in the polymer molecular weight 
were only caused/determined by the formulation recipe; this 
was as expected/predicted, since formulations J, K, and L 
were intentionally varied. 

The pure error variance, which is estimated by the mean 
squared error at the lowest level, was estimated here to be 
6.35×109 for the GPC instrument (see Table 3).  Since replicate 
GPC measurements of the same sample are assumed to be 
normally distributed, the pure error variance corresponds to an 
error for aqueous GPC of ± 156,186 g/mol at 95% confidence 
in this experiment. 

The polymer formulations K and L were more similar to 
each other than to formulation J, which was richer in acrylic 
acid.  Also, formulation J had a lower total monomer molar-
ity and initiator molarity; recall Table 2.  In order to determine 
if smaller formulation differences could still be detected and 
to see if the solution and sample levels remained insignificant, 
students chose to repeat the analysis using a 2×2×2×3 ex-
periment (with formulation J removed).  Tables 5 and 6 show 
the ANOVA and F-testing for the reduced data set to detect 
the variation of 

Mn	
	

Mw	
	

Mp	 across experimental levels. 
The results shown in Table 6 indicate that when similar 

formulations were compared, there were still significant 
differences at the formulation level but not in the solution/
synthesis or the sample levels.  The analysis results suggest 
that the initial monomer composition (i.e. the quantity of each 
comonomer in the initial recipe) was a significant factor, since 
formulations K and L had the same total monomer concentra-
tion and the same initiator concentration (see Table 2).

TABLE 3
ANOVA Table for AMPS/AAm/AAc Study (A×B×C×D = 3×2×2×3)

Source of Variation Sum of Squares Degrees of Freedom Mean Square
Average 9.11×1013 1

Formulation 5.03×1010 2 2.51×1010

Solution 3.26×109 3 1.09×109

Sample 3.47×1010 6 5.79×109

GPC 1.52×1011 24 6.35×109

Total 9.13×1013 36

As demonstrated in Tables 3 and 5, the mean squared error 
was fairly high at the GPC level.  Thus, students hypothesized 
that the high GPC error may have masked the error in the 
solution and sample levels.  Therefore, to further investigate 
error at the GPC level, calibration constants were revisited.

To account for any stochastic drift during characterization, 
the GPC was recalibrated daily using well-characterized 
standards.  While the calibration constants were similar from 
day to day, some fluctuation was observed.  Therefore, as an 
alternative to applying different calibration constants each day 
(as had been done for the results reported thus far), all calibra-
tion constants measured over the course of about three days 
were averaged to allow for a more consistent calibration from 
day to day.  The pooled calibration reduced the day-to-day 
variability that would be hidden within the GPC replicates. 

With the new pooled calibration data, ANOVA tables were 
reproduced, and F-testing was revisited. The full 3×2×2×3 
experiment (recall Tables 3 and 4) and the reduced data set 
(where formulation J was excluded to leave a 2×2×2×3 reso-
lution design; recall Tables 5 and 6) were both re-evaluated 
using the pooled calibration dataset. 

The results of the analysis are not included herein for the 
sake of brevity, but students found that repeating their ANOVA 
table calculations using pooled calibration data for both the 
full 3×2×2×3 experimental design and the reduced 2×2×2×3 
experimental design led to a large reduction of error at the 
GPC level (GPC mean square).  Using the pure error variance 
from the GPC level, the error band for aqueous GPC was 
determined to be ± 138,737 g/mol at 95% confidence, which 
was approximately 10% less than the error band obtained 

with the daily recalibrated (original) 
data set.  The decrease in variance 
obtained using pooled calibration 
data suggests that recalibrating the 
GPC daily introduced error; daily 
calibration may have been overcor-
recting for day-to-day variation, 
since there should not have been any 
considerable drift in the laboratory 
at that time.  The analysis of pooled 
calibration data still confirmed the 
results obtained earlier, as the only 
significant variance was observed 
between formulations.

Potential Extension: Sensitivity 
Analyses An interesting extension 
would be to use the collected data 
to confirm that hierarchical design 
strategies are capable of detecting 
differences in molecular weight for 
different experimental levels, not 
just the formulation level that was 
observed from the AMPS/AAm/

TABLE 4
F-Testing Results for AMPS/AAm/AAc Study (A×B×C×D = 3×2×2×3)

Type of Test Fobs Fcrit Reject null?

Sample/GPC 0.91 2.51 Fail to reject
Solution/Sample 0.19 4.76 Fail to reject

Formulation/Solution 23.13 9.55 Reject
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AAc experimental data.  Therefore, one might add a range of 
biases to a subset of the experimental data.  For demonstration 
purposes a molecular weight bias was added to all data stem-
ming from the first solution/synthesis of formulation L (recall 
Figure 2).  The goal here was to determine at which point 
our hierarchical design would be able to detect a significant 
difference at the solution/synthesis level when experimental 
data from all three formulations were included. 

As shown in Figure 3, it is possible to compare the 
calculated F-probe (Fobs) with different molecular 
weight biases, constantly comparing the resulting 
values to the critical F value (recall Eq. 8); this 
analysis was first performed using the original daily 
recalibrated data from the full 3×2×2×3 experiment.  
Figure 3 shows that if data coming from the first 
solution/synthesis of the L formulation had peak mo-
lecular weights approximately 150, 000 g/mol higher 
than what was observed experimentally, there would 
be statistically significant differences at the solution/
synthesis level.  Such a molecular weight difference 
could easily occur experimentally, especially if the 
solution preparation process and subsequent synthesis 
are not carefully handled.  Consider, for example, the 
impact of a miscalculated reaction time or an incor-
rectly set temperature controller.  The simulation 
confirms that the hierarchical design of experiments 
would identify such sources of error if they impacted 
the peak molecular weight by at least 150, 000 g/mol.

The point at which the solution/synthesis level 
becomes significant at 95% confidence is 150 kg/mol 

TABLE 5
ANOVA Table for AMPS/AAm/AAc Study 

(A×B×C×D = 2×2×2×3; Formulation J Removed)
Source of Variation Sum of Squares Degrees of Freedom Mean Square

Average 6.11×1013 1
Formulation 4.82×1010 1 4.82×1010

Solution 2.75×109 2 1.37×109

Sample 1.39×1010 4 3.47×109

GPC 9.31×1010 16 5.82×109

Total 6.13×1013 24

TABLE 6
F-Testing Results for AMPS/AAm/AAc Study 

(A×B×C×D = 2×2×2×3; Formulation J Removed)
Type of Test Fobs Fcrit Reject null?
Sample/GPC 0.60 3.01 Fail to reject

Solution/Sample 0.40 6.94 Fail to reject
Formulation/Solution 35.07 18.51 Reject

(150, 000 g/mol). Graphi-
cally, this is the crossover 
point.  Interestingly, this 
value is almost exactly the 
same as the instrumental 
error (at 95% confidence) 
that we obtained for the 
GPC step, which was ± 
156,186 g/mol.  The result 
may be coincidental, but 
the fact that it is of the same 
order of magnitude as the 
instrument error is further 
evidence that hierarchical 
design strategies not only 
handle noise extremely 
robustly but also detect true 
changes very efficiently.  
This type of extension al-
lows students to think about 
their results in a meaningful 
way and encourages brain-
storming among students.  

A similar analysis could be performed for the other subsets 
of data described herein. Students might choose to look only 
at formulations K and L, or at the dataset obtained from the 
pooled calibration.  Alternatively, the same type of sensitivity 
analysis could be applied to other data from the literature. 
Open-ended extensions like the ones described here give 
students some additional autonomy over their work, which 
should further motivate their investigation.

Figure 3.  Sensitivity analysis where the first solution preparation/
synthesis data of formulation L are intentionally biased (3×2×2×3).
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The sensitivity analysis illustrated here has shown that 
even though the differences between the solution prepara-
tion/synthesis steps were insignificant for these AMPS/AAm/
AAc syntheses, they could very quickly become significant 
factors.  Had we not been able to see solution/synthesis level 
significance until we increased the molecular weight averages 
by several million (knowing that this polymer is not likely to 
experience that magnitude of variation in the lab), we may 
have drawn conclusions about the high error in the GPC and 
its ability to mask other sources of variability.  However, this 
was not the case.  Error at the GPC level was low enough to 
allow for detection of reasonable variation in the solution and 
synthesis level; however, these differences were simply not 
observed experimentally.

Example 2
Experiments conducted in this second study involved the 

nitroxide-mediated radical copolymerization of styrene (STY) 
and divinyl benzene (DVB) using N-tert-butyl-N-(2-methyl)-
1-phenylpropyl)-O-(1-phenylethyl) hydroxylamine (TIPNO) 
as a unimolecular initiator; experimental details are provided 
elsewhere.[9]  It is well known that systems involving DVB are 
prone to crosslinking, involving the formation of gel materials 
that are difficult to deal with in the laboratory.  Crosslinking 
and gelation could introduce a considerable amount of error in 
subsequent property characterization techniques. 

As part of a systematic and comprehensive polymerization 
kinetic study, number- and weight-average molecular weights 
of the produced polymers were measured at various conversion 
levels using GPC.  In this case the hierarchical design was 
used to investigate the total variation in the molecular weight 
measurement from three important sources: error associated 
with the GPC measurement itself (analytical error), error 
related to the polymerization (reactor or process, carried out 
under identical conditions), and the variability in the measure-
ments corresponding to different sampling times.  In general 
the same nested design approach was applied as in Example 
1, but with three levels rather than four, and with said levels 
defined differently.  Using a single formulation and focusing 
instead on sampling time, which is related to conversion level 
and hence to gel formation, allowed for a somewhat reduced 
experimental load for students.

Take, for example, the 3×2×2 experiment illustrated in 
Figure 4.  Three samples taken out at 60 minutes, 420 min-
utes, and 480 minutes (A 
= 3) were reproduced in a 
replicated polymerization/
synthesis (B = 2).  For a 
sample from each polym-
erization, two independent 
GPC measurements were 
carried out (C = 2). 

As with Example 1, students were tasked with learning 
about the experimental steps and identifying potential 
sources of error, then collecting the data themselves.   In this 
case since organic solvent-based GPC was used for the char-
acterization (with tetrahydrofuran as solvent), both number-
average molecular weight (Mn	

	
Mw	

	
Mp	

) and weight-average molecu-
lar weight (

Mn	
	

Mw	
	

Mp	

) data were of interest; students could choose 
to analyze one or both of the data sets. 

As shown in Tables 7 and 8, the pure error variance associ-
ated with only the GPC measurements was estimated to be 
1.21×108 for Mn	

	
Mw	

	
Mp	

 and 8.32×109 for 

Mn	
	

Mw	
	

Mp	

.  On the basis of a 95% 
confidence interval, this translates into an analytical error of 
±21, 553 g/mol for Mn	

	
Mw	

	
Mp	

 and an error of ±178,815 g/mol for 

Mn	
	

Mw	
	

Mp	

. 
This is the error solely based on the GPC measurements. 

Similarly, the error related to polymerization was found 
to be 3.49×108 and 1.28×1011 for the number- and weight-
average molecular weights, respectively.  These results are 
indicative of the variability in the two polymers that were 
prepared and thus reflects the degree of inconsistency in the 
preparation techniques.  Finally, the error in the molecular 
weight measurements corresponding to different times or 
conversion levels was 1.37×109 and 2.59×1011 for number-and 
weight-average molecular weights, respectively. 

From this hierarchical analysis it was clear that error caused 
by the GPC (lower level) was of the lowest magnitude when 
compared to the other variables.   Hypothesis testing was also 
conducted to determine the impact of the different variables 
using an F-test.  As described previously, the null hypotheses 
were used to check if 
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(related to polymerization replicates) were equal to zero.  In 
this case the hypothesis testing on 
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.  The hypothesis test 
outcome suggests that the error associated with the different 
reaction times does not significantly contribute to overall 
variability.  On the other hand, the null hypothesis of 
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was rejected for both Mn	

	
Mw	

	
Mp	

 and 

Mn	
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Mp	

.  Therefore, there is strong 
evidence to conclude that the polymerization error contributes 
significantly to the overall error.

These results suggest that synthesis steps and/or conditions 
may be introducing variability.  For the copolymerization of 
STY/DVB, crosslinking and gelation are known to introduce 
inaccuracies in molecular weight determination; this may have 
contributed to the error.  Although the samples are drawn at the 

Figure 4.  Three-stage nested design for the copolymerization of STY/DVB.
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same times during polymerization, the conversion may have 
varied from run to run, and the synthesized polymer character-
istics may vary considerably as a result.  This would be of par-
ticular concern if samples were collected at/near the gel point. 

In any case students must be called upon to think critically 
about their results, reconciling physico-chemical explanations 
with their analysis results.  The physico-chemical piece is an 
important aspect of the project; students should enhance their 
statistical background as well as improve their understanding 
of polymerization processes and related characterization steps 
as a result of this exercise.

Example 3
Our final example uses data from the literature, originally 

reported by D’Agnillo et al.[2]  This type of case study, as il-
lustrated in Figure 5, may be used in one of two ways.  When 
instructors have dedicated ample time to this type of project, 
the data may be analyzed as a “first step” to confirm that the 

statistical analysis approach is well 
understood; this can be done in paral-
lel to experimental work for another 
study.  Alternatively, if time is more 
limited, the case study alone would be 
sufficient to introduce the concept of 
hierarchical data analysis and polymer 
characterization.  However, to ensure 
that students can appreciate sources of 
experimental error, some exposure to 
laboratory techniques would still be 
extremely beneficial.

The 

Mn	
	

Mw	
	

Mp	

 data from D’Agnillo et al.[2] 
could be given to students for a pre-
liminary analysis, and then students 
could compare their analysis results to 
the published ANOVA table, F-testing 
results, and so on.  The analysis was 
recently confirmed by one of our stu-
dents, and results were in excellent 
agreement with the original publica-
tion.  For the sake of brevity, the inter-
ested reader can consult the specific 
reference.[2]

LESSONS LEARNED

The hierarchical design methodology described herein, 
along with the examples and experiences cited, has been 
shared with graduate and undergraduate students.  The gradu-
ate students used the methodology as part of their research, 
primarily as a tool to analyze data and gain significant insights 
into the process behavior from which they were collecting 
data.  The undergraduate students used the methodology to 
complement what they had learned in their Applied Statistics 
course (2nd year) and their Design of Experiments course (3rd 
or 4th year); it was a helpful tool as they analyzed the data 
collected during group design projects or individual research 
projects in their senior year.  Although typical course evalua-
tions were not solicited from these students, we have compiled 
several student comments and anecdotal information.  These 
remarks were received from students who participated in these 
design/research projects over the past few years and have 

since made use of the statistical 
tools in other settings.
From a student who graduated 
and is currently gainfully em-
ployed:
“…You won’t be surprised to 
hear that hierarchical designs 
had immediate application 
in the workplace!  There is a Figure 5.  Three-stage nested design for the polymerization of ethylene 

(adapted from D’Agnillo et al.[2]) 

TABLE 7
ANOVA Table for STY/DVB Study (using Mn	

	
Mw	

	
Mp	

 data)
Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom Mean Square Component 

Variance
Average 2.64×1010 1

Time 1.26×1010 2 6.30×109 1.37×109

Polymerization 2.46×109 3 8.20×108 3.49×108

GPC 7.26×108 6 1.21×108 1.21×108

Total 4.22×1010 12

TABLE 8
ANOVA Table for STY/DVB Study (using 

Mn	
	

Mw	
	

Mp	

 data)
Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom Mean Square Component 

Variance
Average 2.59×1012 1

Time 2.60×1012 2 1.30×1012 2.59×1011

Polymerization 7.92×1011 3 2.64×1011 1.28×1011

GPC 4.99×1010 6 8.32×109 8.32×109

Total 6.03×1012 12
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[company name and process description] production 
facility in [location in USA], which sent us two samples 
of … powder from the top of the reactor and two from 
the bottom.  I made three [specimens] with each sample.  
We will soon be running [tests] for determining specific 
properties.  This is a 2×2×3 hierarchical design, as 
you taught us!  If we didn’t take the replicates from dif-
ferent locations in the reactor and it was just natural 
heterogeneity, we could spin our wheels for months 
developing mechanistic theories based on artifacts of 
statistical variance...”.

Another comment: 
“For me it is difficult to talk about hierarchical experi-
ments without using examples to explain, but it is clear 
that as a student in this design project group I have 
grasped the concept to a degree that it is now natural 
for me to always consider not only the measurement 
error, but also the steps along the way.  This is no trivial 
thing and actually I have noticed that very few people 
(even within ChE BASc, MASc/MEng or PhDs!) think 
like this.  To be fair, neither did I before taking on this 
project, which demonstrates that I have in fact learned 
a great deal.  Perhaps…the reactor example that we did 
is the best and most natural place to start for chemical 
engineering students…”.

Another student provided the following comment: 
“At [company name] we made [specimens] and ran 
conductivity tests on the outlet flow with different inlet 
solution concentrations.  The issue we had was evalu-
ating the performance based on these different inlet 
concentrations.  It is true that one [specimen] may 
have performed better with one solution over another 
but these units were all handmade (even the inlet solu-
tions were mixed by us) so it was very difficult to say 
if it was performing better or not due to these lurking 
variables.  A hierarchical design strategy could be used 
to control for these variables perhaps using different 
solution recipes at the top level, then pooling solution 
mixing and [specimen] number for the second level and 
measurement variance of the conductivity at the bottom. 
Hierarchical design can basically be used whenever 
there is a measurement and a true change affected by 
lurking variables, which is quite often the case...”.

Another student had this to say: 
“At [company name] we varied powder formulations 
for creating different plastics.  These were batch pro-
cesses so there were many entry points of error for 
new runs.  In one instance, we used an additive to try 
to achieve tailored properties which were manifest in 
the [specific property] testing of the finished product; 
however, without replicates, we were in the dark about 
the error.  After hearing about this strategy, we should 

have taken replicates at two levels: making multiple 
plastic sheets for each run and fusing multiple identical 
sheets to different plaques.  Doing this would not only 
have incidentally given valuable information about the 
error in our process but also definitively established the 
significance of adding said additive...”.

And finally, we received insight from a previous co-op student 
experience: 

“…we were extracting DNA, RNA and protein from 
mouse liver and the amounts of the specific protein were 
quantified with [various characterization techniques].  
So in this case, hierarchical design could have been 
used by taking replicates from the same piece of mouse 
tissue, then on the extraction process and the test.  This 
would have helped a lot in determining if the results 
were significant…”.

The comments here speak for themselves; the project was 
of value to students and confirmed/solidified key learning 
objectives that had been targeted.  Not only did students learn 
about the technical aspects of polymer characterization and 
statistical hierarchical design and analysis, but they were also 
able to articulate the importance of the analysis technique and 
reflect on its potential application in industry.  There is an 
inherent mindset shift that has occurred for these students, and 
they have become much more aware of error sources in each 
step of the process that they are evaluating.  As one student 
wrote, “…The beauty of the methodology is that it teaches 
you a certain way of thinking.  This way of thinking, where we 
can easily assess entry points of error and quantitatively state 
that, for example, the top of the reactor or resin bin produces 
better product than the bottom (or mid-point) and then attack 
why this is the case, is so valuable…”. 

While we prefer to emphasize the lessons learned by stu-
dents, we should also comment on the insights gained by the 
instructional team; this will ensure that the implementation 
becomes even more effective in future course offerings.   
Overall, we felt that the relationships between statistical 
design of experiments, polymer synthesis, and polymer char-
acterization were well-established and that the subsequent 
analyses were at a suitable level of difficulty for students.  
As with any group project, it is important to ensure equitable 
distribution of work; this is critical in both the laboratory set-
ting and during the statistical analysis steps.  To ensure that 
all students are motivated to contribute, it may be beneficial 
to assign a “lab participation” grade and/or assign a “group 
reflection” piece near the end of the project.

One additional comment is related to the selection of 
polymerization processes described herein.  The first two 
examples, polyelectrolyte terpolymerization and crosslink-
ing copolymerization, were both fairly complex processes. 
As such, both materials presented some challenges during 
the experimental steps.  The synthesis of the AMPS/AAm/
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AAc terpolymer was difficult for some students, especially 
in terms of pH adjustment prior to synthesis.  Occasionally, 
the exothermic titration increased the temperature of the pre-
polymerization solution too substantially, which resulted in 
some premature polymerization.  Also, for both the AMPS/
AAm/AAc terpolymer and the STY/DVB copolymer, there 
were some issues with sample preparation prior to GPC analy-
sis. AMPS/AAm/AAc can take a very long time to dissolve 
completely in the mobile phase, and undissolved material may 
be inadvertently filtered out prior to analysis if students are 
impatient.  Similarly, the STY/DVB copolymer crosslinked 
under some conditions, leading to the formation of insoluble 
gel.  Given the limitations of GPC characterization, the mo-
lecular weight averages of these insoluble portions could not 
be accurately measured.

However, as mentioned earlier, the case studies selected 
were intentionally complicated, as they mirror real-world 
situations that students may face.  Exploring properties of 
polyelectrolytes and crosslinked polymers provide important 
troubleshooting opportunities for future chemical engineers. 
That said, this paper is intended to provide instructors with the 
tools needed to develop a similar project in their own courses; 
each instructor will inevitably choose their own processes 
to work with.  For instructors with limited polymerization 
background, a homopolymerization process may be more 
suitable.  Consider, for example, the synthesis of polystyrene 
(in either solution or emulsion): it is a fairly straightforward 
process, but one might still vary the recipe and/or the sampling 
time before characterization via GPC.  Thus, it could be an 
interesting and relatively simple study based on the prescrip-
tions described herein.

CLOSING REMARKS

Using polymer property characterization studies to teach 
hierarchical design statistics provides students with exposure to 
several topics that they may not otherwise discover.  This type 
of project can be used to integrate general principles related to 
polymer science (understanding polymerization processes and 
molecular weight distributions, for example) with advanced 
laboratory skills (including sample preparation, instrument op-
eration and data collection), while simultaneously ensuring that 
students are able to identify relevant sources of error and are able 
to quantify them using hierarchical data analysis techniques. 

From the students’ perspective this type of project provides 
them with more opportunities to appreciate experimental 
design principles, complementary to their lab sessions and/
or to their senior design projects.  They are also encouraged 
to spend time in the lab, gaining valuable hands-on experi-
ence.  While they will immediately see how sources of error 
persist in polymer synthesis and characterization, they will 

also be able to carry the statistical methodology with them to 
other aspects of chemical engineering.  Undergraduate course 
work in chemical engineering programs can often seem far 
removed from industrial applications.  Technical courses can 
be very theoretical in nature, and it can be difficult for students 
to appreciate the real-world relevance.  This type of project 
gives students the opportunity to see how technical concepts 
apply to industrial problem-solving (designing experiments, 
identifying sources of error, troubleshooting, etc.).  Creating 
links between the classroom and the workplace will ultimately 
strengthen the skills that students will require in industry. 

From an instructor’s perspective this intersection of several 
relevant topics makes it possible to achieve a wide range 
of learning outcomes.  Students will not only expand their 
technical knowledge base, but they will also gain experience 
handling complex, open-ended problems.  The project might 
also include a review of relevant literature, collaboration with 
classmates, and communication of results.  Thus, students will 
benefit immensely from this type of project.
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