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The idea that the representation of a transport process 
is dependent upon the length-scale of observation 
is a perspective that has become widely adopted in 

chemical engineering education in recent decades; a graphi­
cal presentation of a system in which multiscale transport is 
important appears as Figure 1. Perhaps the clearest indication 
of this evolution in perspective can be found in the recent 
publication of the second edition of Transport Phenomena 
by Bird, Stewart and Lightfoot. [ZJ A new focus in this second 
edition, as distinct from the first edition of 196Q,[3l is the 
multiscale structure of transport phenomena. This perspec­
tive appears throughout that text, and in particular is empha­
sized by the addition of a "Chapter O" in which the connections 
among the molecular, microscopic, and macroscopic scales are 
discussed in the context of transport phenomena. It is becoming 
standard practice to refer to the smaller and more fundamental 
of the two scales involved as the "microscale" and the larger as 
the "macroscale" regardless of the actual dimensions that define 
the two scales, and this terminology will be used throughout the 
remainder of this discussion. 

The concept of upscaling transport phenomena in complex, 
multiphase systems has been developed in the chemical 
engineering discipline extensively over the last 40 years. 
Although in principle this perspective is more fundamental 
in the sense that phenomena at different characteristic length 
scales are formally connected, the mathematical machinery 
required to understand and apply the theory has tended to 
keep it somewhat abstracted from applications. 

New interest in the connection of transport phenomena 
among scales has developed in chemical engineering, how­
ever, (as evidenced, for example, by the second edition of 
Bird, Stewart, and Lightf ootPl discussed above), driven partly 
by the need to understand multiscale systems and partly by 
evolving advances in experimental methods that allow mea­
surements at small scales with unprecedented resolution. In 
particular, developments in nano- and micro-technology have 
made it clear that a thorough understanding of the micro­
macro connection in transport phenomena is essential for 
understanding-and ultimately engineering-systems that 
involve nano- and micro-scale processes. 
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Upscaling is possible and appropriate for systems that have 
a significant amount of "redundant" information. Although the 
concept of redundant information has a concrete definition in 
the context of information theory (e.g., Reference 4), from a 
pedagogical perspective we can think of redundant informa­
tion as information that can be removed without affecting 
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Figure 1. An example of a multiscale hierarchical system. 
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the interpretabilily of the physical system. An example that 
I frequently use to communicate the ideas behind upscaling 
is that of the ideal gas. Viewed as a classical mechanical 
system, a mole of an ideal gas has an enormous number of 
degrees of freedom (6.02 X 1023 molecules times 3 position 
and 3 momentum coordinates gives something like 5 X 1024 

degrees of freedom!). 

If, however, our goal is to predict the pressure of an ideal 
gas in a fixed volume, then this constitutes a large amount of 
redundant information. Essentially, because of the extremely 
large numbers involved, the momentum and coordinates of 
any particular molecule of gas are not important for determin­
ing the pressure of the gas. Rather, the momentum coordinates 
can be grouped as a distribution, and we can take a statistical 
approach to computing the pressure of the gas. One can, in 
fact, show (e.g., as explained by Feynman, et al.l5l) that the 
system of roughly 5 X 1024 equations 
of motion (Newton's laws) for the ideal 
gas can be "upscaled" via averaging to 
the well-known result PV=knT, where 
k is the Boltzmann constant, n is the 
number of molecules involved, and T 
is the temperature. For this result to be 
obtained one also has to make a number 
of assumptions about the behavior of 
the system, and for the purposes of this 
paper I will refer to such assumptions as 
"scaling laws." In the case of the ideal 
gas, one must adopt the scaling laws of 
(1) a Maxwellian distribution of speeds 
applies to the population of molecules, 
and (2) the statistics do not depend on 

Upscaled Model 

N degrees of freedom. We are always at liberty to separate 
such a system into two components: a mean and a deviation 
from the mean. Note that here there are still N degrees of 
freedom; given one of these fields, the other can be obtained 
by subtracting from the microscale (complete information) 
representation. At this juncture, if redundant information can 
be identified, it can be eliminated by upscaling (this requires 
identifying a scaling law, which is nothing more than a state­
ment about the assumed form of the redundant information). 
In the example of the ideal gas, we found that the redundant 
information was the list of velocity components and loca­
tions. All that was really needed from this information (at 
least for the purposes of deriving the ideal gas law) was the 
two assumptions of velocity statistics that follow a Maxwell 
distribution and spatial stationarity. The third row shows the 
results of the upscaled model; a reduction in the number of 
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R 
spatial location (i.e., they are spatially 
homogenous). Under these conditions, 
averaging appropriately yields the ideal 
gas law, and the original 5 X 1024 degrees 
of freedom are replaced by a single degree 
of freedom-the temperature T (which 
is actually a proxy for the mean kinetic 
energy of the gas). 

Figure 2. A graphical representation of information flow during the process of 
upscaling. 

In Figure 2, a graphical 
summary of the upscal­
ing process is presented. 
The essential features of 
upscaling are represented 
here as follows. Complete 
information for the system 
of interest (e.g., the loca­
tion and momentum of all 
molecules in the ideal gas 
example) is represented 
at the top of the figure, 
which we might think of 
as having, say, the number 
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Figure 3. An experimental device used for examining dispersion of a visible dye in a tube, 
after Taylor.111 (AJ The capillary tube. (BJ A ground glass plate illuminated from behind. (CJ 

The sampling window. (DJ A tube containing dye at known concentrations for comparison to 
the experimentally observed values. 
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degrees of freedom has been accomplished by the elimination 
of the redundant information. 

The purpose of this paper is to provide an example of up­
scaling a multiscale system that has particular pedagogical 
value. Most students of chemical engineering become famil­
iar with the concept of dispersion, and some will even study 
the specific example of Taylor-Aris dispersion in detail. The 
methods used to perform upscaling, in contrast, tend to be 
presented almost solely in advanced graduate-level courses, 
and even then there are generally few concrete examples in 
which students can test the upscaling methods themselves in 
a familiar context. The case of Taylor-Aris dispersion is an 
example that is both familiar and one in which a closed-form 
analytical solution for the effective dispersion coefficient 
can be developed without having to resort to the solution of 
a complex, multidimensional partial differential equation. 
The development also provides an opportunity to review the 
concept of moving coordinate systems, which are always 
problematic for students. The objective of this paper is to 
present a concrete example of upscaling in a manner that is 
suitable for undergraduate and graduate students alike, with 
a particular emphasis on generating an analysis where the 
assumptions and constraints are explicitly identified. 

MICROSCALE FORMULATION OF THE PROBLEM 
Background 

Taylor-Aris dispersion has been studied for more than 50 
years since the seminal works ofTaylor[1, 6l andAris,Pl in the 
mid 1950s, and it continues to remain an archetypical example 
for development of new dispersion theory. Partly because it 
has been studied so extensively using a variety of mathemati­
cal approaches, it also represents an example that has been 
fraught with misunderstanding, even by established experts in 
the field (e.g., see the exchange ofBeard[3. 9l and Dorfman and 
Brenner[10l). In principle, the concept of Taylor-Aris disper­
sion is straightforward. Because the fluid velocity profile in a 
capillary tube is parabolic (Figure 1 ), the fluid at the center of 
the tube moves faster than that near the tube walls. This causes 
an initially uniform pulse of solute to spread longitudinally 
due to fluid convection, which forms strong concentration 
gradients in the radial direction and allows radial diffusion 
to transport solute across convective streamlines; as time 
progresses, this tends to create a uniform concentration on 
planes perpendicular to flow. The question addressed by Sir 
Geoffrey Taylor (and amended later by Rutherford Aris[7l) 
was essentially this: If one observes the average concentra­
tion in a capillary tube (using, for example, light transmission 
of a visible tracer) then is it possible, through knowledge of 
the microscale transport phenomena, to predict the effective 
longitudinal dispersion coefficient that would be observed 
for this averaged concentration? The answer to this question 
is ultimately yes, and the analyses by Taylor[!, 6l and Aris[7l 
provide examples of those rare cases where a very satisfying, 
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compact result is possible. Taylor investigated this problem 
both theoretically and experimentally; an illustration of 
Taylor's experimental device is given in Figure 3. 

Microscale Description 

To begin the multiscale analysis, one first poses the mi­
croscale mass balance equations describing solute transport 
in a capillary tube. It is useful to recognize at this point that 
the microscale equations can be, in principle, formally derived 
by upscaling the molecular scale transport phenomena. At 
the smallest length scale that we attempt to pursue, however, 
we must ultimately adopt the laws governing the balance of 
mass as axiomatic. That is, we must assume that the govern­
ing laws are true (e.g., in the case of a classical molecular 
description, that Hamiltonian dynamics are valid[11l) but are 
fundamentally unprovable. This feature is true of all upscaling 
efforts-they relate information among scales provided that 
one first has axiomatically defined the transport phenomena 
at a more fundamental scale (i.e., the microscale). 

For the case of transport in a capillary tube, we can pose 
the following microscale boundary-initial value problem for 
the solute [see Reference 7, Eqs. (3)-(6)]. A simplified ver­
sion of Taylor's experimental system is presented in Figure 
4, and the mathematical description of solute transport at the 
microscale is specified as follows. 

0
;; = -V-(vcA) + v-(~ · VcA),in the fluid phase (1) 

-n•(~ ·VcA) = 0 on the tube walls (2) 

c A ( x, t = 0) =.¥°( x), initial condition (3) 

Here, c A is the concentration of chemical species A, @;. is 
the (isotropic) molecular diffusion coefficient, and v is the 
fluid velocity vector. Fick's law has been adopted here for 
describing the diffusive flux, and this necessarily requires 
that the mole fraction of species A, xA' be small enough such 
that xA <<1. For the capillary tube, the velocity field is given 
by the well-known expression 

(4) 

where U is the average velocity (to be defined later), and r 
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and x are the radial and longitudinal coordinates illustrated 
in Figure 4. 

Moving Coordinates 

For the purposes of this analysis, it is convenient to put this 
problem in an inertial coordinate system that moves uniformly 
in the x-direction with the average velocity, U. In other words, 
the relationship between the nonmoving longitudinal coordinate 
z, and the moving longitudinal coordinate x(t) is given by 

x ( t) = zlt=o + 0 
"-v-"' "-v-"' amountof 

(5) 

current initial movement 
location location 

Moving coordinate systems frequently confuse students, and 
this is not without good reason. The presentation of moving 
coordinate systems is frequently conducted by observation 
rather than by showing the detailed conversion from one frame 
of reference to another. For that reason, it is worth spending 
some time on this concept in class. To start, one can explain 
that Eq. (5) is the relationship between a point fixed in the 
fluid at the initial time (t = 0) and where that point would be 
located later if it were to flow with the fluid at the velocity U; 
it is, essentially, the equation that describes a streamline for 
the mean velocity field. Sometimes it is easier to think about 
this in the reverse. In the moving coordinate system (Figure 
4), any point x(t) is related to the point that it originally came 
from (at the time t = 0), i.e., 

(6) 

The velocity in the new frame of reference can be deter­
mined with reference to Figure 5. Here, Z(t) represents the 
vector following a fluid parcel in the original (fixed) frame of 
reference. We can think of this vector as being broken up into 
two parts: the vector that traces the distance to the new coordi­
nate system, and the vector that gives the displacement relative 
to the new coordinate system. In mathematical terms 
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Figure 4. Geometry of the Taylor-Aris capillary tube. 

Figure 5. Relation­
ship among coordi­

nate systems. 
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Z=O 

X(t)=Ut r I x(t) 

Z(t) x=O X 

z 

z(t)=x(t)+x(t) (7) 

Taking the derivative of both sides of Eq. (7) and rearranging 
terms gives the following relationship 

dx( t) dZ(t) _ dX(t) 
dt dt dt 

or, substituting in the definitions for velocities 

v ( x, r, t) = v ( z, r, t )- U 

(8) 

(9) 

For the particular case of interest, we are interested in steady 
flow. Referring to Eq. (4), we can put the function describing 
the velocity in the new frame of reference in the form 

v(x,r) = 2Ul 1- :: J- U 

= ul 1- ~2 J 

Simplifications 

(10) 

From these general balance equations, we can make some 
substantial simplifications by making the following reasonable 
assumptions: ( 1) the capillary tube is cylindrical, (2) the fluid 
is incompressible, (3) the fluid pressure on the cross-sectional 
area of the two ends of the tube is uniform (which leads to 
a cylindrically symmetric fluid velocity field), (4) the initial 
condition for the solute is cylindrically symmetric so that 
acA/a8=0, and (5) there is no diffusive flux discontinuity at 
the center of the tube, so that acA/ar=0 at r=0. Under these 
conditions, we can rewrite Eqs. (1)-(3) in term of a cylindrical 
(but nonmoving) coordinate system (Figure 4) as follows 

OCA = -2ul 1-..C I OCA + .@'1~ OCA + a2cA + a2cA I 
8t l a 2 J Bx A r or 8r2 8x2 

, 

in the fluid phase (11) 

atr=0 and r=a (12) 

c A ( r, x, t = 0) = .¥{ r, x), initial condition (13) 

As a final step, we need to put these equations in the moving 
frame of reference. To do this, we start by noting from Eq. (10) 

I r
2 I I 2r

2 I 
2U ll-~J= u ll-7)+ u (14) 

Substituting this into Eq. (11) and rearranging gives us 

OCA OCA l 2r
2

JOCA ,;;x-,118cA 8
2
cA 8

2

cAI -+U-=-U 1-- -+= --+--+--
at OX a 2 OX A r Or Or2 OX2 , 

in the fluid phase (15) 
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As a final step, we note that by the definition of the total 
derivative we have 

dcA ocA ocA dx 
dt=Bt+ ox dt 

which, by Eq (5), gives 

dcA ocA ocA 
-=-+U-
dt ot ox 

(16) 

(17) 

Substituting this result into Eq. (15) yields the form of the 
transport problem in the moving frame of reference 

Total Derivative 
(Moving Frame 
of reference) 

Convection Term 
\Vl.th Moving Frame 
of Reference Velocity 

in the fluid phase 

Diffusion Term in 
Moving Frame of Reference 
Remains Unchanged 

(18) 

OCA 
- M -=0 atr=0 andr=a (19) 

A Or , 

c A ( r, x, t = 0) =.¥°( r, x), initial condition (20) 

Note that this should be a familiar operation- this is exactly 
what happens when one transforms a system into material 
coordinates in the study of fluid mechanics. The derivative in 
this case is a total derivative that is very similar to the mate­
rial derivative that is used routinely in fluid mechanics; in our 
case, however, the velocity is the average velocity rather than 
the velocity of a material body, and therefore only the average 
velocity is incorporated into the total derivative. 

AVERAGING 

Averaging arises naturally in our experimental observa­
tions about systems, but we do not as often think about the 
relationship to our theoretical representation of the system. 
As an example, few would argue that Eqs. (18)-(20) represent 
a reasonable model for describing solute transport in a capil­
lary tube. When we consider what is measurable for such a 
system, however, the answer is generally not "the microscale 
concentration, cA. "Although with substantial effort it may, in 
fact, be possible to measure the microscale concentration di­
rectly, generally we would measure some macroscale property 
of the system, such as the flux-averaged concentration coming 
out of the capillary in the effluent, or possibly the spatially 
averaged concentration resident within the tube at a particular 
time and with a particular spatial resolution that depends on 
the instrument used. Although we frequently measure averaged 
or otherwise "filtered" properties in experimental systems, we 
rarely think about them as such. The problem of Taylor disper­
sion in a capillary tube is a cogent, specific example where this 
micro-macro duality is explicitly recognized, and a full analysis 
of the interrelationship among scales is possible. 
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Figure 6. Integration domain for the averaging. Note that 
the average is still a function of the location, x. A volume 

average is well defined for each such location. 

Ideally, then, we would like to develop a mass balance 
equation where the dependent variable is related to the 
quantity that we can actually measure. To this end, we can 
consider averaging the microscale mass balance equations 
using a weighting function that represents the influence of 
our instrument used for observation (e.g., Reference 12). 
At first, this may seem like a curious perspective, but upon 
reflection one can recognize that this is actually more in line 
with our interpretation of laboratory results than is the set of 
microscale equations given by Eqs. (18)-(20). 

Definition of the Average 

To begin, we define an appropriate average. In the most 
general context, averages can be taken over any kind of 
weighting function that represents an instrument response. 
In applications of the volume averaging method in particu­
lar, however, the weighting function is usually taken to be a 
step function that is defined as being one inside an averaging 
volume, and zero outside. For our capillary system, the ap­
propriate average is defined by 

(c, }I,~,:, WI c, I, dy ]2" d, (21) 

where y is a variable of integration. An illustration of the 
integration domain is given in Figure 6. 

A little discussion is warranted here. Note that this is dif­
ferent from the area average that is conventionally used in the 
Taylor-Aris analysis. In part, this is due to the idea that we 
are attempting to generate an upscaled theory for a measur­
able property of the system, for example, the light transmit­
ted through a small volume of the capillary tube (as a proxy 
for a dye tracer concentration) as Taylor did in his original 
experiments (Figure 3). The area average is not the measure­
able property, rather the average over some small observation 
window is (e.g., as illustrated in Figure 3). We can, however, 
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imagine that when the concentration field does not have large gradients, and the thick­
ness, 6, of the averaging volume is small we may be able to neglect the changes in the 
concentration, cA' over the interval 6. This essentially converts our observation over a 
small volumetric window to one that is equivalent to the area average. More formally, 
we can do this by expanding the concentration in a Taylor series c A IY around the point 

Moving coordinate 

systems frequently 

confuse students, and 

this is not without 

good reason .... For 

that reason, it is worth 

spending some time 

on this concept 

in class. 

I I ocAI 1 2 0
2

cAI CA +cA +y-- +-y --2 + ... 
x+y X OX 2 OX 

(22) 
X X 

Substituting into the integral given by Eq (21) 

(cJL ~t:, Z[Idyc,L + I:dy~;;I, + ]}'dy'::1, + ]2n,d, 
Note that the second integral in this expansion is identically zero. The third and higher 
terms can be neglected under the conditions that the concentration change over the 
distance 6 is small compared to the distance L. To see this, we can pose the following 
restriction (see Reference 13) 

We can then make the following estimates 
F8/2 

J dy=0(8) 
F-8/2 

F8/2 

J ½y2dy=0(8
3

) 

y~-8/2 

(25) 

(26) 

(27) 

Combining these yields with the restriction given in Eq (24) 
yields the constraint [See Reference (13)] 

_§_<<1 
L 

(28) 

If the concentration field meets this condition, we expect 
the first term in Eg. (23) to provide a good estimate of the 
entire expansion. Under these conditions, the conventional 
area average concentration can be recovered. 

(29) 

The practical result of this is that, for the purposes of the 
upscaling effort, the conventionally adopted area average 
is an acceptable average to use, and should be equivalent 
to the concentrations found by observations of experi­
mental systems provided that the constraint given by Eq. 
(28) is met. 
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Upscaling 

In the process of upscaling, simplifications are necessar­
ily introduced if a useful theory is to be developed. This is 
because a useful macroscale representation is only possible if 
there is an underlying structure to the physics of the problem 
that allows one to reduce the number of degrees of freedom 
in the system without eliminating essential information. Ap­
proximations that allow a reduction in the number of degrees 
of freedom are called scaling laws. In the case of the Taylor 
dispersion problem, one scaling law that we are assuming is 
that the constraint given by Eq. (28) is valid. In other words, 
we require that the concentration field be smooth enough so 
that there are no large fluctuations on a length scale of 8; if 
this condition is not met, the method may not work. 

With the definition of the average identified, we can apply 
the averaging operator to both sides of Eq. (18) (essentially, 
this is done by multiplying both sides of the equation by 2ru, 
and then integrating with respect to r from r = 0 to r = a). 
The result is 

(30) 

Noting that the averaging operator does not depend on x or t, 
we can exchange averaging and differentiation with respect 
to x and t. 

For the second term on the right-hand side of Eq. (30), we 
can use integration by parts along with the two boundary 
conditions to show 
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~ =-f ~(21u)dr (

[}2 ) 1 r~a [)
2 

8r2 
1rn 

2 
,~o 8r

2 

1 Be ,~a '1~" Be = - _A (21u)I - _A (211 \..ir 11a 2 Br ,~o or t' 

=-/! OCA) 
\r or 

r=O 

(31) 

Combining these results gives a macroscale equation of the 
form 

d(cA) = -U o(cA) + w 8
2 

(cA) + 2U / r 2 Be A) (32) 
dt ox A 8x2 a 2 

\ ox 

Except for the last term on the right-hand side, this expression 
is a macroscale balance equation for the average concentration, 
(cA) . We can't simplify the last term as it stands because of 
the presence of the multiplier r2 inside the averaging opera­
tor. To proceed further, we have to propose some method for 
expressing ( r 2 Be A /ox) in terms of the average concentra­
tion (cA) rather than the microscale concentration, cA. To do 
this, we define a concentration decomposition that relates the 
average and microscale concentrations as follows 

(33) 

where the quantity c A is called the concentration deviation 
(from here on we will drop the explicit reference to the co-

with the average velocity; for this reason no convection term 
arises here. Our remaining goal, then, is to determine how we 
can obtain an expression of the form 

(37) 

where DA.err defines the effective dispersion coefficient. To ac­
complish this, we must find a way of closing the problem so that 
terms involving only the average concentration, ( c A), appear. 

CLOSURE 
To complete the analysis, we need to find some method 

of predicting the concentration deviation, c A , in terms of 
the average concentration, ( c A) . At first, this may seem 
like a tall order: it is not clear at this point that there is any 
reason to expect that we could express c A as some function 
involving ( c A) . We will see, however, that this is a tractable 
task. To start, we need to develop a balance equation for the 
concentration deviations. 

The decomposition given by Eq. (33) suggests a relationship 
between the concentrations of the form 

(38) 

and this suggests that a balance equation for c A can be ob­
tained by subtracting the balance equation for ( c A) from the 
balance equation for cA. This is a straightforward operation, 

ordinates for all concentrations unless explicitly required). Using this in 
Eq. (32) gives 

To start, one can explain that 

Eq. (5) is the relationship 

between a point fixed in the 

fluid at the initial time ( t = 0) 

and where that point would 

be located later ifit were 

d(cA) = -U o(cA) + w 8
2 

(cA) + 2U (r2 ) o(cA) + 2U / r 2 8c:A) 
dt ox A 8x2 a2 ox a2 

\ ox 

(34) 

Finally, note that the average of r2 can be readily computed as follows 

(35) 

Combining this result with Eq (34) gives the simple-looking expression 

d(cA) = w 8
2 

(cA) + 2U / 2 8c:A) 
dt A 8x2 a 2 \r ox 

(36) 

Eq. (36) is starting to look like the spatially averaged equation that we are 
seeking. Recall that we put this analysis in a coordinate system that moves 
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and the result is 

dcA - {:lf' fJ2cA - ul 1- 2r21 acA + {;lf'l OCA + w 82cA 
dt A 8x2 l a 2 J Bx Ar or A 8r2 

_ d(cA) = Q2F_
02 

(cA) + 2U ( 2 Be A) 
dt A 8x2 a 2 r ox 

(39) 

For the closure problem, we want a balance equation that in­
volves only deviations and averages. Using the decomposition 
given by Eq. (33) to eliminate the microscale concentration in 
Eq. (39) and the boundary condition given by Eq. (2), we find 
a complete description of the closure problem that predicts 
the deviation concentration c A is given by 

de A= -ul 1_ 2r
2 1 acA _ Q2J' 8

2
cA + ~ -~--'r acA I 

dt l a 2 J Bx A 8x2 r or l Br ) 

_ 2U (r2 Be A)- ul 1_ 2r
2

1 o(cA) 
a 2 ox l a 2 

) ox 
'-,-' 

Nonlocal term Source 

(40) 

at r=0 andr=a ( 41) 

c A ( r, x, t = 0) = ~ ( r, x), initial condition ( 42) 

Note that in the development of this equation we have used the 
fact that a ( c A) / clr=0 (i.e., the average concentration depends 
only upon x). In principle, this equation can be solved (using, 
for example, Fourier transform methods) provided that the initial 
condition is known. Ibis would then provide us with an expression 
that describes the time evolution of the deviation concentration. 

From a practical perspective, it is useful to consider exam­
ining the "long time" solution to Eqs. (40)-(42), where the 
effective dispersion coefficient is essentially a constant. To 
begin the analysis of this approximation, suppose that the 
source term has a characteristic time scale ofT*. This implies 
that the dominant time scale for a c A I at is also of order T*. 
We can make the following estimates 
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ul1_ 2r21acA =olu6cA I 
l a

2 
) ox l L J 

(43) 

(44) 

(45) 

The key ideas of the 

Taylor-Aris analysis provide 

a structure for understand­

ing upscaling in many other 

kinds of multiscale systems. 

(46) 

(47) 

Note that the estimates in Eqs. (45) and (46) are identical. 

We begin simplification by imposing the restriction 

-<<--- r--dcA ~ a r acAJ 
dt r or or 

(48) 

and using our estimates, this translates into a constraint of 
the form 

a2 * 
-<<T 
~ 

(49) 

We can think of the term on the left-hand side of this expres­
sion as the relaxation time of c A due to diffusion, whereas 
the right-hand side indicates the timescale for changes in the 
source term. This restriction indicates that diffusion must 
relax any radial gradients relatively "quickly" compared 
with changes in ( c A) . Generally, this kind of relationship is 
known as a quasi-steady condition, and it is used frequently 
in engineering analysis. 

We can make two additional restrictions to simplify the 
problem. Early on, we indicated that we expected radial dif­
fusion to be "fast" relative to longitudinal convection. In the 
closure problem, we can formalize this by the restriction 

ul 1- 2r21 acA << ~ ~Ir Be A I (50) 
l a 2 

) ox r or l Br ) 

and making order-of-magnitude estimates as we did above, 
this yields a Peclet number constraint 

Ua a --<<l 
~ L 

(51) 
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Note that this same constraint also allows us to drop the 
nonlocal term on the right-hand side of Eq. (40) since it is 
of the same order of magnitude as the convection term that 
we just dropped. 

Finally, we expect radial diffusion to dominate over lon­
gitudinal diffusion 

{.lf' --<<---r-EJ2cA ~ a r acA J 
A OX2 r Or Or 

(52) 

Again using the estimates above, the associated constraint is 

a 
-<<l 
L 

(53) 

When these three constraints are met, we can describe the 
closure problem by 

~ ~rracAl=ul1_2r21a(cA) (54) 
r orl or ) l a2 J Bx 

(55) 

(56) 

In Eq. (56), we have replaced the initial condition present 
in the original problem with the constraint that the average 
of the deviations must be identically zero. This is necessary 
because when we adopt the quasi-steady form the initial con­
dition no longer enters the problem. Without some additional 
constraint, however, there is no longer enough information 
to solve the problem. The constraint that the average of the 
deviations is zero is consistent with the original initial condi­
tion, and allows the constants of integration in the solution to 
be explicitly identified. 

We have made substantial simplifications here, but the 
benefits to these simplifications are (1) they were done in 
a manner in which explicit constraints were developed that 
indicate their domain of validity, and (2) the resulting balance 
still captures the essential physics of the problem, but is now 
significantly simpler to solve than the original problem. The 
solution to this problem is straightforward, and two integra­
tions give the result 

c = ua2 o(cA)l_c _ _!_~J+K (57) 
A 4 {.lf' ox a 2 2 a4 

A 

To determine the constant of integration, K, we use the con­
straint imposed on the problem [Eq (56)]. Taking the average 
of both sides of Eq (57) and using Eq (56) we find 

1 Ua2 o(cA) 
K=------ (58) 

34 ~ ox 
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so that the final solution is 

~ _ Ua
2 

o(cA)l r
2 

1 r
4 

lJ C ----- ------
A 4 ~ ox a 2 2 a 4 3 

(59) 

The Macroscale Dispersion Coefficient 

Recall that the unclosed macroscale transport equation that 
we developed took the form 

d(cA) = !2);8
2

(cA) + 2u(r2 ocA) 
dt A 8x2 a2 ox 

(59A) 

where the second term on the right-hand side represented the 
influence of mechanical dispersion due to the nonuniform 
flow field. Because we have determined the concentration 
deviation field by Eq. (59), we are in a position to close the 
macroscale equation. To do this, note that we will need the 
derivative of the concentration deviation field 

Substituting this into the macroscale transport equation above 
and regrouping terms yields 

Note that this now takes the form of a dispersion equation, 
where the term multiplying the derivative on the right-hand 
side is the dispersion coefficient. It is straightforward to work 
out the term in the angled brackets explicitly using the defini­
tion of the average given by Eq (29). This result is 

( 
21 r

2 
1 r

4 
1 I) a 

2 

r l 2a2 -4;-:;--6J = 48 (
62

) 

Finally, substituting this result into Eq ( 61) yields the classical 
Taylor-Aris result 

d(cA) = D 32 (cA) 
dt A,eff 8x2 (63) 

where 

D = ~ +--l U
2

a
2 

J 
A,etr A 48 ~ 

(64) 

As a final step, we can put this equation back into a fixed 
frame of reference rather than one that moves with the mean 
flow. Doing this essentially adds back the (mean) convection 
term that we initially removed, and the final transport equation 
takes the form of the convection-dispersion equation. Using 
Eq. (17) we can easily convert our final expression back to 
the fixed frame of reference, yielding a macroscale convec­
tion-dispersion equation of the form 
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(65) 

Note that the interpretation of this new equation, unlike the 
microscale equation that we started with, is that it describes 
the concentration averaged over the cross section of the 
tube. The microscale structure (geometry and flowfield) are 
represented in this equation, but only indirectly through the 
effective dispersion coefficient. 

PERSPECTIVE 
The essential ideas of the micro-macro duality of multiscale 

systems can be communicated to undergraduate and graduate 
students alike through the example of Taylor-Aris dispersion. 
Because of the simple geometry involved, this problem has 
a macroscale transport equation that is intuitively appealing, 
and the effective dispersion coefficient can be predicted in a 
simple, closed form from an analysis of the microscale flow 
and transport processes. The key ideas of the Taylor-Aris 
analysis provide a structure for understanding upscaling in 
many other kinds of multiscale systems. These key ideas can 
be summarized as follows. 
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1. Many systems have a complex, multiscale structure that 
would be infeasible or impossible to fully resolve at the 
smallest scale of interest (the microscale). 

2. For such systems, a macroscale description of the phe­
nomena of interest is sought that applies at a scale that 
is much larger than the microscale. Such a description 
seeks to represent the unresolved microscale processes 
in the system by a model. In this way, the net effect of the 
microscale processes are captured, even if they are not 
explicitly resolved. 

3. Upscaling is a method of formally averaging the com­
plete microscale description of a system in order to devel­
op a valid macroscale representation. The goal in upscal­
ing efforts is to make a connection between the microscale 
and the macroscale that allows one to predict the effective 
parameters that are developed for the macroscale trans­
port equations. This is accomplished by breaking the 
problem into two separate systems of transport equations: 
( 1) equations describing the transport of the average of 
the quantities of interest, and (2) equations describing the 
transport of the deviations from this average. 

4. If we use the concept of numbers of degrees of freedom 
of a system, then upscaling is the process by which the 
number of degrees of freedom of the system is reduced 
by eliminating redundant information. For upscaling to 
be effective, there must be some identifiable structure or 
regularity of the deviation quantities in the system that 
leads to information that can be considered redundant. 

A scaling law is a statement about the structure of the 
deviations in the system that allows one to accomplish 
this reduction in degrees of freedom. A few examples of 
scaling laws include (1) smoothness conditions (such as 
in the case of Taylor dispersion), (2) periodic geometric 
structure (such as is done in many analyses of porous me­
dia systems), and ( 3) statistically homogenous structure 
(as is done in turbulence). 

Often, when upscaling concepts are presented to students 
who are unfamiliar with them, a "big picture"perspective is 
missing. If this can be first communicated, and then followed 
by a tractable example like the case of Taylor-Aris dispersion, 
the concepts underlying upscaling become significantly more 
tangible and much easier for students to understand. 
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