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In the traditional undergraduate chemical engineering 
curriculum, the mathematical formulations of engineer­
ing problems are solved almost exclusively by analytical 

methods. A prototypical example is the analytical solution of 
differential equations in transport. Many interesting-and 
not particularly exotic-problems cannot be solved analyti­
cally, however. In the past, limiting cases and approximations 
might have been used to circumvent this problem. But with 
the availability of fast computers and user-friendly software 
for numerical computation, we risk becoming irrelevant if 
we do not equip our students to use these new tools. Other 
disciplines are also concerned about this problem. For ex­
ample, concerns about whether undergraduates are equipped 
to tackle problems of increasing complexity recently led the 
Mathematical Association of America to convene a working 
group of chemists to examine the connections between the 
undergraduate mathematics and chemistry curricula. [ll 

The mass transfer course is an ideal one for including nu­
merical solution methods for chemical engineers, because the 
students have already seen the same mathematical methods 
in their fluid mechanics and heat transfer courses. At North­
western University, momentum, heat, and mass transport are 
taught separately in successive quarters in the third (junior) 
year. Fluid mechanics is taught first, along with the requisite 
vector analysis, followed by heat transfer. By the time mass 
transfer is encountered, the analogies to fluid and heat transfer 
can be used to speed the coverage of the core material, leaving 
more time for exploration of other topics, such as numerical 
methods or short group projects. 

At Northwestern University's McCormick School of 
Engineering and Applied Science, the computer solution 
of numerical problems is introduced to first-year students 
through the Engineering First program using MATLAB. [2l 

While FORTRAN 77 was often taught to chemical engineer­
ing students in the past, MATLAB now seems to be a favored 

introductory programming language in the United States. It 
has the advantage of incorporating a graphical user interface 
and good graphing capabilities. In addition, MATLAB boasts 
a range of ODE and PDE solvers that are of particular use for 
transport problems. With the widespread availability of such 
tools built into the software and on the Internet, it is no lon­
ger necessary to make students write their own code to solve 
these types of problems. Researchers in industry also typically 
operate by using numerical codes written and published by 
experts in the relevant area of numerical computation. The 
researcher is thus able to devote more time to solving prob­
lems in his or her own field of expertise. Therefore the ability 
to understand and use existing pieces of high-level code is of 
great practical importance. 

Discrete particle- or agent-based simulations are rarely 
taught to undergraduates, but they are becoming increasingly 
commonplace in fields as diverse as materials science, trans­
portation, and sociology. [3l One could argue that such skills are 
of more use to a chemical engineering graduate entering the 
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workforce today than the knowledge of rigorous distillation 
column design. Stochastic simulation has become an integral 
part of the computational chemist's or biologist's toolbox, 
with a number of practitioners calling for its inclusion in 
the undergraduate curriculum. [4l As chemical engineers have 
also embraced molecular simulation in their research, some 
chemical engineering departments have added undergraduate 
courses in molecular simulation and theory, covering topics 
such as the estimation of thermochemical and reaction rate 
data and the prediction of phase equilibria and transport 
properties by molecular simulation. [5l 

Solving problems numerically forces students to think 
about mathematics in a different light, in that it is no longer 
possible to simply learn the analytical solution. Some element 
of programming is invariably involved in solving equations 
numerically, forcing students to break the solution down into 
the simplest steps possible, which can in tum lead to a more 
concrete understanding of the mathematical relationships. 
For students to become comfortable with solving problems 
numerically, such problems must be incorporated throughout 
the curriculum. In this paper, we give examples of problems 
we posed to expose students to numerical solutions and 
simulations in the context of mass transfer. The following 
sequence of problems was assigned to increase the students' 
familiarity with the solution of ODEs using MATLAB. We 
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edu/Publications/ Supportinglnf o/Download.html>. Instructors 
can obtain MATLAB solutions by sending e-mail to snurr@ 
northwestem.edu. 

AN INTRODUCTORY ODE PROBLEM WITH 
AN ANALYTICAL SOLUTION 

To provide a fairly gentle reintroduction to MATLAB, we 
first asked students to determine the concentration profile and 
flux of a liquid, A, slowly evaporating into a gaseous mixture 
of A and B from a reservoir of pure A located at the bottom 
of a cylindrical tube. Since the evaporation of the liquid is 
slow, one may assume that the surface of the liquid is station­
ary. This example is covered in many texts and an analytical 
solution is straightforward. We used the text by Middleman,l6l 

where this problem is solved as Example 2.1.1. We asked the 
students to generate a numerical solution using MATLAB and 
compare this with the analytical solution. The steady-state 
equations to be solved are 

dx -(1-x)N 
dz CD 

(1) 

dN =0 
dz 

where x is the mole fraction of A in the gas phase, N is the 

Increasing k 

-- Species 1 
Species 2 
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started off with a diffusion problem 
that could be solved analytically and 
had the students compare the analyti­
cal solution to the numerical solution 
generated by a boundary value solver 
intrinsic to MATLAB. We also encour­
aged them to experiment with different 
values of the parameters fed to the 
boundary-value solver to see whether 
the quality of the numerical solution or 
the time taken to reach it were affected. 
We then posed a problem with reaction 
and diffusion that had no analytical 
solution. Students were asked to vary 
the reaction rate constant until the con­
centration profiles in the system began 
to resemble those for the limiting case 
of reaction being much faster than 
diffusion. Finally, we presented stu­
dents with a lattice simulation of cells 
invading a polymer tissue engineering 
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scaffold and had them experiment with 
the different parameters controlling 
the rate of cellular invasion and the 
concentration profile of the invading 
cells in the polymer matrix. 

All of the problems discussed in 
this paper can be found at the Web 
site <http:/ /zeolites.cqe.northwestem. 
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Figure 1. Binary diffusion and second-order reaction in a stagnant film. The 
concentration profiles of each species are shown for four different values of the re­
action rate constant, with the diffusivity of each species held constant. If reaction 
is much faster than diffusion, almost all the reaction takes place at the reaction 

front, marked on the figure as L1 
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flux of A, C is the total concentration in the gas phase, and 
Dis the diffusivity of gaseous A in B. The boundary condi­
tions are that at z = 0, x = x

0 
(determined from the vapor 

pressure of A at the liquid/gas interface), and at z = L (end 
of the tube), x = x

1 
, the mole fraction of x in the gas mixture 

flowing past the tube. 

MATLAB incorporates a two-point boundary value problem 
solver called bvp4c, which is useful in solving this problem. 
The bvp4c solver requires as input an initial guess to the solu­
tion in a data structure that consists of the initial mesh points in 
the domain of the solution and the values of the initial guess for 
each mesh point. This data structure can be formed by another 
function intrinsic to MATLAB called bvpinit. The other inputs 
to bvp4c are the functions describing the system of OD Es and 
the boundary conditions. Our ODE function consisted of just 
the first of the above equations, with N as a parameter to be 
determined. Since most students had only encountered initial­
value ODE problems, we first discussed the differences between 
initial value and boundary value problems in class, pointing 
out that the latter can have no solutions or an infinite number 
of solutions. A hands-on introduction to MATLAB covered the 
use of file input and output, functions, function handles, data 
structures, and graphing. This was followed by fairly explicit 
guidance in the use of the boundary value solver functions. 
Students were also encouraged to try different initial guesses 
for the solution and the unknown parameter and to examine 
the effects on the validity of the solution and the time taken 
to reach it. Increasing the number of initial mesh points from 
10 to 10,000 resulted in an increase in computation time from 
a few seconds to over a minute but did not affect the quality 
of the solution for this simple problem. Certain initial guesses 
for the concentration profile, however, resulted in numerical 
disasters -with the result that no solution could be found. The 
solution was completely insensitive to the initial guess for 
the unknown parameter, N. Finding that this parameter was 
in exact agreement with the analytical solution strengthened 
the students' confidence in their ability to obtain correct 
numerical solutions. 

A MORE CHALLENGING BOUNDARY VALUE 
PROBLEM 

We followed by posing a problem without an analytical so­
lution, in this case Middleman's Example 3.2.9. This example 
consists of steady-state binary diffusion through a stagnant 
liquid film in which a second-order reaction is taking place. 
The equations to solve are 

d 2C 
Dl--1 -kClC2 =0 

dz 2 

d 2C 
D2 dz/-kClC2 =0 

(2) 

At z = 0, C
1 
is maintained at a constant value of C

10
, and compo­

nent 2 is not allowed to cross the plane, i.e.,dC/dz= 0.At z = L, 
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C
2 

is maintained at a constant value of C
2
L' and all of compo­

nent 1 is required to react within the film so that C
1 

= 0. 

The concentration profiles in the film for different rate 
constants are plotted in Figure 1. While no analytical solu­
tion is possible, an approximation in the limit of fast reaction 
is possible. If the reaction is sufficiently fast and there is no 
excess of either species, the concentration of each species 
becomes essentially zero upon crossing a small zone known 
as the reaction front, in which almost all the reaction takes 
place. This behavior can be seen in the concentration profiles 
in Figure 1 corresponding to the highest values of the reaction 
rate constant, k. The location of the reaction front, Lr , can 
be found from the realization that, due to the stoichiometry 
of the reaction, the fluxes of the two components must be 
equal. Then 

(3) 

Since the bvp4c solver can only be used to solve systems 
of first-order equations, the above system of equations and 
boundary conditions must be rewritten as such via the substi­
tution yi = dC/dz, which results ina system of four first-order 
equations to go with the four boundary conditions. The stu­
dents were expected to arrive at this realization on their own. 
They were asked to calculate the concentration profiles of the 
components in the film and find the value of the rate constant 
at which the reaction front approximation becomes valid. 
This exercise was repeated with different diffusivity values 
to emphasize that the behavior of the system is governed by 
the ratio of reaction rate constant to diffusivity, essentially 
the Thiele modulus. 

FURTHER NUMERICAL PROJECTS 
The tools that students gained in the problems above could 

be readily extended to explore multicomponent diffusion, 
a topic that is often completely ignored even in graduate 
transport courses. For example, consider binary diffusion of 
species i and j through a zeolite membrane. The membrane 
can be considered a third, nondiffusing component. The fluxes 
of the two species with respect to the stationary membrane 
frame of reference can be written as[7l 

Ji = -Di/vCi - Dijvcj 

Ji= -Djivci - Djjvcj 

(4) 

where Ji is the flux of componenti, Dii is its main-term diffusivity, 
and Dii is its cross-term diffusivity. In general Dii += Dii' and for 
guest molecules in zeolites all of the diffusion coefficients may 
depend on the concentrations of both species. Sanborn and 
Snurr have reported the concentration-dependent diffusion 
coefficients for mixtures of methane and CF4 in the zeolite 
faujasite, calculated from equilibrium molecular dynamics 
simulations and fitted to simple analytical functions of the 
concentrations_[sJ They used MATLAB to solve Eqs. (4) for 
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several interesting sets of boundary conditions. For "co-diffu­
sion" boundary conditions, both species have a higher concen­
tration on one side of the membrane. For "counter-diffusion" 
boundary conditions, species i has a higher concentration on 
one side but species j has a higher concentration on the other 
side of the membrane. Normally, one would expect species 
i andj then to diffuse in opposite directions (counter-diffu­
sion). Depending on the magnitudes of the main- vs. cross­
term diffusivities, however, it is possible that both species 
will diffuse in the same direction_[sJ This illustrates that for 
molecules in tightly confined spaces, such as zeolite pores, 
the seemingly esoteric cross terms may, in fact, be important. 
As an interesting question, one may ask the students if this 
violates the laws of thermodynamics. (It does not, as both 
species still diffuse downhill in chemical potential, illustrat­
ing that chemical potential and not concentration is the real 
driving force for diffusion.) 

Multicomponent diffusion is often ignored in courses be­
cause of the lack of access to the needed diffusion coeffcients 
and because numerical solutions of the differential equations 
are usually required. This example shows that modem mo­
lecular simulations may provide access to difficult-to-measure 
multicomponent diffusivities. It also shows that the numerical 
solution of the differential equations is easily undertaken with 
widely available software such as MATLAB. 

AGENT-BASED MODELING 
Certain types of problems may be more easily modeled as 

computer algorithms than as differential equations. While this 
type of modeling is now commonplace, competing with and 
sometimes replacing equation-based approaches, chemical 
engineering students tend to be almost entirely unacquainted 
with it by the end of their undergraduate careers_[3l An in­
triguing and intuitive example of this type of modeling is a 
simulation of ants foraging for food,[9l which can be found at 
the Web site of Northwestern University's Center for Con­
nected Learning and Computer-Based Modeling, <http://ccl. 
northwestem.edu/netlogo/models/ Ants>. 

This simulation concerns the manner in which a colony 
of ants finds food and transports it back to their anthill. It 
could easily be used as an in-class demonstration of a dif­
ferent mechanism for mass transfer, albeit one that would be 
extremely diffcult to describe by differential equations. 

In this simulation, each ant encountering a large piece of 
food deposits a chemical trail as it transports some of that food 
back to the nest. The chemical trail evaporates and diffuses 
over time. Ants can sniff out the chemical trail and follow 
its gradient uphill. A similar mechanism using a "nest scent" 
is used to return to the nest once food has been found. The 
chemical trails are reinforced by repeated traversal, which 
induces more ants to chip away at the food source until it is 
completely consumed. Once this occurs, the chemical trail 
begins to dissipate and the colony consequently forages else-
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where. The colony generally exploits food sources closest to 
the nest before foraging further afield since the evaporation 
and diffusion of the chemical retards the formation of stable 
chemical trails to more distant food sources. 

The ant simulation described above is an example of agent­
based modeling based on the cellular automaton paradigm. 
Cellular automaton simulations are used to model complex 
systems comprised of interacting autonomous agents. Agent 
behaviors are modeled explicitly, using a range of behavioral 
models and representation schemes at appropriate levels of 
detail. The crux of agent-based modeling and simulation 
is that agents only interact and exchange locally available 
information with other agents in their immediate vicinity. 
What constitutes an agent's "immediate vicinity" varies 
depending on the type of system being simulated. For ex­
ample, neighbors may be spatially close for a simulation in 
continuous space, occupying adjacent grid cells in a lattice 
simulation, or connected nodes in a simulation of a network. 
Generally, an agent's set of neighbors changes rapidly as a 
simulation proceeds. The problem of identifying an agent's 
neighbors can dominate the computational expense of such 
a simulation, particularly as the number of agents increases. 
Different algorithms for neighbor-searching vary dramatically 
in performance depending on the topology of the neighbor 
interaction, the language used to program the search, and 
the platform on which the calculation is run. [!OJ For example, 
Mathematica, with its high-level list-processing functions and 
cellular automata package, can run these simulations extremely 
efficiently. There is a substantially steeper learning curve to 
programming in Mathematica, however, due to the variety of 
programming paradigms it supports, and since our students 
already had acquaintance with MATLAB, we decided to imple­
ment an agent-based simulation project in MATLAB. 

We developed an agent-based simulation project relevant to 
chemical engineering based on the cellular automaton simula­
tions of Shea and Pasquini[lll of cells invading a polymer tissue 
engineering scaffold representative of those implanted in a wound 
or regenerating tissue. The scaffold, which serves to maintain a 
space conducive to tissue formation, contains an interconnected 
open-pore structure that can either be seeded with progenitor 
cells or be infiltrated by such cells from the surrounding tissue. 
The progenitor cells within the scaffold migrate, proliferate, and 
differentiate to form a functional tissue that must eventually be 
integrated with the host. Although tissue engineering is currently 
a very active area of academic and industrial research, this was 
our students' first encounter with the field. 

The scaffold consists of impermeable polymer walls that 
define a pore structure. These walls are modeled as evenly 
spaced planes in the x, y, and z directions, which form cubic 
cavities called macropores. There are randomly placed holes 
called micropores in the macropore walls. Cells move between 
macropores through these micropores. (Note that the terms 
"macropore" and "micropore" as used in tissue engineering 
do not correspond to the standard IUPAC definitions.) 
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A lattice model is used to simulate the motion of cells in this 
scaffold, with the lattice spacing being equal to the cell size. 
Thus each lattice site can only be occupied by a single cell. 
The macropore walls are several tens of lattice spacings apart 
and a single lattice spacing in thickness, and the micropores in 
our simulations are a single lattice spacing in size. Cells can 
occupy vacant sites in this model pore network and migrate 
or reproduce if space is available. Each cell must, however, 
remain in some physical contact with the solid support of the 
walls, either directly or through adhesion to other cells that are 
in contact with the walls. This model is used to examine how 
cells penetrate from the external surface of the scaffold to its 
interior, ultimately filling the void space as they reproduce. 
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We used a simulation cell consisting of three macropores 
in the x and y directions and five macropores in the z direc­
tion. The cells are initially placed at the bottom x-y plane, 
with periodic boundary conditions being used in the x and 
y directions. The z direction points inward into the scaffold, 
with the cells initially filling the z = 0 plane and migrating in 
the positive z direction. Several two-dimensional slices of this 
three-dimensional lattice are shown together in Figure 2. 

The mean square displacement for cellular migration is 
given by 

(5) 

where (d 2 ) is the mean square displacement, n is the number 

30 

Figure 2. 2-D slices of a 3-D polymeric tissue-engineering scaffold. The scaffold is placed within some healing tissue and 
serves to maintain a space conducive to the growth of new tissue from progenitor cells. The polymeric walls form macro­
pores that are connected by randomly placed micropores. The scaffold is shown divided into lattice sites. Empty lattice 
sites in the scaffold are white, sites occupied by polymer walls are black, and sites occupied by cells are purple (gray). 
The micropores can be seen as holes in the black macropore walls. In this simulation the progenitor cells are initially 

present at the bottom of the scaffold (z = O plane) and migrate vertically into it, in the positive z-direction. A selection of 
horizontal and vertical slices through the scaffold is shown. 
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of dimensions, S is the root mean square speed, and tis the 
time. Pis the persistence time, i.e., the time for which the 
direction of the moving cell remains constant. Variations in P 
have been shown to have little impact on system behavior. [lZJ P 
was chosen to be the same as the simulation time step. Setting 
the displacement, d, equal to the lattice spacing, l, allows the 
calculation of the time step from the above equation: 

t = '1z2/3s2 

step 
(6) 

At each time step, each cell moves to one of the adjacent 
empty lattice sites. The choice of site is determined by com­
paring the probability of migration to each neighboring site 
to a random number drawn from the uniform distribution 
between O and 1. The probability of migration to a particular 
site is dependent on the number of cell-cell and cell-wall 
interactions that the cell will experience in that site and the 
relative importance of these interactions. This probability is 
normalized by the sum of migration probabilities to all the 
sites neighboring the starting site at that time step: 

p, =A/" Ak 1,J J L..,,; 
nn 

(7) 

Ak =nc*cp+nw 

where P . is the probability of moving from site i to site j, nc 
1,J 

is the number of neighboring sites occupied by cells, nw is 
the number of neighboring sites occupied by polymer wall, 
cp is the ratio of cell-cell cohesivity to cell-polymer adhesiv-

ity, and L Ak is the sum of Ak over all sites that are nearest 
neighborr to site i. 

In addition to migrating, the cells can proliferate. Each cell 
is initially set to proliferate at a time randomly drawn from a 
normal distribution. At each time step, a counter indicating 
the cell's time to proliferation is decreased until it becomes 
negative, indicating that the cell should now divide. If space 
is available in one of the adjacent lattice sites, the cell will 
divide and the resulting new cell will occupy that site. The 
counters for both cells are again set randomly from the normal 
distribution of proliferation times. 

The cells infiltrating the scaffold must maintain some physi­
cal connection to solid support, so no cluster of cells can be 
completely disconnected from the wall. Moves that isolate a 
cluster of cells from the walls must be disallowed. Therefore, 
before a move is accepted, one must check that every cell 
neighboring the one about to be moved has some connection 
to the walls and that the cell in its new location will have some 
connection to the walls. This is done by a depth-first search 
(DFS) algorithm[13l adapted from that of Kevin Murphy, found 
at <http://www.cs.ubc.ca/ ~murphyk/Softwarei>. The DFS is 
the most computationally expensive part of the program. 

It is instructive to compare the lattice model formulation of 
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this "diffusion and reaction" problem with an attempt to cast 
it as a system of differential equations. The physical condition 
that no cell or cluster of cells can float unconnected to the 
solid support of the walls is particularly difficult to describe 
in the language of differential equations. 

Since such a project involves a fair amount of coding effort, 
we provided the MATLAB code to the students. We asked 
them to run it for various values of macropore spacing, micro­
pore fraction, and cp and to examine how these factors affect 
the time taken for cells to reach the top of the lattice and how 
the concentration profile of cells in the pore space varies. At 
low cp, the cells tend to penetrate into the lattice by crawling 
up the walls and leaving the centers of the macropores rela­
tively empty. At higher values of cp, however, the increased 
preference for other cells over polymer walls results in a fairly 
uniform front of cells penetrating through the lattice. In this 
latter case, the cell proliferation rate determines the progress 
of the front, rather than the rate of migration along the walls. 
All of this is only possible if the micropore fraction is high 
enough to permit percolation from one end of the lattice to 
the other. Above this critical value, the micropore fraction has 
minimal impact on the rate of cellular invasion. 

For a reasonably large system of a few hundred lattice sites 
in each direction, the naive neighbor-searching algorithm 
we implemented (in which all cells are examined as possible 
neighbors) runs into recursion limits during the depth-first 
search. We wanted the students to run simulations for several 
different sets of parameters in a relatively short time, so we 
initially disabled the depth-first search, decreasing the run 
times to a minute or less even for large systems. Of course, 
this also meant that groups of cells could detach from the 
walls, unlike the work of Shea and Pasquini. Since we wanted 
the students to examine how the code actually worked, we 
refrained from explaining the physical meaning of cp, instead 
requiring the students to infer its meaning from the way in 
which it is used in the code. We also had the students modify 
the code to make the function call to the depth-first search 
routine and run simulations within a single small macropore, 
which took a few minutes per simulation. Students were ad­
ditionally questioned about ways in which to make the full 
simulation more efficient by using a better neighbor-search­
ing algorithm. Given sufficient time, the implementation of 
a grid-cell based neighbor-searching algorithm could be a 
useful programming exercise. 

Thus, although the students were saved much of the grunt 
work involved in writing the code, they had to become fairly 
familiar with its workings to receive full credit. The code is 
fairly well commented except for the deliberate omissions 
regarding cp and the routine in which the depth-first search is 
called. Most students were able to do this assignment without 
much assistance after being provided with the above details on 
the physical system and the overview of the code contained 
in the README file. 
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STUDENT RESPONSE 
Despite the grumbling that ensues when students are prod­

ded out of their comfort zones, most of them were able to 
complete these assignments without a great deal of difficulty. 
In general, we noticed that the qualitative and open-ended 
questions proved more taxing than actually solving the 
differential equations or running the agent-based simula­
tions. Most of the students were interested in biological 
applications but had not encountered many at this stage of 
their education. This, coupled with the novelty of agent­
based modeling, added to interest in the tissue engineering 
example. Though the students would have learned more 
through coding the entire lattice model themselves, we feel 
reasonably satisfied that they have been exposed to using and 
modifying a relatively large piece of code, an accomplish­
ment in itself, in the short span of a couple of weeks. If one 
wished to use this example in a course with more program­
ming, the project could be extended by having students 
implement a more efficient neighbor-searching algorithm 
or modify the code further to reproduce some of Shea and 
Pasquini's other results,l 11 l such as those for multiple cell 
types invading the scaffold or for cells initially being seeded 
throughout the scaffold. 
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