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Models play an important role in understanding 
chemical engineering systems. While Ordinary 
Differential Equation (ODE) models for physical 

systems are well covered in the undergraduate curriculum, not 
much attention is paid to DAE models of chemical engineering 
systems. DAE models arise naturally in several chemical/ 
physical systems that admit quasi steady-state approxima­
tions. Common examples of these can be found in separation 
and reaction systems. While these models can be thought of 
as a natural extension to ODE models, there are several new 
concepts that arise when one considers DAE systems. These 
are the index of the system, consistent initialization, and so 
on. Some of these concepts might seem abstract for chemical 
engineering undergraduates. There is a need to teach these 
ideas at an undergraduate level, however, as these types of 
models are becoming commonplace. 

In this article, we propose a simple reactive flash as an 
excellent vehicle for introducing DAE systems to chemical 
engineering undergraduates. The power of this example is that 
it allows DAE systems to be introduced naturally in several 
courses. While one obvious place to introduce this example is 
after a discussion of ODE systems in a mathematical methods 
course, this example can be equally easily incorporated into a 
thermodynamics course. A concomitant solution approach that 
is a straightforward extension of the Rachford-Rice procedure 
can be taught for solving flash problems. The reactive flash 
increases the complexity of the flash calculation by one level 
through the inclusion of reactions to phase equilibrium. The rest 

of the article is organized as follows: In the section 1, a simple 
reactive flash model is discussed with all the assumptions in­
volved. The steady state solution of the reactive flash system 
through a modified Rachf ord-Rice procedure is then proposed. 
In section 2, we show how the more involved ideas, such as the 
index of a DAE and consistent initialization, can be discussed 
in the context of this chemical engineering problem. 
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1. THE REACTIVE FLASH PROBLEM 
Reactive Distillation (RD) is an intensification process 

involving the combined operation of reaction and separa­
tion in a single processing unit. For a detailed review of the 
various chemical systems that can benefit from the concept 
of RD, refer to Sundmacher and KienleYl In many of these 
cases, combining reaction and separation can lead to increased 
conversion, high selectivity, and reduced capital investment. 
RD is useful when the chemical system involves reversible 
reactions, azeotropes, and undesired product formations. 

The idea of RD can be explained to undergraduates through 
a simple reactive flash, which is an extension of the equilib­
rium flash problem. The reactive flash can be thought of as an 
idealization of a single stage in an RD column. In this process, 
the two streams exiting from the reactive flash are assumed to 
be in phase equilibrium and the ratio of the reaction rate to the 
mass transfer rate is given by a dimensionless number, called 
the Damkohler number. Additional assumptions of isothermal 
and isobaric behavior further simplify the problem formula­
tion. A model for the reactive flash is discussed next. 

1.1 Reactive Flash Model 

The single-stage, isothermal, isobaric, reactive flash being 
considered is shown in Figure 1. The following assumptions, 
which simplify the model equations, are made while formulat­
ing the process model[2l: 
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1. Liquid and vapor leaving the stage are assumed to 
be in equilibrium 

2. Liquid hold up is assumed to be constant 

3. Isobaric and isothermal process 

T,P, Da 

Figure 1. Schematic of a reactive flash. 

4. Non-ideality of liquid phases 

5. Reaction takes place in the liquid phase 

The equations used to describe this dynamical system are 

dx 
Hdt= Fz; -Lx; -Vy; +Hv;s 

Y; =K;x; 
psat 

where K = .:!i...L 
1 p (1) 

Land V are liquid and vapor flow rates; xi and yi are liquid 
and vapor mole fractions respectively; Fis the feed flow rate; 
H is the liquid hold up; the Damkohler number, 

Da= H/F 
l/kref 

is a dimensionless ratio of the characteristic liquid resi­
dence time to the characteristic reaction time; vi is the 
stoichiometric coefficient; s is the extent of the reaction; 
1; is the activity coefficient; Ki is the equilibrium constant; 
and the index i runs from 1 ton, where n is the number of 
components in the system. k,er is the forward rate constant 
evaluated at a reference temperature. Introducing the di­
mensionless variables, 

0 =~ 0 = V 
1 F' V F 

and the dimensionless time, T = t/(H/F), the dynamic state 
equation becomes 

dx Da 
-

1 =z.-0
1
x-0 y.+-vs(2a) 

dT 1 1 v ' k,ef 1 

Y; = K;x; (2b) 

I:x; = 1 (2c) 

LY; =1 (2d) 

(2) 

A simple degrees-of-freedom analysis will show that there 
are n differential equations and n+ 2 algebraic equations mak­
ing up a total of 2n+ 2 equations. The number of variables are 
then vapor mole fractions, n liquid mole fractions, and the 2 
normalized flows, resulting in a total of 2n+2 variables. 

1.2 Modified Rachford-Rice for the Steady State 
Solution of a Reactive Flash Problem 

The steady state version of the reactive flash problem can 
be introduced as a natural extension to the flash problem. 
The steady state solution to the reactive flash problem can be 
derived as amodifiedRachford-Riceprocedure,l3l as discussed 
below, in cases where the equilibrium constants are either 
constant or functions of liquid mole fractions. 
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Defined as 

(3) 

(4) 

As we solve the steady state by setting the differential term 
in equation (2) to zero, we get 

Since 

and 

through substitution, we arrive at 

Summation of Eq. (5) over all the components gives 

el =l+w-ev 

Substituting for e
1 

from Eq. (9) into Eq. (8) gives 

The derivative of this function with respect to ev is 

0.9 

0.8 

_gi 0.7 
e! 
~ 0.6 
-= 
g_ 0.5 
(1J 
> 
-0 0.4 
Q) 

.!::! I o.3 
0 
z 0.2 

0.1 

8.9 0.95 1.05 1.1 
Pressure (Pa) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Using this derivative, the Newton-Raphson method can be 
used to find the roots of this nonlinear equation. 

Example 1: Steady State Simulation of MTBE Reactive Flash 

Consider the example of a reactive flash where Methyl 
Tertiary Butyl Ether (MTBE) is formed from isobutene and 
methanol in the presence of an inert compound n-butane. 

Isobutene + MEOH -;=} MTBE 

There are four components in the system. Consider an 
isothermal, isobaric, reactive flash. Let us assume that the 
Wilson equation is used for calculating the liquid phase ac­
tivity coefficients. The Wilson binary interaction parameters 
and the Antoine coefficients for this system can be found in 
Chen, et a[.[2

J A solution to this isothermal, isobaric, reactive 
flash problem can be found using the modified Rachf ord-Rice 
procedure outlined in the last section. A pseudo-code can be 
developed as given below. 

• Enter the input conditions 
• Start with an initial guess for liquid compositions 
• Outer loop checks for the convergence of liquid 

mole fractions 

• Give the initial guess for ev 
• Inner loop checks for the convergence of e v 

• Update liquid mole fractions using Eq. (7) with Ri 
and Ki at previous liquid mole fractions and e v 

• Terminate when the outer loop satisfies the conver­
gence criteria of liquid compositions 

If we were to use the following process conditions: feed 
composition (z) = [0.1569 (isobutene), 0.1555 (methanol), 0.1 
(MTBE), 0.5876 (n-butane)], temperature= 370.4729 K, pres-

1.15 1.2 1.25 

X 10
6 

sure= 1114300Pa,feedflow 
rate = 100 mol/h, holdup = 
30 mol, then the solution for 
e is 0.4873. 

V 

Figure 2. Effect of pressure on the amount of vapor leaving the system. 

This means that 48.73% 
of the feed will leave the 
unit as vapor and the re­
mainder will leave as liquid. 
This example can be used to 
further analyze the effect of 
pressure and temperature on 
the amount of vapor leaving 
the system. Figure 2 depicts 
the effect of pressure on the 
vapor leaving the system, 
and it can be seen that 
with increasing pressure 
the amount of vapor at the 
outlet decreases. 
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A similar analysis can be performed to study the effect 
of temperature on the vapor flow rate. Figure 3 depicts this 
relationship. In contrast to the pressure, with increasing tem­
perature, the vapor flow rate actually increases. 

2. DAE ANALYSIS OF THE REACTIVE FLASH 
PROBLEM 

DAE systems involve both differential and algebraic con­
straints. The most general formulation for a DAE system is 

x = f ( x, z, \) 

O=g(x,z,>--) 

(12) 

Some of the examples of DAE systems can be found in pro­
cess control, chemical reaction engineering, separation process 
modeling, network modeling, and constrained body dynamics. 
DAE systems are characterized by the index of the system. The 
index of a DAE system is defined as the number of differentia­
tions required to eliminate the algebraic terms, i.e., to convert 
the DAE into an ordinary differential equation (ODE) system. 
A simple example of an index 2 DAE system is 

Y2 =Y1 +\(t) 
0 = y 2 + \ 2 ( t) 

Differentiating the algebraic equation once, we get 

(13) 

(14) 

Differentiating the algebraic equation twice [differentiation 
ofEq. (14)] yields 

Y2 =y1 +\(t)=-\(t) (15) 

Putting these equations together we get an ODE as shown 
in Eq. (16). 

Y2=Y1+\(t) (16) 

y1 =-\(t)-\(t) 

Since the algebraic equation had to be differentiated twice 
to get to the ODE form, the above system is an index 2 
system. There are differences in solving DAE systems for 
steady-state and dynamic behavior. The steady-state solu­
tion is simply achieved by solving all the equations with 
the differential part on the left-hand side (LHS) set to zero. 
The dynamic solution for the DAE system is more involved, 
however. One approach is to convert the DAE into an ODE 
through multiple differentiations as discussed above and to use 
a regular integration approach. This is not always advisable 
because it can be shown that the solution error in the algebraic 
constraint is proportional to the extent of index reduction. 
The error increases linearly if the index is reduced by one, 
quadratically if the index is reduced by two, and so on. It has 
to be ensured that the solution satisfies the original algebraic 
constraints at all times. The initial values have to satisfy the 
original constraint equation and also the new constraints 
generated through differentiation. This is called consistent 
initialization of the DAE system. A more detailed discussion 
on consistent initialization can be found in References 4-6. 
Some of the numerical integration and iterative methods for 
solving DAE systems are found in References 7 and 8. 

These concepts can be taught effectively through the reac­
tive flash example. Notice that the reactive flash example is a 
DAE system withn differential and (n+2) algebraic variables. 
This system can be simplified into just n differential variables 
and 2 algebraic variables system by direct substitution of 
equation (2b) into (2a) and writing equation (2d) in terms of 
the xi variables. We chose to work with the original system 
to bring out the various aspects of the DAE systems in this 
article. Note also that this reduction is not always possible. In 
the general form of the DAE model giveninEq. (12), it might 
not be possible to write the algebraic equations as explicit 
functions of the differential variables. 

The first exercise for the students would be to calculate the 
index of the reactive flash model, which is 2. This is because 

0.9-------------------------------~ 
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Figure 3. Effect of 
temperature on the 

amount of vapor 
leaving the system. 
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the mole fraction summation equations have to be differentiated twice to get the differential (E\ and 0) terms. For solving the 
dynamic simulation problem, there are several possible approaches. The DAE system can be converted into an index 1 problem 
by differentiating the summation of liquid mole fractions and vapor mole fractions equations. The resulting DAE is of the form 
given in Eq. (17). 

Y; = K;x; (17b) 

L dx Da L 
-

1 =1-0 -0 +- v.E=O (17c) 
dT 1 

v kref ' 
(17) 

"dy " dx dK 
~-

1 = ~K-1 +x.-1 =0 (17d) 
dT l dT l dT 

This is an index 1 DAE because one differentiation of Eq. (17b), (17c), and (17d) will lead to a regular ODE in all the (2n+2) 
variables, which is the original dimension of the system. This index 1 DAE can now be directly solved using the MATLAB 
ode 15s routine. One has to ensure that consistent initialization of the variables is performed, however. Choosing the initial values 
of the (2n+2) variables such that equations (17b) - (17d) are satisfied will not yield a correct solution to the original problem. 
This is because when Eq. (2c) and (2d) are differentiated some information is lost. Eq. (17c) and (17d) will ensure that each 
summation of mole fractions equals a constant but not necessarily one. For consistent initialization, Eq. (2c) and (2d) should be 
added to Eq. (17b)-(17d), and this constrains the initial values. A generic criterion for when differentiating a subset of nonlinear 
DAE equations will further constrain the initial values can be found in Reference 4. If the reactive flash example is used in a 
postgraduate mathematical methods course, then the students can be asked to explore this aspect further. This model can also 
be used to look for singularities such as Hopf, branch, and limit points as discussed in Reference 9 and is another avenue for 
exploration in a postgraduate mathematical methods course. 

For the reactive flash problem, the number of constraints to be satisfied by the initial values is equal to (n+4) and the number 
of initial values to be chosen equals (2n+2). The degrees of freedom equal (n-2). The reactive flash problem can be converted 
into ODE with the same number of variables (2n+2) or a reduced number of variables. In the following, the derivation of the 
reactive flash model with only differential equations in xi is discussed. Eq. ( 17b) is eliminated from the set of equations by incor­
porating this equation directly into Eq. (17a). 0

1 
and 0v appear explicitly in Eq. (17c). Performing algebraic manipulations on 

Eq. (17d) will also yield an equation that has 81 and 0v explicitly in it. Now these two equations can be solved simultaneously 
to explicitly write el and ev in terms of the xi variables. The final expressions for el and ev are 

0 = [I LLTZx + LLT ~v EX + LK I Z +~v EX II _I LKKx + LLTKxx 111-
2

DaE ll ' l ; i 'l i ' ; i 'l kref i ' ; 'l ' kref ' ')) l ; ' ' ' ; i 'l i i 'Jl kref ) 

+[l ~1tTiixixi + 1J-l ~K;K;x; + ~1t\iKixixi Jl (18) 

0v =[l~1tTiiZixi + ~1tTii ::f VfX; + ~K;lz; + ::f v;Ex;JJ-l~1tTiixixi +1Jl1- ~~~E Jl 
+[l~K;K;x; + ~1tTiiKixixiJ-l~1tTiixixi +1J] (19) 

with the following definition 

T 
lj 

8K __ , 

ox (20) 
J 

The el and ev expressions are substituted into Eq. (17a). Now Eq. (17a) with substitutions for the variables Yi' el ' and ev is an 
ODE system [shown in Eq. (21)] that represents the dynamics of the reactive flash problem. The calculation of analytical deriva­
tives is performed in the MAPLE environment. The equations generated in MAPLE are converted into a MATLAB function. 
The initial values are still constrained for the index 1 system that we discussed because the latest manipulations were algebraic 
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with the same equations. Hence, for consistent initialization there are (n-2) degrees of freedom. 
In other words, for the ODE in the variables xi, only (n-2) components can be specified and the 
remaining two mole fractions have to be solved to satisfy the constraints. This reflects the fact 
that the ODE resulted from a DAE and hence the initial states are constrained, unlike a pure 
ODE. Once consistent initialization is performed, the solution to the reactive flash problem can 
be obtained using any standard ODE solver, such as the ODE solver in MATLAB. The mole 
fractions that are computed will automatically solve the summation constraints. 

~; = zi -01 (xi ... xn)xi -ev(xl ... xn)Ki (xi ... xn)xi +~all/~ Vi (21) 
ref 

Example 2: Dynamic Simulation of TAME Reactive Flash 

Consider a reactive flash where Tertiary Amyl Methyl Ether (TAME) is synthesized by an 
acid catalyzed equilibrium reaction of isoamylenes and methanol. The reaction considered is 

2MIB + 2M2B + 2MEOH -;=} 2TAME 

The reaction kinetics for TAME synthesis have been studied by various authors. Hwang, et at.,[10l 

used a concentration-based expression for combined etherification reactions from two isoam­
ylenes. Later, rigorous kinetic studies were undertaken by Oost, et at.,[ 11i Christian, et al.,l12i 

and Sundmacher, et alY3l These authors reported activity-based kinetic models for lumped as 
well as separate etherification reactions. In this example, the activity coefficients are calculated 
using a Wilson model. The Wilson binary interaction parameters and the Antoine coefficients 
were taken from Chen, et alY4l Light gasoline fraction (CS-cut) from the fluidized catalytic unit 
is the source of isoamylenes. There are three isomers of amylene: 2 Methyl-I-Butene (2MIB) 
and 2-Methyl-2-Butene (2M2B), which are reactive, and 2-Methyl-3-Butene (2M3B), which 
is nomeactive. The reactive iso-amylenes are diluted with n-pentane as an inert solvent. The 
rate model used is taken from Chen, et alY4l 

There are five components in the system. Consider an isothermal, isobaric, reactive flash 
with the following conditions. In the data given below, the component feed compositions are 
provided in the order MeOH, 2MIB, 2M2B, TAME, and n-pentane. 

Feed composition (z) = [0.2647, 0.0463, 0.2846, 0.0000, 0.4044] 

Temperature= 335 K 

Pressure=2.55 bar 

Da=0.462 

0.295~-~--~--~-~-~· 
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Figure 4. Plots of first component and third component vs. dimensionless time (r). 
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For the dynamic simulation using the ODE, we need to 
choose consistent initial estimates. Since this is a five-compo­
nent problem, the degrees of freedom equals 3 (5-2). Hence, 
we choose the three mole fractions in the liquid phase ( xi (0)) 
as [0.1828, 0.0303, 0.2944] and we get the other two mole 
fractions as [0.1131, 0.3794] for consistent initialization. 
These mole fraction values lead to yi(0) = [0.2561, 0.0359, 
0.2789, 0.0174, 0.4117]. Notice that the mole fractions sum 
to one. The values for el and ev are 0.2720 and 0.6849, 
respectively. It is important to note that consistent initializa­
tion leads to the mole fractions summing to one, but does not 
automatically take care of the constraint that the mole fractions 
have to be non-negative. With this initialization, a dynamic 
simulation can be performed. The plots of the first component 
and the third component compositions against dimensionless 
time (,:) are shown in Figure 4. The numerical simulation 
results are shown in Table 1. In the first five columns of 
Table 1, the mole fraction values of the liquid at the outlet 
for the first 10 dimensionless time values are reported; the 
second-to-last column reports the mole fraction summation 
for the liquid, and the last column reports the mole fraction 

TABLE 1 

summation for the vapor. Notice that solving a consistently 
initialized ODE incorporates the mole fraction summation 
equalities at all values of the dimensionless time. The same 
simulation is run with a different consistent initial estimate: 
xi(0) = [0.1796, 0.0298, 0.2892, 0.1138, 0.3876]. The plots 
of the first and the third component compositions against 
dimensionless time (,:) using this initial value are shown in 
Figure 5. It is clearly evident from Figures 4 and 5 that the 
same steady state is reached, even though the initial values 
for these simulations are different. 

The dynamic solution starting with anon-steady state condi­
tion can be summarized as follows 

• Identify the index of the DAE system 
• Reduce the given DAE system to index 1 or ODE 

form 
• Find the degrees of freedom, which is the differ­

ence between the total number of variables and the 
total number of algebraic equations 

• Perform consistent initialization by specify-
ing the number of initial values equal to the 

The mole fractions of five components in liquid phase and the 

degrees of freedom and the other values that 
are obtained from the solution to the alge­
braic constraints 

summation of mole fractions in liquid phase and vapor phase • Once initial values are specified, solve the 
ODE or index 1 DAE using an appropriate 
solver 

for the first 10 instances. 

Dimensionless x, X2 X3 X4 x, 
Time("r) 

0.2 0.1821 0.0290 0.2930 0.1132 0.3827 
0.4 0.1815 0.0280 0.2920 0.1132 0.3853 
0.6 0.1809 0.0273 0.2913 0.1132 0.3872 
0.8 0.1804 0.0269 0.2908 0.1132 0.3887 
1.0 0.1798 0.0266 0.2905 0.1132 0.3899 
1.2 0.1793 0.0263 0.2902 0.1133 0.3909 
1.4 0.1789 0.0262 0.2901 0.1133 0.3917 
1.6 0.1785 0.0261 0.2900 0.1133 0.3923 
1.8 0.1781 0.0260 0.2899 0.1133 0.3929 
2.0 0.1777 0.0259 0.2899 0.1132 0.3933 

0.181 0.293 

0.18 0.2925 

°5i 0.179 
c 
Q) 0.292 

C: C: 
0 0 

~ 0.178 
a. 
§ 0.2915 

0 
0 0 

~ 0.177 -e 0.291 
-= £ - 0 0.2905 ~ 0.176 

C: 
0 0 

~ 0.175 ts 0.29 
.::: ~ 
~ 0.174 ~ 0.2895 
:a!: :a!: 

0.173 0.289 

0.1720 
10 20 30 

Dimensionless time (Tau) 
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~x 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0001 
1.0001 
1.0001 
1.0001 
1.0001 

~y 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

3. CONCLUSIONS 
In this paper, the introduction of DAE systems in 

the undergraduate curriculum is proposed through 
an interesting chemical engineering example, the 
equilibrium reactive flash. This is a reasonably 
simple example that is easy to understand both 
physically and mathematically. It is shown that this 
simple example can be used to teach the concepts 

of index and consistent 
initialization that are rel­
evant in solutions to DAE 
systems. This example can 
be introduced in an under -
graduate thermodynamics 
or mathematical methods 
class. Further, other options 
for deeper investigation 
into DAE systems, starting 
with the same example, 

10 20 30 

Figure 5. Plots of first 
component and third 
component vs. dimen­
sionless time (,:). Dimensionless time (Tau) 
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are also pointed out if this material were to be included in a 
postgraduate mathematical methods course. 

AVAILABILITY OF MATERIAL FOR USE IN 
CLASSROOM 

The MATLAB codes used in this article can be obtained by 
contacting Dr. Rengaswamy at raghu.rengasamy@ttu.edu. 
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