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The	major	characteristic	that	sets	an	engineer	apart	from	
every	other	profession	in	the	world	is	his/her	ability	to	
apply	the	concepts	of	scaling/up-scaling	to	a	variety	

of	situations.	What	do	we	mean	by	scaling?	Well,	 take	for	
instance	a	chemist	working	in	the	laboratory	designing	a	new	
drug for a company. Would this chemist be your first choice to 
take	that	laboratory	synthesis	and	convert	it	to	a	process	that	
produces	thousands	of	tons	of	that	drug	per	year?	Probably	
not;	however,	a	chemical	engineer	would	be	an	excellent	can-
didate.	Similarly,	if	building	an	airplane,	scientists	(physicists,	
material, computational) would not be the first choices that 
come	to	mind,	 in	spite	of	 the	obvious	useful	roles	of	 their	
professions.	An	aeronautical	engineer	would	most	likely	be	
the	selection	that	makes	everybody	comfortable.	The	same	
can	be	said	for	building	structures	(bridges,	buildings,	etc.)	
where	 civil	 engineers	 are	 the	 masters,	 and	 for	 the	 scaling	
of	 industry	where	 industrial/managerial	engineers	are	very	
skillful.	The	list	is	long,	but	these	few	examples	illustrate	the	
basic	concept:	Engineers	are	masters	of	scaling/up-scaling.	
Therefore,	it	is	imperative	when	training	engineering	students,	
that	they	fully	grasp	the	concept	of	scaling/up-scaling	to	be	
able	 to	 implement	 it	 for	practical	applications,	such	as	 the	
ones	mentioned	above.	

One	 important	class	of	up-scaling	 in	engineering	educa-
tion	is	the	different	scales	involved	in	describing	quantities	
related	to	the	physics	of	transport	(mass,	momentum,	energy).	
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In	many	high	school	or	college-level	courses,	students	are	
introduced	to	velocity,	density,	energy,	etc.,	from	a	discrete	
scale	 point	 of	 view.[1]	 In	 many	 engineering	 applications,	
however,	when	studying	the	physics	of	transport,	it	is	neces-
sary	to	develop	conservation	equations	for	system	properties,	
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such	as	total	mass,	energy,	and	momentum	for	a	continuum,	
or	microscopic	scale.[2]	To	accomplish	this,	the	concept	of	a	
continuum	scale	must	be	introduced	to	students.	Since	most	
students	have	only	been	exposed	to	the	physical	and	chemical	
concepts	related	to	total	mass,	energy,	and	momentum,	from	a	
discrete	scale	point	of	view,	the	concept	of	a	continuum	scale	
can	be	very	challenging.		

In	making	the	transition	from	a	discrete	scale	to	a	continuum	
scale,	one	very	important	pedagogical	aspect	to	keep	in	mind	
is	that	students	already	have	substantial	knowledge	related	
to	calculating	the	total	mass,	velocity,	and	momentum	of	a	
single	particle	(discrete	domain).	So	from	the	students’	learn-
ing	point	of	view,	how	does	the	instructor	use	their	previous	
experience	and	knowledge	with	the	discrete	domain	to	scale	
it	up	to	the	continuum	domain?	

Most	textbooks	do	not	address	this	issue.	In	fact,	many	of	
them	have	suppressed	or	hidden	the	process	associated	with	
the	up-scalingb,[3]	on	the	assumption	that	all	steps	and	concepts	
are	familiar	to	the	learner,	when	in	fact	they	are	not.	This	can	
be	frustrating	to	students	and	does	not	enable	them	to	fully	
understand	the	importance	of	the	idea	of	a	continuum.	More-
over,	some	textbooks[4]	have	approached	the	problem	from	
the point of view of the definition of an intensive property, 
such as density, and from the traditional definition for the 
discrete	case:	

m V
p p p
= ρ ( )1

where	mp	is	mass	of	the	particle,	ρp 	is	density	of	the	particle,	

and	Vp	 is	 volume	 of	 the	 particle.	They	 have	 then	 simply	
extended this definition to a continuum control volume, Vc(t)	
as	follows:	

m dV
s V tc

≡
( )∫ ρ ( )2

	
where	ms	is	the	total	mass	of	the	system	under	study.	Based	
on	Eq.	(1)	and	Eq.	(2),	it	seems	that	as	suggested	in	Figure	1,	
two	domains	exist:	A	non-applicable	(for	the	system	descrip-
tion),	or	“old”	domain	(discrete	domain)	and	a	“new”	domain	
(continuum	 domain).	As	 Figure	 1	 shows,	 the	 discrete,	 or	
“old,”	domain	 is	valid	for	very	small	scale	systems	(order	
of	 molecules),	 whereas	 the	 continuum,	 or	 “new,”	 domain	
adequately	describes	the	mass	of	the	system	for	domains	of	
a	larger	or	continuum	(microscopic)	scale.	It	is	interesting	to	
note	that	the	so-called	old	domain	in	Figure	1	is	at	the	mo-
lecular	level	and	the	concepts	learned	by	students	during,	for	
example,	high	school	or	college	physics	are	not	necessarily	at	
this	scale.	The	molecular	scale	is	a	discrete	domain,	however,	
and	this	characteristic	offers	a	bridge	for	student	learning	that	
is	effectively	used	in	the	Soccer	Ball	Model	(SBM)	protocol	
described	in	this	paper.	

The	pedagogical	 challenge	described	 in	Figure	1	 is	 that	
the	 “old”	domain	 is	 the	domain	 in	which	 the	 students	 are	
most	 comfortable	 and	 more	 knowledgeable	 with	 the	 con-
cepts.	 Students,	 in	 general,	 are	 unfamiliar	 with	 the	 new	
domain	indicated	in	Figure	1.	Many	teaching	approaches	(in	
the	 literature)	 focus	on	 the	new	domain	and	mostly	 forget	
the	 level	 of	 knowledge	 that	 students	 already	 have	 on	 the	

old	 domain.	This	 situation	 is	 prob-
ably	 very	 familiar	 to	 most	 students,	
unfortunately,	 as	 oftentimes	 when	
learning	new	concepts	 they	 are	 told	
to	 “forget”	 everything	 they	 already	
know;	this	type	of	learning	approach	
completely nullifies the knowledge 
that	 the	 students	 have	 already	 ac-
quired.	Another	option	that	instructors	
sometimes	 use	 is	 to	 force	 students	
to	 imagine	 a	 new	 system	 where	 the	
boundary	(or	boundaries)	are	no	lon-
ger well defined. This, then, requires 
students	to	apply	“old	concepts”	to	the	
“new	(suddenly	introduced)”	system.	
These	two	options	illustrate	the	many	
disadvantages	for	 the	students	when	
they	 are	 not	 engaged	 in	 the	 process	

 b   The word up-scaling here is used to in-
dicate the change of the description of a 
property from one scale to another, such 
as, for example, from the microscopic to 
the macroscopic scales. 
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Figure 1. Sketch of the material density as a function of the size of the system 
indicating the two scales or domains of interest. 
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of	transforming	and	adapting	what	they	already	know.	This	
suggests	the	need	for	adopting	a	procedure	in	which	students	
are	fully	engaged	in	the	process	of	learning	(up-scaling),	then	
coaching	them	on	how	to	move	from	one	scaling	level	to	the	
next.	Moreover,	such	a	process	allows	students	to	build	on	
what	they	already	know	about	the	discrete	point	of	view,	and	
to	integrate	this	knowledge	with	the	new	“view”	of	matter,	
i.e.,	the	microscopic	or	continuum	scale.		

In addition to having an introduction to several scientifi c 
concepts	from	the	discrete	point	of	view,	students	have	an	
adequate	background	in	many	complementary	subjects	includ-
ing	calculus,	integral	concepts,	and	algebra.	It	appears	that	the	
instructor could take advantage of this strong scientifi c and 
mathematical	background	to	help	students	in	catalyzing	the	
transformation	from	one	scale	to	the	other	one	in	an	effective	
way	from	the	students’	learning	point	of	view.	In	other	words,	
instead	of	hiding	the	details	about	the	scaling-up	process,	by	
giving the fi nal answer, the instructors could identify one or 
several	activities	in	which	students	are	exposed	to	and	can	
learn and refl ect on the many aspects involved in the process.[5]	
In	this	contribution,	we	propose	a	visualc	process	to	help	with	
the	transformation	of	scales	(domains),	i.e.,	from	discrete	to	
continuum,	by	using	soccer	balls	 in	conjunction	with	geo-
metrical	 domains,	 mathematical	 principles,	 and	 physical	
properties.	The	student	is	exposed	to	a	very	powerful	set	of	
pedagogical	 activities	 to	 construct	 a	 learning	 environment	
that	 is	both	practical	and	effective.	An	introduction	to	 this	
environment	is	given	in	the	next	section.	

From	 the	 learning	 environment	 point	 of	 view,	 the	 SBM	
protocol	 is	an	effective	Principal	Object	of	Knowledge,	or	
POK,	a	tool	introduced	in	the	Colloquial	Approach[6,7]	and	later	
adapted	to	include	other	learning	environments.[8,9]	POKs	are	
tools	that	allow	the	facilitator	to	focus	students’	learning	on	a	
collection	of	topics	or	variables	conducive	to	visualizing	the	
process	of	understanding	the	different	aspects.	In	this	sense,	
the	SBM	presents	scaling,	packing,	geometrical,	mechanical,	
and mathematical ideas or concepts in an effi cient manner for 
the	process	of	students’	learning.	

dESCRIPTION OF THE SYSTEM(S): 
THE SOCCER BaLL MOdEL ELEMENTS 

Soccerd	 is	 the	world’s	most	popular	 sport.	 It	 is	played	on	
the	beaches	of	Brazil,	on	the	grassless	surfaces	of	Argentina,	
Uruguay, Chile, Africa, as well as on the nap-inviting fi elds of 
Europe	and	North	America.	Therefore,	soccer	balls	are	geometri-
cal	objects	that	are	popular	among	college	students	in	a	large	
number	of	countries	in	the	world.	The	International	Federation	
of	Association	Football,	FIFA,[10]	(international	government	of	
the sport) has fi ve ball sizes shown in Figure 2a. The largest 
one is number fi ve and it is the offi cial size used in every soccer 
game	at	the	professional	level.	The	smaller	sizes	(numbers	four,	
three,	two)	are	used	in	games	depending	on	player	ages,	and	the	
smallest	ones	(number	one)	are	mostly	given	as	souvenirs.	

One	can	observe	from	Figure	2a	that	one	of	the	attractive	
features	of	the	set	of	soccer	balls	(decreasing	size	from	the	
largest	one	to	the	smallest	one)	is	the	fact	that	they	are	all	like	
objects	of	the	same	geometry.	Although	the	balls	are	made	of	
a	shell	with	air	at	a	given	pressure,	in	the	soccer	ball	model	
it	is	assumed	that	they	are	all	made	of	the	same	material	as	
the	shell	(see	Figure	3).	This	assumption	usually	promotes	

 c   The research on brain-based learning suggests that vision is the most 
powerful tool for the brain to add new knowledge (Medina, 2008). 

 d   We have used the name mostly used in the United States, however in the 
rest of the world this foot-based sport is simply called “football.” 
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Figure 2. Elements of the soccer ball model (SBM). (a) Set 
of the fi ve sizes of soccer balls approved by the FIFA. 

(b) Container of a given volume, Vs. 

(a) (b)

Figure 3. Visualization of the “soccer ball material.” 
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strong	discussions	of	why	this	can	be	proposed	and	allows	
the	instructor	to	bring	previous	vs.	new	student	knowledge	
to	the	discussion.	

In	addition	to	N	balls	of	a	given	size,	“k”	(k=1,	2,	3,	4,	5),	
the	soccer	ball	model	uses	a	container	of	a	given	volume,	
Vs	(t)	 (see	Figure	2b).	This	container	could	be	either	rigid	
(vessel) or flexible/deformable (bag), and it can be of dif-
ferent	geometries,	i.e.,	rectangular,	cylindrical,	or	spherical.	
For	simplicity,	a	rigid,	cylindrical	vessel	is	assumed	for	the	
analysis	(see	Figure	4).	The	idea	of	control	volume	is	dis-
cussed	in	connection	with	the	vessel	of	cylindrical	shape.	In	
general,	students	are	introduced	to	this	idea	and	also	to	the	
concept	of	dimensions	associated	with	the	control	domains.	
In	fact,	they	are	made	aware	that	these	domains	could	be	of	
one	dimension	 (line),	 two	dimensions	 (surface),	 and	 three	
dimensions	(volume)e.		

Figure	4	shows	a	 typical	situation	 that	 is	helpful	 for	 the	
scaling-up analysis of this contribution. The vessel identified 
before is partially filled with N soccer balls of a given size. The 
system	(vessel	+	soccer	balls)	can	be	viewed	as	a	composite,	
or	a	two-phase	system	with	one	phase	made	completely	of	the	
N soccer balls and the other one made of the “fluid” filling the 
void	space	between	the	soccer	balls.	In	many	classes	students	
are	presented	with	a	transparent	vessel	containing	soccer	balls	
to	show	the	different	“phases”	and	spaces.	If	the	experiment	is	
conducted in a regular classroom, the fluid can be associated 
with	“air”;	however,	 a	discussion	 is	 conducted	 for	 several	
different possibilities. The fluid phase is denoted by “F” and 
the	mass	associated	with	it	by	mF.	The	mass	associated	with	
the	N	soccer	balls	inside	the	vessel	is	denoted	by	mSB.	Since	

in	engineering	many	different	types	of	practical	systems	existf,	
students	are	introduced	to	a	variety	of	systems	that	may	have	
these	types	of	characteristics	where	the	soccer	balls	can	easily	
be related to “particle models” in a fluid inside a container. 
One	interesting	characteristic	from	the	didactic	point	of	view	
is	that	these	“particles”	are	discrete	objects	that	the	students	
can	see	and	touch.	Once	the	system	in	Figure	4	is	understood,	
then	a	procedure	for	the	mathematical	formulation	for	the	total	
mass	of	such	a	system	can	be	developed.	The	process	should	
start	with	a	system	such	as	the	one	shown	in	Figure	4,	then	
steps	are	made	where	the	students	can	be	coached	until	the	
formulation	(or	scale-up)	to	a	continuum	scale	can	be	reached.	
This	is	the	focus	of	the	next	section.	

LEaRNING PROCESS: TRaNSFORMaTION 
OF SCaLES 

To	compute	the	total	mass	of	the	system	depicted	in	Figure	
4,	 let’s	start	by	stating	some	assumptions.	We	will	assume	
that	 the	volume	of	 the	vessel	of	cylindrical	shape	is	given	
by	Vs.	Also,	we	will	assume	that	a	set	of	“N”	soccer	balls	of	
the	same	size,	SB

N
k ,	has	a	volume,	Vpj	(j=1,	2,...,N),	density,	

ρ
j
	(j=1,	2,...,N),	and	mass,	mj	(j=1,	2,...,N).	Since	they	are	

discrete	objects,	one	can	easily	compute	the	mass	of	ball	“j”	
as	in	the	classical	college	physics	textbook[1],	i.e.:	

m V j N
j j pj
≡ =ρ , , , , ( )1 2 3…

Because	of	the	assumptions	stated	above,	it	is	immediately	
recognized	 that	 the	 total	 mass	 of	 the	 soccer	 balls	 can	 be	
computed	as:	

m m V
SB j

j

N

j
j

N

pj
= =

= =
∑ ∑

1 1

4ρ ( )

and,	therefore,	the	total	mass	of	the	system,	ms,	with	control	
volume	 v

s
g 	can	be	computed	(for	the	volume	of	the	container)	

as	follows:	

m m m
S SB F
= + ( )5

where	mF	is	the	mass	of	the	“F”	material.	Then	in	view	of	Eq.	
(4),	one	can	express	Eq.	(5)	as:	

m V m
S j

j

N

pj F
= +

=
∑ρ

1

6( )
	

Now,	one	question	arises:	How	can	we	reduce	the	mass	as-
sociated	with	“F”	(mF)	and	simultaneously	increase	the	mass	

 g   Students are reminded that the N balls must fill up the system com-
pletely. The idea of fractions is possible or, alternatively, the choice 
of VS is discussed. 

 f   In general, colloidal and non-colloidal suspensions are very good 
candidates, but other systems, such as packed or fluidized beds can 
also be discussed. 

 e   The idea of domain is connected to the domain concept of a mathemati-
cal function, which students are familiar with from calculus courses. p1

p2
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pN
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Void Space 
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volume of the 
different balls

VS: Vessel Volume

Volume of N soccer 
Balls = Volume of 
soccer ball
material (VS B) 

Figure 4. Sketch of the different components associated 
with the container identified in Figure 2. 
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of	the	soccer	balls	(mSB)	while	maintaining	the	volume	of	the	
whole	system	as	constant	(i.e., Vs=constant)? To	answer	this	
question,	one	should	recognize	that	within	the	container	there	
are	spaces	(i.e.,	void	spaces	that	do	not	include	soccer	ball	
material) and they are filled with a mass of the “F” material 
(for	example,	air,	see	above)	that	is	located	between	the	dif-
ferent	balls	(see	Figure	4).	The	rest	of	the	spaces	within	the	
container	are	occupied	by	the	soccer	balls.	
Coaching	Point	1:	The	instructor	may	want	to	discuss	with	
the	students	several	examples	of	particle	packing	systems:	
marbles	of	different	sizes	and	sand	are	excellent	examples.	
The	discussion	should	be	focused	on	the	role	played	by	the	
size	of	the	particles	and	the	void	spaces	in	a	given	container	
to	help	connect	the	previous	knowledge	with	the	analysis	of	
the	situation.	The	 instructor	should	strongly	refuse	 to	give	
answers,	and	instead	act	as	a	facilitator	being	ready	to	offer	
counter	examples	to	the	situations	brought	up	by	the	students.	
The	discussion	should	lead	to	the	conclusion	that	by reducing 
the particle size, the void spaces are also reduced.	Now	as	
a	corollary:	What	would	the	effect	of	this	reducing	process	
be	on	the	number	of	soccer	balls?	Should	N	increase	or	de-
crease? The hypothesis identified in the exercises/discussions 
of	coaching	point	1	may	be	tested	by	using	the	soccer	ball	
model.	Here,	for	example,	the	number	5	soccer	balls	should	
be used as a first step. Those balls, N in total, should be loaded 
into	the	container.	Both	mSB	and	mF	should	be	determined	or	
estimated.	This	is	a	very	useful	exerciseh	to	acquire	a	solid	
idea	of	the	system’s	characteristics.	The	instructor	could	as-
sign	vessels	of	the	same	volume	but	of	different	geometries	
and	ask	students	if	N	is	the	same,	or	what	would	change.	
Coaching	 Point	 2:	The	 instructor	 may	 want	 to	 coach	 the	
students	in	calculating	the	mass	of	particles	in	a	given	vol-
ume.	The	idea	of	voids	and	porosity	of	a	packed	bed	can	be	
easily	connected	to	the	problem.	Experiments	to	measure	the	
properties	should	be	discussed.	This	exercise	will	produce	
intense	discussions	among	students	regarding	very	relevant	
aspects	 of	 the	 different	 geometries	 (see	 coaching	 point	 1,	
above). Now after the concept identified in coaching point 
1	has	been	understood,	students	should	be	able	to	check	it	
by	using	the	soccer	ball	model.	By	using	the	idea	of	the	size	
of	soccer	balls,	the	process	sketched	in	Figure	5,	one	should	
change	the	number	5	soccer	balls	to	number	4,	again	measure	
the	mass	of	soccer	ball	material	and	the	mass	related	to	the	
void	space,	mF.	Once	the	process	or	experimental	protocol	
has been identified and tested by students, the next question 
is	at	what	iteration	should	it	be	stopped?	The	idea	of	an	ap-
proximation	in	engineering	becomes	useful	 to	address	 this	
question.	Recall	what	is	intended;	to	minimize	the	mass	of	
the	void	spaces	(mF)	up	to	a	point	where:	

m m
S SB
≈ ( )7

Coaching	point	3:	The	instructor	may	want	to	discuss	with	
students	at	this	point	the	implications	or	approximations	if	

the	protocol	were	to	be	implemented	in	the	laboratory.	Some	
of	the	relevant	aspects	may	include:	

1.		 How	do	we	stop	the	iteration	process	to	produce	the	
desired	approximation	in	Eq.	(7)?	Hint:	The	idea	of	
the	sequence	and	the	comparison	of	the	mass	of	the	
system	in	iteration	k	with	the	k-1	would	be	helpful:		
m m

s
k

s
k− <−1 ε

2.		 The	step	in	the	sequence	(i.e.,	“k”)	may	be	determined	
by	the	accuracy	of	the	instrument	being	used	in	the	
measurements.	

3.		 How	valid	is	the	approximation	in	Eq.	(7)	for	the	pur-
poses	of	reducing	mF	and	increasing	mSB?	

By	stressing	the	various	geometrical	and	experimental	as-
pects	of	the	protocol,	students	gain	a	very	useful	hands-on	and	
concrete	view	of	the	transformation	proposed	in	the	process	
shown	in	Figure	5,	where	the	unloading	and	reloading	of	the	
vessel	with	the	different-size	soccer	balls	is	sketched.	Students	
soon	realize	that	the	set	of	soccer	balls	is	incomplete	for	the	
purposes	of	perhaps	reaching	a	valid	approximation	in	order	
for	Eq.	(7)	to	hold.	This	is	another	great	advantage	so	they	can	
develop	possibilities	for	other	systems	that	will	help	them	to	
achieve	the	results.	In	this	sense,	the	soccer	ball	model	is	just	

 h   A very powerful visualization of this protocol can be achieved by 
using actual soccer balls and containers of different geometries.

p1

1) Soccer ball #4
2) Soccer ball #3
3) Soccer ball #2
4) Soccer ball #1

1) Soccer ball #5
2) Soccer ball #4
3) Soccer ball #3
4) Soccer ball #2

“S”

Vessel with
Vs volume

pj
pj

p2

“F”

Figure 5. Sketch of the “Protocol” of reducing the mass 
of the “F” phase and increasing the mass of “soccer ball 

material.” 
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a	pedagogical	promoter,	or	initiator	of	a	process	that	allows	
students	to	visualize	the	transformation	in	the	scales.	

At	the	end	of	the	process	when	the	approximation	given	in	
Eq.	(7)	is	reached,	the	mass	of	the	system	is	given	by	

m V
S j pj

j

N

≈
=
∑ρ

1

8( )

since	mF	is	very	small	it	can	be	neglected	compared	to	mSB	
for	all	practical	purposes.	Now	the	next	question	is	to	check	
how	Eq.	(8)	can	be	improved.	One	excellent	possible	solution	
is	to	continue	using	small	objects	(smaller	than	the	smallest	
soccer	ball)	as	most	likely	students	have	proposed,	and	go-
ing	to	sizes	such	as,	 for	example,	grains	of	sand	and	even	
molecular	sizes.	Mathematically,	this	implies	

m V
S N

V

j pj
j

N

pj

=
→∞
→ =
∑lim ( )

0 1

9ρ

Eq. (9) can be slightly modifi ed  to bring it closer to a 
mathematically useful defi nition. First we want to map the 
geometrical	situation	in	the	vessel	to	a	mathematical-based	
domain	with	incremental	volume	∆V

j
	(see	Figure	6).	It	is	

useful	 to	 discuss	 with	 the	 students	 the	 dimensions	 of	 the	
volume	of	this	tiny	domain	(with	respect	to	the	volume	of	
the	vessel)[11]	with	the	mathematical	concept	of	incremental	
volume.	From	this,	now	Eq.	(9)	becomes:	

m V
S N

V

j j
j

N

j

=
→∞
→ =
∑lim ( )

∆

∆
0 1

10ρ

Eq.	(10)	is	nothing	but	a	representation	of	the	Riemann	sum,[11]	
that	in	the	limit	produces	the	Riemann	integral,	i.e.,		

lim ( )
N

V

j j
j

N

V t
j

c

V dV
→∞
→ = ( )∑ ∫≡

∆

∆
0 1

11ρ ρ

From	Eq.	(10)	and	Eq.	(11)	now	we	can	write:	

m dV
s V tc

=
( )∫ ρ ( )12

It	is	very	straightforward	to	conclude	that	Eq.	(12)	allows	us	
to	compute	the	total	mass	of	the	system	from	a	continuum	
point	of	view	whose	control	volume	Vc(t)=Vs.	This	equation	
(valid	for	a	continuum)	is	derived	directly	from	the	discrete	
objects	 (i.e.,	 particles=soccer	 balls)	 and	 therefore	 every	
physical	concept	that	was	valid	for	a	discrete	domain	is	also	
valid	for	the	continuum	domain.	By	using	the	visualization	
protocol	as	described	in	this	section,	we	have	introduced	a	
different	“scale”	in	the	computation	of	a	physical	property,	
i.e.,	 for	 this	 case	 the	mass	 (total)	 of	 the	 system.	The	 total	
mass	of	the	system	(for	a	single	component	system,	the	total	
mass	coincides	with	the	mass	of	the	component)	is	the	pri-
mary	variable	or	property	that	allows	us	to	compute	others	
that	are	proportional	to	it	(see	the	section	below).	Therefore,	
the	transformation	from	a	discrete	scale	point	of	view	to	a	
continuum	scale	point	of	view	is	relatively	straightforward.	
Students	never	have	 to	deny	 that	what	 they	 learned	 in	 the	
discrete	scale	 is	valid	for	 the	continuum	scale.	It	 is,	at	 the	
end,	a	different	mathematical	description	of	the	same	property	
since	the	scale	has	changed.	

ExaMPLES aNd aPPLICaTIONS: OTHER 
VaRIaBLES OF INTEREST 

The	 learning	 protocol	 described	 in	 the	 previous	 section	
may	be	applied	 to	other	variables	 that	are	 relevant	 for	 the	
formulation	 of	 conservation	 principles,	 such	 as	 linear	 and	
angular	 momentum	 and	 energy.[12]	The	 steps	 are	 identical	
as	for	the	case	of	total	mass.	First,	one	should	start	with	the	
mathematical defi nition of the property for the case of discrete 
variables and then apply the process identifi ed in the prior 

Figure 6. Mapping of 
the container volume 

to a geometrical 
domain of size Vs. 

(a): Container fi lled 
up with N soccer 

balls. (b) Side view 
of the space occu-

pied by the N soccer 
balls. (c) Geometrical 

domain showing N 
incremental volumes 
of size ∆Vj and with 

a density ρ j . 
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section	 to	 reach	 the	 proper	 mathematical	 equation	 for	 the	
new	property.	For	example,	the	linear	momentum,	


p ,	for	a	

discrete	particle	is:	
 
p m v

p p
= ( )13

for	 each	 particle	 of	 mass,	 mp,	 and	 velocity,	 v
p
.	 From	 a	

continuum	point	of	view,	(by	using	the	protocol	previously	
described)	we	can	conclude,	

 
p vdV

V tc

=
( )∫ ρ ( )14

There	is	a	“shortcut”	approach	by	realizing	the	mass	of	the	sys-
tem	is	given	by	Eq.	(12)	and	then,	by	replacing	the	velocity	of	
the	particle	by	the	one	of	the	medium,	one	arrives	to	Eq.	(14)	
from	the	“suggested”	form	given	by	Eq.	(13).	Didactically,	
this	is	consistent	with	the	fact	that	students	have	a	protocol	
in	mind	of	how	the	transformation	works	and	is	similar	to	the	
“mathematical”	tricks	used	frequently	in	analysis	courses	to	
obtain	results	in	a	quicker	manner.	Similarly,	energy,	E,	for	
the	discrete	point	of	view	is	given	by:	

E p v
p

= •
 

( )15

By using the strategy identified above, Eq. (15) is transformed 
into:[13]	

E v v dV
V tc

= •

( )∫ ρ

 
( )16

Note:	Students	may	want	to	use	the	relation,	
 
p v dV

V tc

=
( )∫ ρ ( )17

The velocity field 
  
v v x= ( ) 	could,	however,	be	a	function	

of	the	position	inside	the	control	volume,	Vc(t),	and	therefore	
Eq.	(17)	will	not	capture	this	situation.	Eq.	(14)	and	also	Eq.	
(16) will capture non-uniform velocity fields, i.e.,	Eq.	(16)	
is	the	most	general	equation	for	describing	the	energy	of	the	
system	for	a	continuum	scale.	

More	complicated	functions	or	properties	can	be	expressed	
from	a	continuum	point	of	view.	For	example,	the	moment	
around	a	point,	i.e.,	torque,	


M ,	is	given	by:	

  
M r F

p
= × ( )18

where	

r
p

	is	the	position	vector	of	the	force,	

F.	It	is	known	

from	mechanics	that	

dp
dt

d
dt

m v R
p


 

= ( )= ( )19

From	a	continuum	point	of	view	Eq.	(19)	can	be	expressed	
as,	

 
R

d
dt

vdV
V tc

= =
( )∫ ρ ( )20

If	

R 	is	the	net	force	applied	to	the	system,	i.e.,	the	one	en-

closed	within	the	control	volume,	Vc(t),	then	from	Eq.	(18)	
and	Eq.	(20):	

   
M

d
dt

r vdV R
pV tc

= × =
( )∫ ρ ( )21

in	the	case	that	
 
r r t
p p
= ( ).	Caution	must	be	kept	in	mind	re-

garding	the	interpretation	of	the	meaning	of	the	derivative,	
d
dt 	in	Eq.	(19);	also,	the	formulation	of	Eq.	(21)	and	similar	
ones	requires	a	careful	analysis	and	discussion	that	are	not	
part	of	the	scope	of	this	contribution.[12,	14]	The	protocol	of	the	
soccer	ball	model	is	actually	a	helpful	tool,	from	a	didactic	
as	well	as	from	the	conceptual	point	of	view,	since,	in	prac-
tice,	all	key	variables	for	the	description	of	the	conservation	
principles	in	a	continuum	scale	can	be	systematically	derived	
by	using	such	a	protocol;	or,	alternatively,	shortcuts	based	on	
the	protocol	are	possible.	

IMPaCT ON STUdENT LEaRNING 
The	SBM	protocol	was	introduced	some	years	ago[7]	and	it	

has	been	systematically	implemented	in	various	core	courses	
in fluid mechanics, heat transfer, and transport and reactions, 
both	at	the	undergraduate	and	graduate	level.	The	comments	
by	students	in	course	exit	interviews	have	indicated	the	healthy	
action	of	the	protocol	in	helping	students	build	an	excellent	
level	of	knowledge	based	on	the	previous	level	they	bring	to	
the	classroom	as	well	as	avoid	misconceptions.	In	addition,	
the	 protocol	 has	 been	 extremely	 effective	 for	 introducing	
macroscopic	or	integral	balances	from	a	continuum	point	of	
view without much difficulty from the students’ point of view. 
Furthermore,	the	connection	between	mathematical	concepts	
learned	in	calculus	and	engineering	applications,	such	as	the	
change	of	scales,	is	effectively	integrated	by	using	elements	
of	the	SBM.[3]	This,	in	turn,	assists	the	students	in	understand-
ing	the	relevancy	of	the	mathematical	tools	in	engineering	
applications	and	enhances	the	appreciation	of	their	power	in,	
for	example,	simulating	engineering	processes.	

We	believe	the	protocol	of	the	SBM	is	an	effective	tool	in	
removing	 the	 students’	 frustration	 in	understanding	a	very	
different	 description	 (from	 the	 students’	 point	 of	 view)	 of	
matter,	momentum,	energy,	and	related	concepts	from	a	new	
and	more	sophisticated	scale,	i.e.,	the	continuum	scale.	

SUMMaRY aNd CONCLUdING REMaRKS 
This	 contribution	 summarizes	 some	 of	 the	 typical	 ap-

proaches	used	to	introduce	students	to	scaling/up-scaling	for	
variables	and	properties	related	to	conservation	principles	in	
continua.	The	key	aspect	is	the	introduction	of	a	new	learn-
ing	 protocol,	 the	 soccer	 ball	 model,	 that	 engages	 students	
in	every	step	of	 the	process	of	 transforming	scales	 from	a	
discrete	level	to	build	a	continuum.	The	soccer	ball	model	
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approach	allows	students	to	use	what	knowledge	they	have	
already	acquired	in	previous	courses	from	the	discrete	point	
of	view,	to	apply	it	in	a	systematic	manner,	and	to	obtain	the	
description	of	properties	such	as	mass,	energy,	and	momen-
tum;	these	properties	are	used	in	conservation	equations	for	
the continuum point of view. The protocol identified in the 
learning	environment	of	the	soccer	ball	model	is	powerful	
since	students	never	lose	track	of	the	discrete	nature	of	the	
objects	when	engaging	in	building	a	continuum.	They	reach	
this	level	at	the	end	of	the	protocol	and	simultaneously	they	
have	been	able	to	develop	an	excellent	idea	of	the	continuum	
with	an	equation	to	compute	the	given	property	or	proper-
ties	of	the	system.
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