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The major characteristic that sets an engineer apart from 
every other profession in the world is his/her ability to 
apply the concepts of scaling/up-scaling to a variety 

of situations. What do we mean by scaling? Well, take for 
instance a chemist working in the laboratory designing a new 
drug for a company. Would this chemist be your first choice to 
take that laboratory synthesis and convert it to a process that 
produces thousands of tons of that drug per year? Probably 
not; however, a chemical engineer would be an excellent can-
didate. Similarly, if building an airplane, scientists (physicists, 
material, computational) would not be the first choices that 
come to mind, in spite of the obvious useful roles of their 
professions. An aeronautical engineer would most likely be 
the selection that makes everybody comfortable. The same 
can be said for building structures (bridges, buildings, etc.) 
where civil engineers are the masters, and for the scaling 
of industry where industrial/managerial engineers are very 
skillful. The list is long, but these few examples illustrate the 
basic concept: Engineers are masters of scaling/up-scaling. 
Therefore, it is imperative when training engineering students, 
that they fully grasp the concept of scaling/up-scaling to be 
able to implement it for practical applications, such as the 
ones mentioned above. 

One important class of up-scaling in engineering educa-
tion is the different scales involved in describing quantities 
related to the physics of transport (mass, momentum, energy). 
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In many high school or college-level courses, students are 
introduced to velocity, density, energy, etc., from a discrete 
scale point of view.[1] In many engineering applications, 
however, when studying the physics of transport, it is neces-
sary to develop conservation equations for system properties, 
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such as total mass, energy, and momentum for a continuum, 
or microscopic scale.[2] To accomplish this, the concept of a 
continuum scale must be introduced to students. Since most 
students have only been exposed to the physical and chemical 
concepts related to total mass, energy, and momentum, from a 
discrete scale point of view, the concept of a continuum scale 
can be very challenging.  

In making the transition from a discrete scale to a continuum 
scale, one very important pedagogical aspect to keep in mind 
is that students already have substantial knowledge related 
to calculating the total mass, velocity, and momentum of a 
single particle (discrete domain). So from the students’ learn-
ing point of view, how does the instructor use their previous 
experience and knowledge with the discrete domain to scale 
it up to the continuum domain? 

Most textbooks do not address this issue. In fact, many of 
them have suppressed or hidden the process associated with 
the up-scalingb,[3] on the assumption that all steps and concepts 
are familiar to the learner, when in fact they are not. This can 
be frustrating to students and does not enable them to fully 
understand the importance of the idea of a continuum. More-
over, some textbooks[4] have approached the problem from 
the point of view of the definition of an intensive property, 
such as density, and from the traditional definition for the 
discrete case: 

m V
p p p
= ρ ( )1

where mp is mass of the particle, ρp  is density of the particle, 

and Vp is volume of the particle. They have then simply 
extended this definition to a continuum control volume, Vc(t) 
as follows: 

m dV
s V tc

≡
( )∫ ρ ( )2

 
where ms is the total mass of the system under study. Based 
on Eq. (1) and Eq. (2), it seems that as suggested in Figure 1, 
two domains exist: A non-applicable (for the system descrip-
tion), or “old” domain (discrete domain) and a “new” domain 
(continuum domain). As Figure 1 shows, the discrete, or 
“old,” domain is valid for very small scale systems (order 
of molecules), whereas the continuum, or “new,” domain 
adequately describes the mass of the system for domains of 
a larger or continuum (microscopic) scale. It is interesting to 
note that the so-called old domain in Figure 1 is at the mo-
lecular level and the concepts learned by students during, for 
example, high school or college physics are not necessarily at 
this scale. The molecular scale is a discrete domain, however, 
and this characteristic offers a bridge for student learning that 
is effectively used in the Soccer Ball Model (SBM) protocol 
described in this paper. 

The pedagogical challenge described in Figure 1 is that 
the “old” domain is the domain in which the students are 
most comfortable and more knowledgeable with the con-
cepts. Students, in general, are unfamiliar with the new 
domain indicated in Figure 1. Many teaching approaches (in 
the literature) focus on the new domain and mostly forget 
the level of knowledge that students already have on the 

old domain. This situation is prob-
ably very familiar to most students, 
unfortunately, as oftentimes when 
learning new concepts they are told 
to “forget” everything they already 
know; this type of learning approach 
completely nullifies the knowledge 
that the students have already ac-
quired. Another option that instructors 
sometimes use is to force students 
to imagine a new system where the 
boundary (or boundaries) are no lon-
ger well defined. This, then, requires 
students to apply “old concepts” to the 
“new (suddenly introduced)” system. 
These two options illustrate the many 
disadvantages for the students when 
they are not engaged in the process 

	 b  	The word up-scaling here is used to in-
dicate the change of the description of a 
property from one scale to another, such 
as, for example, from the microscopic to 
the macroscopic scales. 

“Old
Domain”

“New
Domain”

Size of the 
system

Continuum Scale 
Domain

Discrete Scale 
Domain

Density

Figure 1. Sketch of the material density as a function of the size of the system 
indicating the two scales or domains of interest. 



Vol. 44, No. 2, Spring 2010 113

of	transforming	and	adapting	what	they	already	know.	This	
suggests	the	need	for	adopting	a	procedure	in	which	students	
are	fully	engaged	in	the	process	of	learning	(up-scaling),	then	
coaching	them	on	how	to	move	from	one	scaling	level	to	the	
next.	Moreover,	such	a	process	allows	students	to	build	on	
what	they	already	know	about	the	discrete	point	of	view,	and	
to	integrate	this	knowledge	with	the	new	“view”	of	matter,	
i.e.,	the	microscopic	or	continuum	scale.		

In addition to having an introduction to several scientifi c 
concepts	from	the	discrete	point	of	view,	students	have	an	
adequate	background	in	many	complementary	subjects	includ-
ing	calculus,	integral	concepts,	and	algebra.	It	appears	that	the	
instructor could take advantage of this strong scientifi c and 
mathematical	background	to	help	students	in	catalyzing	the	
transformation	from	one	scale	to	the	other	one	in	an	effective	
way	from	the	students’	learning	point	of	view.	In	other	words,	
instead	of	hiding	the	details	about	the	scaling-up	process,	by	
giving the fi nal answer, the instructors could identify one or 
several	activities	in	which	students	are	exposed	to	and	can	
learn and refl ect on the many aspects involved in the process.[5]	
In	this	contribution,	we	propose	a	visualc	process	to	help	with	
the	transformation	of	scales	(domains),	i.e.,	from	discrete	to	
continuum,	by	using	soccer	balls	 in	conjunction	with	geo-
metrical	 domains,	 mathematical	 principles,	 and	 physical	
properties.	The	student	is	exposed	to	a	very	powerful	set	of	
pedagogical	 activities	 to	 construct	 a	 learning	 environment	
that	 is	both	practical	and	effective.	An	introduction	to	 this	
environment	is	given	in	the	next	section.	

From	 the	 learning	 environment	 point	 of	 view,	 the	 SBM	
protocol	 is	an	effective	Principal	Object	of	Knowledge,	or	
POK,	a	tool	introduced	in	the	Colloquial	Approach[6,7]	and	later	
adapted	to	include	other	learning	environments.[8,9]	POKs	are	
tools	that	allow	the	facilitator	to	focus	students’	learning	on	a	
collection	of	topics	or	variables	conducive	to	visualizing	the	
process	of	understanding	the	different	aspects.	In	this	sense,	
the	SBM	presents	scaling,	packing,	geometrical,	mechanical,	
and mathematical ideas or concepts in an effi cient manner for 
the	process	of	students’	learning.	

dESCRIPTION OF THE SYSTEM(S): 
THE SOCCER BaLL MOdEL ELEMENTS 

Soccerd	 is	 the	world’s	most	popular	 sport.	 It	 is	played	on	
the	beaches	of	Brazil,	on	the	grassless	surfaces	of	Argentina,	
Uruguay, Chile, Africa, as well as on the nap-inviting fi elds of 
Europe	and	North	America.	Therefore,	soccer	balls	are	geometri-
cal	objects	that	are	popular	among	college	students	in	a	large	
number	of	countries	in	the	world.	The	International	Federation	
of	Association	Football,	FIFA,[10]	(international	government	of	
the sport) has fi ve ball sizes shown in Figure 2a. The largest 
one is number fi ve and it is the offi cial size used in every soccer 
game	at	the	professional	level.	The	smaller	sizes	(numbers	four,	
three,	two)	are	used	in	games	depending	on	player	ages,	and	the	
smallest	ones	(number	one)	are	mostly	given	as	souvenirs.	

One	can	observe	from	Figure	2a	that	one	of	the	attractive	
features	of	the	set	of	soccer	balls	(decreasing	size	from	the	
largest	one	to	the	smallest	one)	is	the	fact	that	they	are	all	like	
objects	of	the	same	geometry.	Although	the	balls	are	made	of	
a	shell	with	air	at	a	given	pressure,	in	the	soccer	ball	model	
it	is	assumed	that	they	are	all	made	of	the	same	material	as	
the	shell	(see	Figure	3).	This	assumption	usually	promotes	

 c   The research on brain-based learning suggests that vision is the most 
powerful tool for the brain to add new knowledge (Medina, 2008). 

 d   We have used the name mostly used in the United States, however in the 
rest of the world this foot-based sport is simply called “football.” 
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Figure 2. Elements of the soccer ball model (SBM). (a) Set 
of the fi ve sizes of soccer balls approved by the FIFA. 

(b) Container of a given volume, Vs. 

(a) (b)

Figure 3. Visualization of the “soccer ball material.” 
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strong discussions of why this can be proposed and allows 
the instructor to bring previous vs. new student knowledge 
to the discussion. 

In addition to N balls of a given size, “k” (k=1, 2, 3, 4, 5), 
the soccer ball model uses a container of a given volume, 
Vs (t) (see Figure 2b). This container could be either rigid 
(vessel) or flexible/deformable (bag), and it can be of dif-
ferent geometries, i.e., rectangular, cylindrical, or spherical. 
For simplicity, a rigid, cylindrical vessel is assumed for the 
analysis (see Figure 4). The idea of control volume is dis-
cussed in connection with the vessel of cylindrical shape. In 
general, students are introduced to this idea and also to the 
concept of dimensions associated with the control domains. 
In fact, they are made aware that these domains could be of 
one dimension (line), two dimensions (surface), and three 
dimensions (volume)e.  

Figure 4 shows a typical situation that is helpful for the 
scaling-up analysis of this contribution. The vessel identified 
before is partially filled with N soccer balls of a given size. The 
system (vessel + soccer balls) can be viewed as a composite, 
or a two-phase system with one phase made completely of the 
N soccer balls and the other one made of the “fluid” filling the 
void space between the soccer balls. In many classes students 
are presented with a transparent vessel containing soccer balls 
to show the different “phases” and spaces. If the experiment is 
conducted in a regular classroom, the fluid can be associated 
with “air”; however, a discussion is conducted for several 
different possibilities. The fluid phase is denoted by “F” and 
the mass associated with it by mF. The mass associated with 
the N soccer balls inside the vessel is denoted by mSB. Since 

in engineering many different types of practical systems existf, 
students are introduced to a variety of systems that may have 
these types of characteristics where the soccer balls can easily 
be related to “particle models” in a fluid inside a container. 
One interesting characteristic from the didactic point of view 
is that these “particles” are discrete objects that the students 
can see and touch. Once the system in Figure 4 is understood, 
then a procedure for the mathematical formulation for the total 
mass of such a system can be developed. The process should 
start with a system such as the one shown in Figure 4, then 
steps are made where the students can be coached until the 
formulation (or scale-up) to a continuum scale can be reached. 
This is the focus of the next section. 

Learning Process: Transformation 
of Scales 

To compute the total mass of the system depicted in Figure 
4, let’s start by stating some assumptions. We will assume 
that the volume of the vessel of cylindrical shape is given 
by Vs. Also, we will assume that a set of “N” soccer balls of 
the same size, SB

N
k , has a volume, Vpj (j=1, 2,...,N), density, 

ρ
j
 (j=1, 2,...,N), and mass, mj (j=1, 2,...,N). Since they are 

discrete objects, one can easily compute the mass of ball “j” 
as in the classical college physics textbook[1], i.e.: 

m V j N
j j pj
≡ =ρ , , , , ( )1 2 3…

Because of the assumptions stated above, it is immediately 
recognized that the total mass of the soccer balls can be 
computed as: 

m m V
SB j

j

N

j
j

N

pj
= =

= =
∑ ∑

1 1

4ρ ( )

and, therefore, the total mass of the system, ms, with control 
volume v

s
g  can be computed (for the volume of the container) 

as follows: 

m m m
S SB F
= + ( )5

where mF is the mass of the “F” material. Then in view of Eq. 
(4), one can express Eq. (5) as: 

m V m
S j

j

N

pj F
= +

=
∑ρ

1

6( )
 

Now, one question arises: How can we reduce the mass as-
sociated with “F” (mF) and simultaneously increase the mass 

	 g  	Students are reminded that the N balls must fill up the system com-
pletely. The idea of fractions is possible or, alternatively, the choice 
of VS is discussed. 

	 f  	In general, colloidal and non-colloidal suspensions are very good 
candidates, but other systems, such as packed or fluidized beds can 
also be discussed. 

	 e  	The idea of domain is connected to the domain concept of a mathemati-
cal function, which students are familiar with from calculus courses. p1

p2

pj

pN

p3

Void Space 
between 
volume of the 
different balls

VS: Vessel Volume

Volume of N soccer 
Balls = Volume of 
soccer ball
material (VS B) 

Figure 4. Sketch of the different components associated 
with the container identified in Figure 2. 
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of the soccer balls (mSB) while maintaining the volume of the 
whole system as constant (i.e., Vs=constant)? To answer this 
question, one should recognize that within the container there 
are spaces (i.e., void spaces that do not include soccer ball 
material) and they are filled with a mass of the “F” material 
(for example, air, see above) that is located between the dif-
ferent balls (see Figure 4). The rest of the spaces within the 
container are occupied by the soccer balls. 
Coaching Point 1: The instructor may want to discuss with 
the students several examples of particle packing systems: 
marbles of different sizes and sand are excellent examples. 
The discussion should be focused on the role played by the 
size of the particles and the void spaces in a given container 
to help connect the previous knowledge with the analysis of 
the situation. The instructor should strongly refuse to give 
answers, and instead act as a facilitator being ready to offer 
counter examples to the situations brought up by the students. 
The discussion should lead to the conclusion that by reducing 
the particle size, the void spaces are also reduced. Now as 
a corollary: What would the effect of this reducing process 
be on the number of soccer balls? Should N increase or de-
crease? The hypothesis identified in the exercises/discussions 
of coaching point 1 may be tested by using the soccer ball 
model. Here, for example, the number 5 soccer balls should 
be used as a first step. Those balls, N in total, should be loaded 
into the container. Both mSB and mF should be determined or 
estimated. This is a very useful exerciseh to acquire a solid 
idea of the system’s characteristics. The instructor could as-
sign vessels of the same volume but of different geometries 
and ask students if N is the same, or what would change. 
Coaching Point 2: The instructor may want to coach the 
students in calculating the mass of particles in a given vol-
ume. The idea of voids and porosity of a packed bed can be 
easily connected to the problem. Experiments to measure the 
properties should be discussed. This exercise will produce 
intense discussions among students regarding very relevant 
aspects of the different geometries (see coaching point 1, 
above). Now after the concept identified in coaching point 
1 has been understood, students should be able to check it 
by using the soccer ball model. By using the idea of the size 
of soccer balls, the process sketched in Figure 5, one should 
change the number 5 soccer balls to number 4, again measure 
the mass of soccer ball material and the mass related to the 
void space, mF. Once the process or experimental protocol 
has been identified and tested by students, the next question 
is at what iteration should it be stopped? The idea of an ap-
proximation in engineering becomes useful to address this 
question. Recall what is intended; to minimize the mass of 
the void spaces (mF) up to a point where: 

m m
S SB
≈ ( )7

Coaching point 3: The instructor may want to discuss with 
students at this point the implications or approximations if 

the protocol were to be implemented in the laboratory. Some 
of the relevant aspects may include: 

1. 	 How do we stop the iteration process to produce the 
desired approximation in Eq. (7)? Hint: The idea of 
the sequence and the comparison of the mass of the 
system in iteration k with the k-1 would be helpful:  
m m

s
k

s
k− <−1 ε

2. 	 The step in the sequence (i.e., “k”) may be determined 
by the accuracy of the instrument being used in the 
measurements. 

3. 	 How valid is the approximation in Eq. (7) for the pur-
poses of reducing mF and increasing mSB? 

By stressing the various geometrical and experimental as-
pects of the protocol, students gain a very useful hands-on and 
concrete view of the transformation proposed in the process 
shown in Figure 5, where the unloading and reloading of the 
vessel with the different-size soccer balls is sketched. Students 
soon realize that the set of soccer balls is incomplete for the 
purposes of perhaps reaching a valid approximation in order 
for Eq. (7) to hold. This is another great advantage so they can 
develop possibilities for other systems that will help them to 
achieve the results. In this sense, the soccer ball model is just 

	 h  	A very powerful visualization of this protocol can be achieved by 
using actual soccer balls and containers of different geometries.

p1

1) Soccer ball #4
2) Soccer ball #3
3) Soccer ball #2
4) Soccer ball #1

1) Soccer ball #5
2) Soccer ball #4
3) Soccer ball #3
4) Soccer ball #2

“S”

Vessel with
Vs volume

pj
pj

p2

“F”

Figure 5. Sketch of the “Protocol” of reducing the mass 
of the “F” phase and increasing the mass of “soccer ball 

material.” 
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a	pedagogical	promoter,	or	initiator	of	a	process	that	allows	
students	to	visualize	the	transformation	in	the	scales.	

At	the	end	of	the	process	when	the	approximation	given	in	
Eq.	(7)	is	reached,	the	mass	of	the	system	is	given	by	

m V
S j pj

j

N

≈
=
∑ρ

1

8( )

since	mF	is	very	small	it	can	be	neglected	compared	to	mSB	
for	all	practical	purposes.	Now	the	next	question	is	to	check	
how	Eq.	(8)	can	be	improved.	One	excellent	possible	solution	
is	to	continue	using	small	objects	(smaller	than	the	smallest	
soccer	ball)	as	most	likely	students	have	proposed,	and	go-
ing	to	sizes	such	as,	 for	example,	grains	of	sand	and	even	
molecular	sizes.	Mathematically,	this	implies	

m V
S N

V

j pj
j

N

pj

=
→∞
→ =
∑lim ( )

0 1

9ρ

Eq. (9) can be slightly modifi ed  to bring it closer to a 
mathematically useful defi nition. First we want to map the 
geometrical	situation	in	the	vessel	to	a	mathematical-based	
domain	with	incremental	volume	∆V

j
	(see	Figure	6).	It	is	

useful	 to	 discuss	 with	 the	 students	 the	 dimensions	 of	 the	
volume	of	this	tiny	domain	(with	respect	to	the	volume	of	
the	vessel)[11]	with	the	mathematical	concept	of	incremental	
volume.	From	this,	now	Eq.	(9)	becomes:	

m V
S N

V

j j
j

N

j

=
→∞
→ =
∑lim ( )

∆

∆
0 1

10ρ

Eq.	(10)	is	nothing	but	a	representation	of	the	Riemann	sum,[11]	
that	in	the	limit	produces	the	Riemann	integral,	i.e.,		

lim ( )
N

V

j j
j

N

V t
j

c

V dV
→∞
→ = ( )∑ ∫≡

∆

∆
0 1

11ρ ρ

From	Eq.	(10)	and	Eq.	(11)	now	we	can	write:	

m dV
s V tc

=
( )∫ ρ ( )12

It	is	very	straightforward	to	conclude	that	Eq.	(12)	allows	us	
to	compute	the	total	mass	of	the	system	from	a	continuum	
point	of	view	whose	control	volume	Vc(t)=Vs.	This	equation	
(valid	for	a	continuum)	is	derived	directly	from	the	discrete	
objects	 (i.e.,	 particles=soccer	 balls)	 and	 therefore	 every	
physical	concept	that	was	valid	for	a	discrete	domain	is	also	
valid	for	the	continuum	domain.	By	using	the	visualization	
protocol	as	described	in	this	section,	we	have	introduced	a	
different	“scale”	in	the	computation	of	a	physical	property,	
i.e.,	 for	 this	 case	 the	mass	 (total)	 of	 the	 system.	The	 total	
mass	of	the	system	(for	a	single	component	system,	the	total	
mass	coincides	with	the	mass	of	the	component)	is	the	pri-
mary	variable	or	property	that	allows	us	to	compute	others	
that	are	proportional	to	it	(see	the	section	below).	Therefore,	
the	transformation	from	a	discrete	scale	point	of	view	to	a	
continuum	scale	point	of	view	is	relatively	straightforward.	
Students	never	have	 to	deny	 that	what	 they	 learned	 in	 the	
discrete	scale	 is	valid	for	 the	continuum	scale.	It	 is,	at	 the	
end,	a	different	mathematical	description	of	the	same	property	
since	the	scale	has	changed.	

ExaMPLES aNd aPPLICaTIONS: OTHER 
VaRIaBLES OF INTEREST 

The	 learning	 protocol	 described	 in	 the	 previous	 section	
may	be	applied	 to	other	variables	 that	are	 relevant	 for	 the	
formulation	 of	 conservation	 principles,	 such	 as	 linear	 and	
angular	 momentum	 and	 energy.[12]	The	 steps	 are	 identical	
as	for	the	case	of	total	mass.	First,	one	should	start	with	the	
mathematical defi nition of the property for the case of discrete 
variables and then apply the process identifi ed in the prior 

Figure 6. Mapping of 
the container volume 

to a geometrical 
domain of size Vs. 

(a): Container fi lled 
up with N soccer 

balls. (b) Side view 
of the space occu-

pied by the N soccer 
balls. (c) Geometrical 

domain showing N 
incremental volumes 
of size ∆Vj and with 

a density ρ j . 
1
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section to reach the proper mathematical equation for the 
new property. For example, the linear momentum, 


p , for a 

discrete particle is: 
 
p m v

p p
= ( )13

for each particle of mass, mp, and velocity, v
p
. From a 

continuum point of view, (by using the protocol previously 
described) we can conclude, 

 
p vdV

V tc

=
( )∫ ρ ( )14

There is a “shortcut” approach by realizing the mass of the sys-
tem is given by Eq. (12) and then, by replacing the velocity of 
the particle by the one of the medium, one arrives to Eq. (14) 
from the “suggested” form given by Eq. (13). Didactically, 
this is consistent with the fact that students have a protocol 
in mind of how the transformation works and is similar to the 
“mathematical” tricks used frequently in analysis courses to 
obtain results in a quicker manner. Similarly, energy, E, for 
the discrete point of view is given by: 

E p v
p

= •
 

( )15

By using the strategy identified above, Eq. (15) is transformed 
into:[13] 

E v v dV
V tc

= •

( )∫ ρ

 
( )16

Note: Students may want to use the relation, 
 
p v dV

V tc

=
( )∫ ρ ( )17

The velocity field 
  
v v x= ( )  could, however, be a function 

of the position inside the control volume, Vc(t), and therefore 
Eq. (17) will not capture this situation. Eq. (14) and also Eq. 
(16) will capture non-uniform velocity fields, i.e., Eq. (16) 
is the most general equation for describing the energy of the 
system for a continuum scale. 

More complicated functions or properties can be expressed 
from a continuum point of view. For example, the moment 
around a point, i.e., torque, 


M , is given by: 

  
M r F

p
= × ( )18

where 

r
p

 is the position vector of the force, 

F. It is known 

from mechanics that 

dp
dt

d
dt

m v R
p


 

= ( )= ( )19

From a continuum point of view Eq. (19) can be expressed 
as, 

 
R

d
dt

vdV
V tc

= =
( )∫ ρ ( )20

If 

R  is the net force applied to the system, i.e., the one en-

closed within the control volume, Vc(t), then from Eq. (18) 
and Eq. (20): 

   
M

d
dt

r vdV R
pV tc

= × =
( )∫ ρ ( )21

in the case that 
 
r r t
p p
= ( ). Caution must be kept in mind re-

garding the interpretation of the meaning of the derivative, 
d
dt  in Eq. (19); also, the formulation of Eq. (21) and similar 
ones requires a careful analysis and discussion that are not 
part of the scope of this contribution.[12, 14] The protocol of the 
soccer ball model is actually a helpful tool, from a didactic 
as well as from the conceptual point of view, since, in prac-
tice, all key variables for the description of the conservation 
principles in a continuum scale can be systematically derived 
by using such a protocol; or, alternatively, shortcuts based on 
the protocol are possible. 

Impact on Student Learning 
The SBM protocol was introduced some years ago[7] and it 

has been systematically implemented in various core courses 
in fluid mechanics, heat transfer, and transport and reactions, 
both at the undergraduate and graduate level. The comments 
by students in course exit interviews have indicated the healthy 
action of the protocol in helping students build an excellent 
level of knowledge based on the previous level they bring to 
the classroom as well as avoid misconceptions. In addition, 
the protocol has been extremely effective for introducing 
macroscopic or integral balances from a continuum point of 
view without much difficulty from the students’ point of view. 
Furthermore, the connection between mathematical concepts 
learned in calculus and engineering applications, such as the 
change of scales, is effectively integrated by using elements 
of the SBM.[3] This, in turn, assists the students in understand-
ing the relevancy of the mathematical tools in engineering 
applications and enhances the appreciation of their power in, 
for example, simulating engineering processes. 

We believe the protocol of the SBM is an effective tool in 
removing the students’ frustration in understanding a very 
different description (from the students’ point of view) of 
matter, momentum, energy, and related concepts from a new 
and more sophisticated scale, i.e., the continuum scale. 

Summary and Concluding Remarks 
This contribution summarizes some of the typical ap-

proaches used to introduce students to scaling/up-scaling for 
variables and properties related to conservation principles in 
continua. The key aspect is the introduction of a new learn-
ing protocol, the soccer ball model, that engages students 
in every step of the process of transforming scales from a 
discrete level to build a continuum. The soccer ball model 



Chemical Engineering Education118

approach allows students to use what knowledge they have 
already acquired in previous courses from the discrete point 
of view, to apply it in a systematic manner, and to obtain the 
description of properties such as mass, energy, and momen-
tum; these properties are used in conservation equations for 
the continuum point of view. The protocol identified in the 
learning environment of the soccer ball model is powerful 
since students never lose track of the discrete nature of the 
objects when engaging in building a continuum. They reach 
this level at the end of the protocol and simultaneously they 
have been able to develop an excellent idea of the continuum 
with an equation to compute the given property or proper-
ties of the system.
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