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Dimensionless	correlations	are	a	prominent	feature	in	
the practice of chemical engineering. It is difficult, 
however,	 to	 create	 a	 student	 experiment	 that	 will	

illustrate how they are created. For instance, a pipe flow 
experiment	can	be	set	up	where	pressure	drop	is	measured	
as a function of the flow rate. The results can be consistent 
with	the	published	dimensionless	correlation,	but	the	results	
cannot be called a verification of the correlation unless all the 
relevant	parameters	have	been	varied.		

This	paper	discusses	a	laboratory	experiment	in	our	junior-
year	laboratory	that	shows	how	dimensionless	correlations	
should	be	constructed.	Balls	of	various	densities	and	diameters	
are	dropped	from	various	heights	into	a	pool	of	water,	and	
the	maximum	depth	reached	by	the	ball	is	recorded	for	each	
drop.	The	variables	are	the	liquid	density,	the	ball	density,	the	
ball diameter, the initial height above the liquid, and finally, 
the	greatest	depth	of	penetration.	The	experimental	apparatus	
is	shown	in	Figure	1.	

For	many	years,	this	experiment	was	a	great	frustration	to	
the	students.	They	kept	futilely	attempting	to	use	the	Bucking-
ham Pi Theorem to find the appropriate dimensionless groups. 
In	fact,	the	Buckingham	Pi	Theorem	is	an	existence	theorem.	
It	tells	us	that	given	m	quantities	describing	a	physical	situa-
tion	and	n	fundamental	units	(mass,	length,	etc.),	a	dimension-
less	description	of	the	situation	can	be	written	as	a	function	of	
m-n	dimensionless	groups.	The	proof	is	a	construction	proof	
wherein	an	algorithm	is	constructed	to	compute	example	m-n	
dimensionless	groups.	Students	are	sometimes	aware	that	the	

version	of	the	theorem	found	in	chemical	engineering	texts	
also	states	that	the	product	of	any	dimensionless	group	to	any	
power	times	any	other	dimensionless	group	to	any	power	is	
also	a	legitimate	dimensionless	group.	What	they	don’t	always	
understand is that the latter creates an infinite combinatorial 
problem.	The	appropriate	groups	can	be	obtained	only	by	a	
low-probability	accident.	The	latter	method	will	fail	in	situ-
ations	like	time-dependent	heat	transfer	problems	where	the	
theorem	predicts	too	many	dimensionless	parameters.	There	
are	more	elaborate	versions	of	the	theorem	in	the	literature	
that	claim	to	guide	the	user	in	which	variables	and	parameters	
can	be	combined,	but	they	contain	no	physics	and	are	thereby	
suspect	as	a	guide	to	constructing	a	physical	theory.		
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THEORY 
The	appropriate	method	is	the	one	suggested	decades	ago	

by	Bird,	Stewart,	and	Lightfoot,[1]	and	reinforced	by	Sides.[2]	
Basically	 it	 says	 that	 the	 physics	 that	 control	 the	 process	
must be known in order to find the appropriate dimension-
less	groups.	The	method	consists	of	writing	down	the	gov-
erning	differential	equation	and	then	making	that	equation	
dimensionless	using	the	boundary	and	initial	conditions.	The	
functional	forms	of	the	governing	dimensionless	groups	will	
reveal	themselves	after	some	manipulation.	Importantly,	this	
procedure	 is	valid	for	approximate	models	where	only	 the	
dominant	variables	are	treated.	

The	core	of	this	problem	consists	of	determining	the	veloc-
ity	of	the	ball	in	the	water	as	a	function	of	the	ball’s	physical	
parameters,	the	parameters	of	the	water,	and	time.	When	the	
velocity	goes	to	zero,	the	ball	is	as	deep	as	it	is	going	to	get	
(recall, the balls have a specific gravity less than 1, so they 
ultimately float).  

It	is	easy	to	estimate	the	initial	ball	velocity	in	the	water,	vo,	
when	dropped	from	a	height	L,	by	assuming	that	the	initial	
potential	energy	is	completely	converted	to	kinetic	energy.	

v gL
o
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where	g	is	the	gravitational	acceleration.	This	assumes	that	
that	velocity	is	well	under	the	terminal	velocity	and	the	ef-
fect	of	air	friction	is	negligible.	The	ball	will	lose	some	speed	
when	it	penetrates	the	water	surface,	but	it	will	be	assumed	
that	loss	is	negligible;	recall	that	the	purpose	of	this	analysis	
is to develop a functional form to be used in a fitting proce-
dure,	rather	than	to	solve	the	full	equations	rigorously,	and	as	
pointed	out	above,	reasonable	approximations	do	not	damage	
our	 ability	 to	 obtain	 a	 reasonable	 correlation.	Once	 in	 the	
water,	the	differential	equation	that	describes	the	acceleration	
of	the	ball	is	given	by	Newton’s	second	law,	
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where	v,	D,	and	ρ
b
	are	the	velocity,	diameter,	and	density	of	the	

ball.	The	buoyant	force,	Fb,	according	to	Archimedes,	is	simply	
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where	ρ
w
	is	the	density	of	water.	The	friction	force	is	estimated	

in	typical	chemical	engineering	fashion	using	another	dimen-
sionless	correlation	(see	Bird,	Stewart,	and	Lightfoot),	
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where	the	dimensionless	friction	factor	f	is	a	function	of	the	
Reynolds	number	Re= ρ µ

w
vD( ) ,	and	µ is the fluid viscosity.  

The	Reynolds	number	is	a	function	of	the	velocity	of	the	ball,	
and it changes as the ball moves through the fluid. 

The	equation	of	motion	can	now	be	written	
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In	principle,	this	equation	could	be	solved	numerically,	but	
it	is	not	necessary	to	do	so	to	get	the	appropriate	dimension-
less	groups.	By	dividing	Eq.	(5),	by	the	parameters	on	the	
left-hand side and g, and defining the dimensionless velocity 
v v gL*= 2 ,	the	result	is	
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gLD 	is	the	initial	Reynolds	number	
as the ball enters the fluid. Since all the terms on the right-
hand	side	are	already	dimensionless,	the	left-hand	side	must	

be as well. By defining dimensionless time as t t
g
L
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2

,	the	
equation	obtained	is	
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Eq.	(7)	implies	that	the	solution	for	the	dimensionless	velocity	
will	be	of	the	form	
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which	demonstrates	the	dimensionless	groups	that	affect	the	
trajectory	of	the	ball.	

The	maximum	depth	the	ball	reaches,	h,	is	obtained	as	
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t

= ( )∫0
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where	tmax	is	the	time	at	which	the	ball	reaches	its	maximum	
depth. Using the definitions for the dimensionless velocity 
and	time,	this	leads	to	
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Figure 1. Ball-Dropping Apparatus.
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and further simplification leads to 
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Eq.	(11)	implies	that	
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Now,	 the	 value	 of	 t*max	 is	 determined	 by	 the	 condition	
v*(t*max)=0,	which	in	combination	with	Eq.	(8)	implies	
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By	combining	the	above	two	equations,	the	result	is	found	that	
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which	shows	how	the	dimensionless	depth	to	which	the	ball	falls	
will	depend	on	a	set	of	dimensionless	physical	parameters.	

At	this	point,	the	solution	is	not	known,	but	common	engi-
neering	practice	is	to	attempt	a	correlation	of	the	form	
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where	the	constants	A,a,b,c	are	the	parameters	that	minimize	
a	least	squares	sum.	There	is	not	enough	space	here	to	cover	
the details, but the fit should never be done by taking the 
logarithm	of	the	expression	above	and	doing	a	least	squares	
fit to the linearized expression; the result would be biased 
coefficients. Modern computer power makes the computation 
simple	using	an	optimizer	like	“Solver”	in	Excel®.	

One final question. Having used the computer to estimate 
the fit parameters, how robust are those estimates? In prin-
ciple,	if	the	experiment	is	repeated,	different	parameters	will	
result.	The	important	question	is	“How	large	a	variation	is	
expected	from	experiment	to	experiment?”	The	answer	to	this	
question also affects the appropriate number of significant 
figures it makes sense to report. The method used here is the 
maximum	likelihood	estimate[3]	of	the	parameter	variance	for	
the	case	where	the	errors	in	the	depth	estimate	are	Gaussian.	
Under	 these	circumstances,	 the	variance	of	 the	parameters	
from	experiment	to	experiment	is	proportional	to	the	average	
measurement	error	and	inversely	proportional	to	the	sharpness	
of	the	least	squares	minimum,	taken	as	the	expected	second	
derivative	at	the	minimum.	It	can	be	shown	that	the	parameter	
estimate	error	can	be	estimated	by	the	following	procedure[3]:	
First,	the	Fisher	information	matrix,	
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is estimated, where y is the function being fit [Eq. (15)], the 
αp are the parameters of the fit [A, a, b, c in Eq. (15),] and the 
derivatives	are	evaluated	at	the	set	of	parameters	(Re0,	D,	and	
ρ

B)	used	for	the	nth	experimental	trial.	The	parameter	s2	is	the	
estimated	measurement	variance,	which	is	the	average	square	
of	the	deviation	of	the	theory	from	the	measurement	estimated	
after the successful fit. Then, the estimate of the reproducibility 
variance	for	each	of	the	parameters	is	given	by	

σ
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where	 F
pq
−1	 is	 the	 inverse	 matrix	 of	 Fpq.	This	 methodology	

is	described	in	detail	elsewhere.[3]	While	these	calculations	
look	cumbersome,	they	are	easily	done	using	a	spreadsheet	
program	like	Excel®.	

RESULTS aNd dISCUSSION 
A	randomly	selected	student’s	set	of	laboratory	data	is	ana-

lyzed	as	described	above.	This	data	included	the	maximum	
depths	reached	by	14	different	balls	(with	various	D	and	ρ

B
)	

dropped	into	water	from	3	separate	heights	above	the	water;	
the	parameter	ranges	were	2.5	cm	<	D	<	6.5	cm,	0.55	g/cm3	<	
ρ

B 	<	0.90	g/cm3,	and	34	cm	<	L	<	141	cm,	and	the	maximum	
depths	that	the	balls	reached	were	in	the	range	11	cm	<	h	<	47	
cm. This data was fit with Eq. (15), and Figure 2 shows a plot 
of	the	measured	value	of	the	depth	vs.	the	theoretical	depth	
obtained from the fit above. As is apparent from the graph, 
the fit is an overall success. To quantify the uncertainties, the 
Fisher	information	matrix	and	its	inverse	are	calculated,	
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to obtain a final result for the fit of the dimensionless correla-
tion	to	the	experimental	data,	

	A=	1.60	±	0.51	

	a=	1.32	±	0.14		

	b=	-0.61	±	0.04	

	c=	0.062	±	0.024	
Note that the uncertainty estimates listed are the σp,	which	

describe	the	standard	deviations	for	the	uncertainties	in	the	
parameters, such that ranges of ±1σp	 are	 associated	 with	
68% confidence limits, and ±2σp	 are	 associated	with	95%	
confidence limits, etc. 
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Students	often	try	other	functional	forms,	however,	which	
are not dimensionless, for the fitting. For instance, from this 
same data set, the student reports that the fit 

h cm D L
b

= ( )( )( )0 3089 180 79 1 06 0 26. ( ). . .ρ

is even better than the fit to Eq. (15), in that the R2	calculated	
with this fit is larger. Students typically do not know what R2	
is	a	measure	of,	much	less	how	large	a	change	is	meaningful.	
That	should	be	pointed	out	to	students,	but	even	more	impor-
tant is that they should recognize that this second fit would tell 
them	nothing	about	what	might	happen	if	the	experiment	were	
carried out using a Newtonian oil rather than water. The first 
correlation	should	do	a	good	job	of	predicting	the	change	in	
behavior	since	it	is	dimensionless	and	contains	the	essential	
physics	of	the	problem,	including	relative	densities	and	the	
effect	of	viscosity.	

The	method	demonstrated	to	derive	the	appropriate	dimen-
sionless	groups	above	is	quite	robust,	but	it	can	give	different	
functional	 forms.	 For	 instance,	 if	 the	 velocity	 were	 made	
dimensionless	by	 embedding	 it	 in	 the	Reynolds	number,	 a	
different	form	would	have	been	obtained.	Following	the	same	
methodology	as	above,	the	form	for	the	correlation	would	be	
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With	no	loss	of	generality,	this	expression	can	be	multiplied	
by	the	second	dimensionless	group	to	give	
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This	functional	form	is	legitimate,	but	not	as	desirable	as	Eq.	(15)	
because	it	stresses	the	viscosity,	which	was	not	varied	in	the	
experiment.	In	contrast,	 in	Eq.	(15),	 the	viscosity	only	ap-
peared	in	the	friction	factor	correlation	where	the	dependence	
on	the	Reynolds	number	is	well	tested.		

All	three	versions	of	the	correlation	have	the	same	depen-
dence,	within	experimental	error,	on	the	variables	used:	the	
ball	density,	ball	diameter,	and	height	of	the	drop.	The	dimen-
sionless	versions	are	preferred	if	only	because	they	give	the	
engineer	some	guidance	as	to	what	experiments	need	to	be	
done to firm up the correlation and what may happen when 
liquids	other	than	water	are	used.	More	experiments	should	
be	done	where	the	surface	tension	and	viscosity	are	varied.				

The	example	shown	here	gives	an	indication	what	informa-
tion	can	be	extracted	from	experimental	data.	Another	instruc-
tor	has	used	this	same	experiment	as	a	vehicle	to	demonstrate	
randomness	 in	 experiments	 and	 examines	 the	 sample	 size	
dependence	for	the	uncertainty	in	the	estimate	of	the	mean,	
and	whether	or	not	the	probable	distribution	is	Gaussian.		

NOMENCLaTURE 
		 A			proportionality	constant	in	correlation	
		a,	b,	c	exponents	of	dimensionless	terms	in	correlation	
	 D			diameter	of	ball	
	 f			friction	factor	for	a	sphere	
	 Fb			buoyancy	force	
	 Ff			frictional	force	
	 Fij			ij

th	element	of	the	Fisher	information	matrix	
		 g			gravitational	acceleration	
		 h			maximum	depth	reached	by	ball	
		 L			height	ball	is	released	above	water	
		 Re			Reynolds	number	
		 Re0   Reynolds number at entrance to fluid 
		 s2			Estimated	measurement	variance	
		 t			time	
		 t*			dimensionless	time	 t g L2
		 v			velocity	of	the	ball	

		 v*			dimensionless	velocity	of	ball	v gL2

Greek Characters 
  αk			k

th fitting parameter 
	 ρ

b
			density	of	ball	

		 ρ
w
   density of fluid 
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Figure 2. Relationship between the measured maximum 
depth of the dropped balls and the fitted (theoretical) val-
ues. The line denotes points of equality of the measured 

and theoretical values. 


