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Dimensionless correlations are a prominent feature in 
the practice of chemical engineering. It is difficult, 
however, to create a student experiment that will 

illustrate how they are created. For instance, a pipe flow 
experiment can be set up where pressure drop is measured 
as a function of the flow rate. The results can be consistent 
with the published dimensionless correlation, but the results 
cannot be called a verification of the correlation unless all the 
relevant parameters have been varied.  

This paper discusses a laboratory experiment in our junior-
year laboratory that shows how dimensionless correlations 
should be constructed. Balls of various densities and diameters 
are dropped from various heights into a pool of water, and 
the maximum depth reached by the ball is recorded for each 
drop. The variables are the liquid density, the ball density, the 
ball diameter, the initial height above the liquid, and finally, 
the greatest depth of penetration. The experimental apparatus 
is shown in Figure 1. 

For many years, this experiment was a great frustration to 
the students. They kept futilely attempting to use the Bucking-
ham Pi Theorem to find the appropriate dimensionless groups. 
In fact, the Buckingham Pi Theorem is an existence theorem. 
It tells us that given m quantities describing a physical situa-
tion and n fundamental units (mass, length, etc.), a dimension-
less description of the situation can be written as a function of 
m-n dimensionless groups. The proof is a construction proof 
wherein an algorithm is constructed to compute example m-n 
dimensionless groups. Students are sometimes aware that the 

version of the theorem found in chemical engineering texts 
also states that the product of any dimensionless group to any 
power times any other dimensionless group to any power is 
also a legitimate dimensionless group. What they don’t always 
understand is that the latter creates an infinite combinatorial 
problem. The appropriate groups can be obtained only by a 
low-probability accident. The latter method will fail in situ-
ations like time-dependent heat transfer problems where the 
theorem predicts too many dimensionless parameters. There 
are more elaborate versions of the theorem in the literature 
that claim to guide the user in which variables and parameters 
can be combined, but they contain no physics and are thereby 
suspect as a guide to constructing a physical theory.  
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THEORY 
The appropriate method is the one suggested decades ago 

by Bird, Stewart, and Lightfoot,[1] and reinforced by Sides.[2] 
Basically it says that the physics that control the process 
must be known in order to find the appropriate dimension-
less groups. The method consists of writing down the gov-
erning differential equation and then making that equation 
dimensionless using the boundary and initial conditions. The 
functional forms of the governing dimensionless groups will 
reveal themselves after some manipulation. Importantly, this 
procedure is valid for approximate models where only the 
dominant variables are treated. 

The core of this problem consists of determining the veloc-
ity of the ball in the water as a function of the ball’s physical 
parameters, the parameters of the water, and time. When the 
velocity goes to zero, the ball is as deep as it is going to get 
(recall, the balls have a specific gravity less than 1, so they 
ultimately float).  

It is easy to estimate the initial ball velocity in the water, vo, 
when dropped from a height L, by assuming that the initial 
potential energy is completely converted to kinetic energy. 

v gL
o
= 2 1( )

where g is the gravitational acceleration. This assumes that 
that velocity is well under the terminal velocity and the ef-
fect of air friction is negligible. The ball will lose some speed 
when it penetrates the water surface, but it will be assumed 
that loss is negligible; recall that the purpose of this analysis 
is to develop a functional form to be used in a fitting proce-
dure, rather than to solve the full equations rigorously, and as 
pointed out above, reasonable approximations do not damage 
our ability to obtain a reasonable correlation. Once in the 
water, the differential equation that describes the acceleration 
of the ball is given by Newton’s second law, 
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where v, D, and ρ
b
 are the velocity, diameter, and density of the 

ball. The buoyant force, Fb, according to Archimedes, is simply 
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where ρ
w
 is the density of water. The friction force is estimated 

in typical chemical engineering fashion using another dimen-
sionless correlation (see Bird, Stewart, and Lightfoot), 
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where the dimensionless friction factor f is a function of the 
Reynolds number Re= ρ µ

w
vD( ) , and µ is the fluid viscosity.  

The Reynolds number is a function of the velocity of the ball, 
and it changes as the ball moves through the fluid. 

The equation of motion can now be written 
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In principle, this equation could be solved numerically, but 
it is not necessary to do so to get the appropriate dimension-
less groups. By dividing Eq. (5), by the parameters on the 
left-hand side and g, and defining the dimensionless velocity 
v v gL*= 2 , the result is 
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gLD  is the initial Reynolds number 
as the ball enters the fluid. Since all the terms on the right-
hand side are already dimensionless, the left-hand side must 

be as well. By defining dimensionless time as t t
g
L
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, the 
equation obtained is 
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Eq. (7) implies that the solution for the dimensionless velocity 
will be of the form 
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which demonstrates the dimensionless groups that affect the 
trajectory of the ball. 

The maximum depth the ball reaches, h, is obtained as 

h v t dt
t
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where tmax is the time at which the ball reaches its maximum 
depth. Using the definitions for the dimensionless velocity 
and time, this leads to 
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Figure 1. Ball-Dropping Apparatus.
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and further simplification leads to 
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Eq. (11) implies that 
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Now, the value of t*max is determined by the condition 
v*(t*max)=0, which in combination with Eq. (8) implies 
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By combining the above two equations, the result is found that 
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which shows how the dimensionless depth to which the ball falls 
will depend on a set of dimensionless physical parameters. 

At this point, the solution is not known, but common engi-
neering practice is to attempt a correlation of the form 
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where the constants A,a,b,c are the parameters that minimize 
a least squares sum. There is not enough space here to cover 
the details, but the fit should never be done by taking the 
logarithm of the expression above and doing a least squares 
fit to the linearized expression; the result would be biased 
coefficients. Modern computer power makes the computation 
simple using an optimizer like “Solver” in Excel®. 

One final question. Having used the computer to estimate 
the fit parameters, how robust are those estimates? In prin-
ciple, if the experiment is repeated, different parameters will 
result. The important question is “How large a variation is 
expected from experiment to experiment?” The answer to this 
question also affects the appropriate number of significant 
figures it makes sense to report. The method used here is the 
maximum likelihood estimate[3] of the parameter variance for 
the case where the errors in the depth estimate are Gaussian. 
Under these circumstances, the variance of the parameters 
from experiment to experiment is proportional to the average 
measurement error and inversely proportional to the sharpness 
of the least squares minimum, taken as the expected second 
derivative at the minimum. It can be shown that the parameter 
estimate error can be estimated by the following procedure[3]: 
First, the Fisher information matrix, 

F
s

y y
pq

n p n q n

=
∂
∂

∂
∂∑ 1

16
2 α α

( )

is estimated, where y is the function being fit [Eq. (15)], the 
αp are the parameters of the fit [A, a, b, c in Eq. (15),] and the 
derivatives are evaluated at the set of parameters (Re0, D, and 
ρ

B) used for the nth experimental trial. The parameter s2 is the 
estimated measurement variance, which is the average square 
of the deviation of the theory from the measurement estimated 
after the successful fit. Then, the estimate of the reproducibility 
variance for each of the parameters is given by 

σ
p pp

F2 1 17= − ( )

where F
pq
−1 is the inverse matrix of Fpq. This methodology 

is described in detail elsewhere.[3] While these calculations 
look cumbersome, they are easily done using a spreadsheet 
program like Excel®. 

RESULTS AND DISCUSSION 
A randomly selected student’s set of laboratory data is ana-

lyzed as described above. This data included the maximum 
depths reached by 14 different balls (with various D and ρ

B
) 

dropped into water from 3 separate heights above the water; 
the parameter ranges were 2.5 cm < D < 6.5 cm, 0.55 g/cm3 < 
ρ

B  < 0.90 g/cm3, and 34 cm < L < 141 cm, and the maximum 
depths that the balls reached were in the range 11 cm < h < 47 
cm. This data was fit with Eq. (15), and Figure 2 shows a plot 
of the measured value of the depth vs. the theoretical depth 
obtained from the fit above. As is apparent from the graph, 
the fit is an overall success. To quantify the uncertainties, the 
Fisher information matrix and its inverse are calculated, 
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to obtain a final result for the fit of the dimensionless correla-
tion to the experimental data, 

 A= 1.60 ± 0.51 

 a= 1.32 ± 0.14  

 b= -0.61 ± 0.04 

 c= 0.062 ± 0.024 
Note that the uncertainty estimates listed are the σp, which 

describe the standard deviations for the uncertainties in the 
parameters, such that ranges of ±1σp are associated with 
68% confidence limits, and ±2σp are associated with 95% 
confidence limits, etc. 
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Students often try other functional forms, however, which 
are not dimensionless, for the fitting. For instance, from this 
same data set, the student reports that the fit 

h cm D L
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is even better than the fit to Eq. (15), in that the R2 calculated 
with this fit is larger. Students typically do not know what R2 
is a measure of, much less how large a change is meaningful. 
That should be pointed out to students, but even more impor-
tant is that they should recognize that this second fit would tell 
them nothing about what might happen if the experiment were 
carried out using a Newtonian oil rather than water. The first 
correlation should do a good job of predicting the change in 
behavior since it is dimensionless and contains the essential 
physics of the problem, including relative densities and the 
effect of viscosity. 

The method demonstrated to derive the appropriate dimen-
sionless groups above is quite robust, but it can give different 
functional forms. For instance, if the velocity were made 
dimensionless by embedding it in the Reynolds number, a 
different form would have been obtained. Following the same 
methodology as above, the form for the correlation would be 
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With no loss of generality, this expression can be multiplied 
by the second dimensionless group to give 
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This functional form is legitimate, but not as desirable as Eq. (15) 
because it stresses the viscosity, which was not varied in the 
experiment. In contrast, in Eq. (15), the viscosity only ap-
peared in the friction factor correlation where the dependence 
on the Reynolds number is well tested.  

All three versions of the correlation have the same depen-
dence, within experimental error, on the variables used: the 
ball density, ball diameter, and height of the drop. The dimen-
sionless versions are preferred if only because they give the 
engineer some guidance as to what experiments need to be 
done to firm up the correlation and what may happen when 
liquids other than water are used. More experiments should 
be done where the surface tension and viscosity are varied.    

The example shown here gives an indication what informa-
tion can be extracted from experimental data. Another instruc-
tor has used this same experiment as a vehicle to demonstrate 
randomness in experiments and examines the sample size 
dependence for the uncertainty in the estimate of the mean, 
and whether or not the probable distribution is Gaussian.  

NOMENCLATURE 
 	 A  	proportionality constant in correlation 
 	a, b, c	exponents of dimensionless terms in correlation 
	 D  	diameter of ball 
	 f  	friction factor for a sphere 
	 Fb  	buoyancy force 
	 Ff  	frictional force 
	 Fij  	ij

th element of the Fisher information matrix 
 	 g  	gravitational acceleration 
 	 h  	maximum depth reached by ball 
 	 L  	height ball is released above water 
 	 Re  	Reynolds number 
 	 Re0  	Reynolds number at entrance to fluid 
 	 s2  	Estimated measurement variance 
 	 t  	time 
 	 t*  	dimensionless time t g L2
 	 v  	velocity of the ball 

 	 v*  	dimensionless velocity of ball v gL2

Greek Characters 
 	 αk  	k

th fitting parameter 
	 ρ

b
  	density of ball 

 	 ρ
w
  	density of fluid 
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Figure 2. Relationship between the measured maximum 
depth of the dropped balls and the fitted (theoretical) val-
ues. The line denotes points of equality of the measured 

and theoretical values. 


