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Phase thermodynamics is often perceived as a difficult 
subject with which many students never become fully 
comfortable. It is our opinion that the Gibbsian geo-

metrical framework, which can be easily represented in Excel 
spreadsheets, can help students to gain a better understanding 
of phase equilibria using only elementary concepts of high 
school geometry. 

Phase equilibrium calculations are essential to the simula-
tion and optimization of chemical processes. The task with 
these calculations is to accurately predict the correct number 
of phases at equilibrium present in the system and their com-
positions. Methods for these calculations can be divided into 
two main categories: the equation-solving approach (K-value 
method) and minimization of the Gibbs free energy. Isofugac-
ity conditions and mass balances form the set of equations in 
the equation-solving approach. Although the equation-solving 
approach appears to be the most popular method of solution, it 
does not guarantee minimization of the global Gibbs energy, 
which is the thermodynamic requirement for equilibrium. 
This is because isofugacity criterion is only a necessary but 
not a sufficient equilibrium condition. Minimization of the 
global Gibbs free energy can be equivalently formulated as 
the stability test or the common tangent test. 

The Gibbs stability condition is described and has been 
used extensively in many references.[1, 2] It has been more 
frequently applied in liquid-liquid equilibrium rather than 
vapor-liquid equilibrium calculations. Gibbs showed that a 
necessary and sufficient condition for the absolute stability of 
a binary mixture at a fixed temperature, pressure, and overall 
composition is that the Gibbs energy of mixing (gM) curve at 
no point be below the tangent line to the curve at the given 

overall composition. This is the case with the binary system 
in Figure 1(a); it is homogeneous for all compositions. The gM 
vs. composition curve is concave down, meaning that no split 
occurs in the global mixture composition to give two liquid 
phases. Geometrically, this implies that it is impossible to find 
two different points on the gM curve sharing a common tangent 
line. In contrast, the change of curvature in the gM function 
as shown in Figure 1(b) permits the existence of two conju-
gated points (I and II) that do share a common tangent line 
and which, in turn, lead to the formation of two equilibrium 
liquid phases (LL). Any initial mixture, as for example zi in 
Figure 1(b), located between the inflection points s on the 
gM curve, is intrinsically unstable (d2gM/dx

i
2 <0) and splits 
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into two liquid phases having compositions x
i
I and xi

II, and a 
lower value for the overall Gibbs energy of mixing (M’<M). 
Global mixtures located between points I and s or s and II 
are metastable or locally stable (d2gM/dx

i
2>0). Therefore, the 

inflection points separate the metastable equilibrium region 
from the definitely unstable region.[3]

Of course, the Gibbs stability criteria can be extended to 
ternary or multicomponent systems, where the gM curve is 
replaced by the gM surface or gM hyper-surface and the com-
mon tangent line by the common tangent plane or hyper-plane, 
respectively. 

The analytical expression for the Gibbs energy in LLE 
calculations is the same for both phases (let it be denoted by 
gL). This is not the case for equilibria involving different ag-
gregation state phases such as vapor-liquid equilibria (VLE), 
where different expressions for the Gibbs energy must be used 
for each phase, yielding two possible Gibbs energy curves: gV 

and gL. Obviously, a common reference state must be used for 
each of the components in the calculations, and for both of the 
phases involved (for example the pure component as liquid at 
the same P and T). VLE exists at a given T and P, whenever 
any initial mixture, such as zi in Figure 2, is thermodynami-
cally unstable and splits into a vapor and liquid phases having 
compositions yi and xi, respectively, with a common tangent 
line to both gV and gL curves and a lower value for the overall 
Gibbs energy of mixing (M’’<M’<M).  

The geometrical perspective of the Gibbs energy minimiza-
tion is not new and there are interesting papers dealing with 
this topic in depth. The paper of Jolls, et al.,[4] for instance, 
presents images of thermodynamic fundamental and state 
functions for pure binary and ternary systems. These authors 
discuss the relationship between the model geometry and 
stability criteria. This geometrical perspective, however, is 
not usually considered in practice when dealing with VLE 
using local composition models for the liquid phases, although 
it clearly illustrates the conditions for stable equilibrium vs. 
other possible unstable situations. The goal of the present 
paper is to show an example of the visualization of the VLE 
from a Gibbs perspective for teaching purposes. 

EDUCATIONAL ASPECTS 
Our objective is to propose an exercise to analyze the 

VLE using the Gibbs common tangent plane criterion using 
Excel and Matlab. In the engineering education literature, a 
number of papers concerning the use of spreadsheets have 
been described.[5, 6] Excel spreadsheets are used mainly due 
to their simplicity and built-in graphics capabilities. Matlab 
software, which has more powerful graphical tools, can be 
used to represent 3-D diagrams that support the graphical 
interpretation of equilibrium since plots can be easily rotated 
and manipulated to facilitate their understanding.  

(a)       (b) 

Figure 1. 
Dimensionless 
Gibbs energy of 
mixing (gM) for 
a binary liquid 
mixture as a 
function of the 
molar fraction 
of component 
i (xi): (a) for a 
homogeneous 
system, and (b) 
for a heteroge­
neous system 
(LL). 

Figure 2. Dimensionless Gibbs energy curves (gV, gL) for a 
binary mixture with a VLE region at constant T and P as 

a function of the molar fraction of component i. 
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Gibbs Energy for the Liquid Phase 

For liquid mixtures the ideal Gibbs energy of mixing (di-
mensionless) is 

g x xid L
i

i
i

, ln ( )= ⋅∑ 5

where the reference state for each component i is the pure 
liquid at the temperature and pressure of the system. 

Many equations have been proposed to model the excess 
Gibbs energy and can be found in the literature. For example, 
the van Laar equation for binary systems: 

g
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where A12 and A21 are the binary interaction parameters of 
the model that must be obtained by equilibrium data cor-
relation. 
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Figure 3. Flowchart for the calculation of the activity 
coefficient model parameters by equilibrium data regres­
sion. The discontinuous line represents the algorithm for 

the bubble point equilibrium calculations. 

This activity is framed in the subject of Principles of 
Separation Processes in Chemical Engineering in a fourth-
year course of a five-year program of chemical engineering. 
This task takes place during the first part of the course and 
consists of: 

a) A lecture of the theoretical fundamentals of VLE, presen-
tation and analysis of T-x,y diagrams and sketch of Gibbs 
stability criterion. 

b) A guided classroom solution of different VLE problems 
with increasing difficulty. Previous presentation of a simple 
non-azeotropic VLE binary system, and consequent solu-
tion of a binary homogenous azeotropic mixture, where 
students work on their own computers using Excel and 
Matlab. 

c) Development of a project in groups of students where an 
analogous analysis of VLE, but also of LLE, must be done 
for a heterogeneous azeotropic binary mixture.     

d) As optional projects, VLE for ternary or more compli-
cated mixtures could also be considered, but the visual-
ization becomes more complicated.  

THEORY 
The equilibrium condition for component i being simultane-

ously present as a liquid and vapor equilibrium phase can be 
written as the isofugacity condition 

f f
i
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where ϕi
v  is the fugacity coefficient for the vapor phase, P is 

the total pressure, yi and xi are the molar fractions of compo-
nent i in the vapor and liquid phases, respectively, p

i
oLis the 

vapor pressure of component i, ϕ
i
oL is the fugacity coefficient 

for the vapor phase at the point of saturation, γi is the activity 
coefficient, defined by the selected model, and vi

c is the molar 
volume of the condensed phase as a function of pressure. The 
exponential correction is the Poynting factor which takes into 
account that the liquid is at a pressure P different from the 
liquid saturation pressure p

i
o.[7]

At moderate pressures, ϕi
v, ϕi

oL , and the Poynting factor 
are near unity, and Eq. (2) can be rewritten as 

P y p x
i i

o
i i

⋅ = ⋅ ⋅γ ( )3

The constant pressure T-x,y diagram can be obtained by 
calculating the bubble temperatures (Tb) of the various liquid 
mixture compositions (xi), and also by calculating the compo-
sition of the equilibrium vapor phase (yi). The calculation is 
to be carried out according to the flowchart in Figure 3.  

On the other hand, the Gibbs energy of mixing (dimension-
less) is the sum of two contributions, the ideal and excess 
Gibbs energies: 

g g gM id E= + ( )4
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Substituting Eq. (5) and Eq. (6) into Eq. (4), and consider-
ing the selected reference state, the expression obtained for 
the Gibbs energy of the liquid phase at the temperature of 
the system T is: 

g T g x x x x
A A x x

A x
L M L( )= = + +

⋅ ⋅ ⋅
⋅

, ln ln
1 1 2 2

12 21 1 2

12 11 21 2
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+ ⋅A x

( )

Gibbs Energy for the Vapor Phase 

The vapor phase is considered ideal and, therefore, the 
following equation is used for the Gibbs energy of mixing 
of the vapor phase: 

g g y y y yM V id V, , ln ln ( )= = +
1 1 2 2

8

To compare Gibbs energy curves for liquid and vapor phases 
both must be obtained from a common reference state. For 
VLE calculations at constant T and P a convenient reference 
state is the pure component as liquid at the same T and P of 
the system. In this case, the Gibbs energy of pure component 
i in the vapor and liquid phases are g

i
o V, ≠ 0 and g

i
o L, = 0, 

respectively. The difference in the Gibbs energy between a 
pure vapor and a pure liquid can be approximated using the 
following equation: 

g g
P

pi
o V

i
o L

i
o

, , ln ( )− = 9

Consequently the following equation is used for the Gibbs 
energy of the vapor phase, referred to the liquid aggregation 
state at the temperature of the system T: 

g T y g y g y y y yV o V o V( )= ⋅ + ⋅ + +
1 1 2 2 1 1 2 2

10, , ln ln ( )

According to Eq. (9), the sign of g
i
o V,  may be positive or 

negative; depending on the ratio between the total pressure 
of the system and the vapor pressure of component i, which, 
in turn, depends on the temperature: 
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i
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i
o

i
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i
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After both the gV and gL isotherm curves have been calcu-
lated and represented, the Gibbs stability or common tangent 
plane test can be easily applied to them to ascertain which 
phases are most stable and what the equilibrium composi-
tions are.

The reference state is defined to be arbitrary and for a system 
at constant T and P can be selected to be the liquid state at 
the temperature of the system for both components in both 
phases. If Gibbs energy surfaces for both p phases are gener-
ated to analyze the equilibrium as a function of temperature 
T, however, a reference state must be used in the calculations 
at a unique temperature T0.  

g T g T
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For non-isothermal VLE, however, the Gibbs energy for 
both p phases (V and L) must be calculated as a function of 
temperature T using a reference state (i.e., the pure liquid) 
at a unique reference temperature T0 g

p(T0). In this case, the 
Gibbs energy for both vapor and liquid phases includes an 
entropic term from T0 to T. 

For isobaric conditions, Eq. (11) becomes:  
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where CpL is the heat capacity of the liquid. In the above 
expression gp(T) is calculated with Eq. (7) for p=L or with 
Eq. (10) for p=V. 

PROBLEM STATEMENT 
For the binary homogeneous azeotropic system ethanol (1) + 
benzene (2) at P=1 atm: 

a) Calculate the parameters for the selected thermodynamic 
model regressing T-x,y experimental data.  

b) Build the temperature vs. composition (T-x,y) diagram 
with an Excel spreadsheet. 

c) Represent graphically in a 3-D diagram (for example, us-
ing Matlab) the g (vapor and liquid) vs. composition and 
temperature surfaces for this system. 

d) For a more precise analysis of the above 3-D figure, plot 
g curves in Excel for the vapor and liquid mixtures of the 
following isotherms: 90.0 ˚C, 79.0˚ C, 72.0˚ C, temperature 
of the calculated azeotrope, and 60.0 ˚C. The number of 
phases present and their compositions must be deduced 
using the Gibbs common tangent test. 

e) Show that the results obtained using the Gibbs stabil-
ity criteria are consistent with those obtained using the 
T-x,y diagram. 

The Van Laar equation can be used to represent the excess 
Gibbs energy (gE) and the activity coefficient (γi) of the liquid 
mixtures. The vapor phase can be considered as ideal. 

SOLUTION 
The Aij parameters for the Van Laar model [Eq. (6)] 

calculated for the ethanol (1) + benzene (2) binary system 
have been calculated by fitting VLE data[8-10] according to 
the flow diagram shown in Figure 3. Figure 4 (next page) 
shows an example of the possible spreadsheet distribution 
to obtain the model parameter values and the T-x,y diagram 
by successive bubble temperature calculations with Solver 
function in Excel using various liquid mixture compositions 
(xi) and calculating the equilibrium vapor phase composi-
tion. The parameter values obtained are A12=1.965 and 
A21=1.335 (dimensionless). As can be seen in Figure 4, a 
homogeneous azeotropic point occurs for this system at a 
minimum boiling temperature.  
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Figure 5 shows the 3-D graph used to represent the Gibbs 
energy surfaces of the liquid (gL) and vapor phases (gV) as a 
function of temperature and composition. The selected refer-
ence state for each one of the components is the liquid state at 
the azeotrope boiling point (T0). The Gibbs energy surfaces 
for L and V have been calculated using Eq. (12) where gP(T) 
when p=liquid is calculated with Eq. (7) and when p=vapor  
is calculated with Eq. (10). The values for g

i
o V,  are calculated 

with Eq. (9), where the vapor pressures for ethanol and ben-
zene have been obtained using the Antoine equation, with the 
constants given in Table 1.[11] The entropy changes of Eq. (12) 
are calculated with CpL(T) given in Table 2.[12]

As can be seen in Figure 5, the g surfaces cross each other 
so that the vapor phase is the stable phase at high temperatures 

(gV lower than gL) and the liquid phase the stable aggregation 
state at lower temperatures (gL lower than gV). For a more detailed 
analysis of this figure some sectional planes have been selected, 
corresponding to the following isotherms: 90 ˚C, 79 ˚C, 72 ˚C, 
68.01 ˚C (calculated azeotrope), and 60 ˚C.  

Figure 6 shows the Gibbs energy curves plotted for the 
vapor and the homogeneous liquid mixtures at each one of 
these temperatures. After students have completed these 
representations, an analysis of Figure 6 is done, taking into 
account the Gibbs stability criteria: 

• 	 For T=90 ˚C, P=1atm < po
2  < po

1 ; therefore, taking into 
account Eq. (9), gi

o V,  < g
i
o L,  for i=1, 2, and the entire gV vs. 

composition curve is lower than gL [Figure 6(a)], showing 
that the vapor phase is the stable aggregation state over 
the entire composition space at this temperature. 

• 	 For T=79 ˚C, po
2  < P=1atm < po

1; therefore, for the ethanol 
component, go V

1
,  < go L

1
, , but for benzene, go V

2
,  > go L

2
, . The gV 

and gL curves have two points sharing a common tangent 
line, corresponding to the VL equilibrium y1= 0.0355 
and x1=0.00497. At molar fractions below z1=0.00497 
the liquid is the stable aggregation state, and at values 
higher than z1=0.0355 the vapor is the stable phase 
[Figure 6(b)]. Any global mixture between those values 
will split in the VLE. 

• 	 For T=72 ̊ C, po
2 < po

1  < P=1atm; therefore, go V
2

,  > go L
2

,   
for both ethanol and benzene components. Two regions 
of the gV and gL curves each contain one point of VL 
equilibrium: [y1= 0.269, x1= 0.0708] and [y1’= 0.681, 
x1’= 0.861] having common tangent lines that connect 

Figure 4 (right). 
Spreadsheet ex­

ample of the Van 
Laar parameters 

calculation re­
gressing T-x,y ex­

perimental data 
for the ethanol 

(1) + benzene (2) 
binary system at 

P=760 mmHg. 

Figure 5 (below). 
Gibbs energy 

surfaces for vapor 
gV (ideal) and 
liquid gL (Van 

Laar) mixtures 
as a function of 
the temperature 

and composition 
for the ethanol 

(1) + benzene (2) 
binary system at 

P=1 atm. 
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the conjugated y-x equilibrium 
compositions, as can be seen in 
Figure 6(c). The vapor is the 
stable aggregation state at in-
termediate concentrations and 
the liquid is the stable phase 
near each pure component.  

• 	 The gV curve rises as the tem-
perature decreases until the 
azeotropic temperature (68.01 
˚C) is reached. Here, both gV 
and gL curves are tangent in 
one point [Figure 6(d)]. This 
point corresponds to the homo-
geneous azeotrope, for which 
the vapor and liquid phases 
in equilibrium have identical 
compositions (y1= x1=0.441). 

• 	 For T=60 ˚C, the gL curve 
lies below the gV curve over 
the entire composition space, 
demonstrating that a homoge-
neous liquid phase is the most 
stable aggregation state for any 
global mixture composition 
[Figure 6(e)]. 

It must be highlighted that all of 
the above, deduced from the Gibbs 
energy curves, is obviously consis-
tent with the T-x,y diagram shown 
in Figure 4. Treatment of the VLE 
calculation using the Gibbs common 
tangent plane criteria provides stu-
dents with a deeper understanding 
of the problem, however, because 
the insight into the reasons for the 
V or L phase stability or the VLE 
splitting is much more evident than 
with using the isofugacity condition. Although solving the 
isofugacity condition together with the mass balance equa-
tions (K-value method) constitutes the most popular method 
of calculation, our experience has shown that the Gibbsian 
geometrical framework is a very useful tool for educational 
purposes. Students state that the geometric analysis of chemi-
cal equilibrium, with an available and easy to use program 
such as Excel, permits a clear understanding of the VLE split-
ting in terms of Gibbs energy minimization. 

EXTENSION TO HETEROGENEOUS 
AZEOTROPIC MIXTURES 

An extension of this exercise is proposed where 
the VLE is studied for a heterogeneous instead of a 
homogeneous azeotropic system. The binary system 
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Figure 6. Analysis of the Gibbs energy curves for vapor  (gV) and liquid (gL) mixtures 
at different temperatures for the ethanol (1) + benzene (2) binary system at P=1 atm 

showing the common tangent equilibrium condition. 

Table 1
Antoine Equation Constants for Ethanol and Benzene[10]

log(po)=A-B/(T+C) (po in bar, T in ˚C) 

A B C 

Ethanol 5.33675 1648.220 230.918 

Benzene 3.98523 1184.240 217.572 

Table 2
Heat Capacity Constants of Liquid for Ethanol and Benzene[12]

CpL=A+BT+CT2+DT3 (J/mol/K, T in K) 

A B C D 

Ethanol 59.342 0.36358 -0.0012164 1.803·10-6 

Benzene -31.662 1.3043 -0.0036078 3.8243·10-6 
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must be specified to calculate the LL equilibrium compo-
sitions. Figure 9(a) shows the isotherm corresponding to 
T=91 ˚C where two points of the gL curve (x1

L1= 0.623, 
x1

L2= 0.978) have a common tangent line, demonstrating 
that a liquid phase splitting is the most stable situation 
for any global mixture composition z comprised between 
them, x1

L1<z1< x1
L2. 

• 	 For temperatures above the azeotrope, the gV curve 
intersects the gL curve twice giving two regions of 
VL equilibrium since there are two common tangent 
lines. When the pressure is fixed, a temperature must 
be specified to calculate the corresponding equilibrium 
compositions in the two VL regions. Figure 9(b) shows 
the isotherm T=94 ˚C where there are two common 
tangents to the gV and gL curves, each one defining a 
VL equilibrium: [y1= 0.710, x1= 0.435] and [y1’= 0.795, 
x1’= 0.986]. The vapor is the stable aggregation state at 
intermediate concentrations and the liquid is the stable 
phase near each pure component.  

• 	 It is obvious that between the above situations, there 
must be a temperature, which is the azeotrope tempera-
ture, where the gV and gL curves have a unique com-
mon tangent line. According to the Phase Rule, for n=2 
components and p=3 phases, there is only one degree of 
freedom: f=n+2-p=1. Consequently, when the pressure is 
fixed, only the azeotrope temperature describes the VLL 
equilibrium. Figure 9(c) shows the T=92.7 ̊ C isothermal 
section where one point on the gV curve (y1=0.756) and 
two points on the gL curve (x1

L1=0.622, x1
L2= 0.978) 

Figure 8. Gibbs energy surfaces for vapor (gV) and liquid 
(gL) mixtures as a function of the temperature and com­

position for the water (1) + n-butanol (2) binary system at 
P=1 atm. The isotherm curves (T=92.7 ˚C) of the azeo­

trope have also been included on the surfaces.  

P= 1 atm 

70

75

80

85

90

95

100

105

110

115

120

0.0 0.2 0.4 0.6 0.8 1.0

x1, y1

T 
(º

C
)

92.7ºC
Azeotrope VLL

V+L

L+L

L

V
L+V

Figure 7. Temperature versus liquid (x) and vapor (y) mo­
lar fractions for the binary system water (1) + n-butanol 
(2) at P=1atm, including the azeotropic isotherm line. 

water-n-butanol at P = 1 atm is an example of a heterogeneous 
azeotrope. The vapor phase can be considered ideal as in the 
previous example. The NRTL equation can be used to repre-
sent the excess Gibbs energy (gE) and the activity coefficient 
(γi) of the liquid mixtures. The equation parameters can be 
obtained by fitting the VLE and VLLE data at 1 atm[10,13,14] 
following the same calculation algorithm shown in the pre-
vious section. The values obtained for these binary NRTL 
interaction parameters are: A12=1256.9 K, A21=374.86 K, 
and α12= 0.476. 

Figure 7 shows the T-x,y diagram of the system under con-
sideration. Figure 8 shows the 3-D graph used to represent 
the Gibbs energy surfaces for the vapor and liquid phases, as 
functions of the temperature and composition. The selected 
reference state for each one of the components is the liquid 
state at the boiling point of the azeotrope (T0). The g surfaces 
cross each other, as in the previous example shown in Figure 
5, but the existence of a heterogeneous azeotrope implies 
that one vapor and two different liquid phases must coexist 
in equilibrium at a unique temperature. The isotherm of the 
azeotrope (T=92.7 ˚C) has been included in Figure 8. To 
provide a better understanding of this 3-D graph, some sec-
tional planes corresponding to the following isotherms—91 
˚C, 94 ˚C, and 92.7 ˚C (calculated azeotrope)—have been 
shown in Figure 9: 

• 	 For all temperatures below the azeotrope, gL is lower 
than gV over the entire composition space. According to 
the Phase Rule constraint, for n=2 components and p=2 
phases, there are two degrees of freedom: f=n+2-p=2. 
Consequently, when the pressure is fixed, a temperature 
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have a common tangent line. The existence of this VLL 
equilibrium is consistent with the T-x,y representation 
of this system (Figure 7).  

With this example, the students demonstrate the reason for 
the VLL splitting in terms of stability or the minimum Gibbs 
energy of the system.  

CONCLUSIONS 
Dealing with the VLE calculation in terms of the Gibbs 

common tangent criteria provides students with a deeper under-
standing of the problem than using the isofugacity condition.

An exercise of application of the Gibbs common tangent 
criteria to VLE has been proposed for a homogeneous azeo-
tropic binary system at a constant pressure using simple tools 
such as Excel spreadsheets and Matlab graphics. The Gibbs 
energy surface and curves at different temperatures have been 
analyzed to compare distinct situations that are consistent with 

the T-x,y diagrams. This graphical analysis proves that the 
vapor is the stable phase at high temperatures, the liquid phase 
is the stable aggregation state for lower temperatures, and that 
the azeotrope (VLE) corresponds to a temperature where both 
liquid and vapor Gibbs energy curves are tangent in one point. 
Students use this previous spreadsheet to develop an extension 
to consider the VLLE of a heterogeneous azeotropic system, 
which is tackled as a project in groups. Their reports of results 
show that the reasons for the V or L phase stability or the VLE 
and VLLE splitting is much more evident with the Gibbsian 
framework than using the isofugacity condition. 

NOMENCLATURE 
	 f

i
F  	 Fugacity of component i in phase F 

	 P 	 Pressure 
	 p 	 phase 
	 f 	 Degrees of freedom (Phase Rule) 

Figure 9. Analysis of the Gibbs energy curves for vapor (gV) and liquid (gL) mixtures at different temperatures for the
water (1) + n-butanol (2) binary system at P=1 atm, showing the common tangent equilibrium condition.

 (a) T=91ºC (b) T=94ºC 

(c) T=92.7ºC (calculated azeotrope) 
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	 Tb 	 Boiling temperature 
	 n 	 Number of components 

	 ϕi
v

 	 Fugacity coefficient for the vapor phase 
	 ϕi

oL  	 Fugacity coefficient for the liquid phase at p
i
o 

	 v
i
c  	 Molar volume of the condensed phase as a function of 

pressure 
	 p

i
o  	 Vapor pressure of component i 

	 yi  	Molar fraction of component i in the vapor phase 
	 xi  	Molar fraction of component i in the liquid phase 
	 γi 	 Activity coefficient of component i in the liquid phase 
	 Aij 	 Binary interaction parameter between species i and j (van 

Laar or NRTL equation)  
	 αij 	 Non-randomness factor (NRTL equation) 
	 gid  	Ideal Gibbs energy of mixing (dimensionless) 
	 gE  	Excess Gibbs energy (dimensionless) 
	 gM  	Gibbs energy of mixing (dimensionless) 
	 g  	Gibbs energy (dimensionless) 
	gV, gL	 Gibbs energy (dimensionless) of the vapor and liquid 

phase, respectively. 
g

i
o V,  g

i
o L, Gibbs energy of pure component i (dimensionless) in 
the vapor and liquid phase, respectively. 

Superscripts 
	 id 	 Ideal 
	 E 	 Excess  
	 M 	 Mixture 
	L, L1,L2 	Liquid phase, Liquid phase 1, Liquid phase 2  
	 V 	 Vapor phase 
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