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The conservation of energy dictated by the First Law of 
Thermodynamics is an intuitively appealing concept. 
Simply put, energy is neither created nor destroyed, 

but is just transformed from one form to another—kinetic 
energy transformed into potential energy, electrostatic energy 
transformed into gravitational energy, etc. The challenge of 
applying the First Law of Thermodynamics then reduces to 
an accountant’s job, maintaining a balance sheet for energy 
in its different forms. Tracking down apparent discrepancies 
in the First Law can serve as a tool for scientific discovery, 
having played a vital role in the development of relativity, 
quantum mechanics, and particle physics. Despite the power 
of the First Law, it does not tell us how systems change with 
time when they are freely allowed to evolve (e.g., a locking 
pin is removed from a piston or an ice cube is placed in a hot 
cup of coffee) and what the final state is, despite our intuitions 
(the piston moves to equate pressures and the ice cube melts). 
Simply put, the First Law of Thermodynamics is insufficient 
to determine equilibrium. 

Thermodynamic equilibrium is determined by the intro-
duction of the concept of entropy, which unlike the energy is 
not a conserved property but obeys a maximization principle 
encapsulated by the Second Law of Thermodynamics. Ac-
cording to this law, the entropy change of an isolated system 
is greater than or equal to zero for any spontaneous process, 
and the entropy is maximized at thermodynamic equilibrium. 
The Second Law of Thermodynamics identifies a time direc-
tion by equating time spontaneously moving forward as the 
direction in which entropy increases. In difference to other 
natural laws which are time reversible, like Newton’s laws of 
motion, the arrow of time is unique to the Second Law of Ther-
modynamics. Indeed, it has been asserted that all phenomena 

that behave differently in one time direction can ultimately be 
linked to the Second Law of Thermodynamics.[2] 

It is usually at this point in an introductory thermodynamics 
class that reversible and irreversible processes are introduced, 
and the differential change in entropy (dS) is equated with 
the reversible heat that crosses a closed system’s boundaries 
(dQrev) divided by the absolute temperature (T), 

dS
dQ

T
rev= , ( )1

following Clausius’ historical development. While this clas-
sical statement of the entropy change is true, the connection 
between an idealized reversible process that takes an infinite 
amount of time to complete and real observable changes 
in properties that occur over finite time scales is somewhat 
abstract. To help solidify this concept, it is helpful to provide 
physically motivated examples of the entropy in action and 
the approach to equilibrium. 

From his studies of gas dynamics and equilibrium, Ludwig 
Boltzmann proposed an alternate entropy formulation that 
draws connections between macroscopic observables and the 
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“Why don’t you call it entropy? ... no one understands entropy very well, 
so in any discussion you will be in a position of advantage.”

– John von Neumann’s name suggestion to Claude Shannon 
for missing information in information theory.[1]
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molecular nature of matter. Boltzmann’s entropy formula,
S k= ln , ( )Ω 2  

is famously engraved above his bust at his grave marker in 
Vienna.[3] The macroscopic entropy in this expression is iden-
tified as proportional to the logarithm of the number of avail-
able molecular states of a system, Ω, where the constant of 
proportionality k = R/NA is Boltzmann’s constant, and is equal 
to the ratio of the ideal gas constant to Avagodro’s number. 
Interestingly from a historical point of view, Planck was the 
first to articulate Eq. (2) in resolving the black body radiation 
problem, building upon Boltzmann’s earlier work on the con-
nections between entropy and probability.[4, 5] Following Eq. 
(1), Boltzmann’s entropy formula directly links the addition 
of heat to an increase in the number of accessible molecular 
states. Boltzmann’s entropy formula underlies the popular 
conceptualization of entropy as disorder or randomness. A 
literal interpretation of entropy as disorder can be problematic, 
however, due to gut feelings of what constitutes disorder,[6, 7] 
and alternate interpretations that equate entropy with energy 
dispersal.[8] Adding to the confusion, a first principles deriva-
tion of Eq. (2) is unavailable and its justification is ultimately 
empirical, resting on its predictive power. 

A better understanding of the Second Law of Thermo-
dynamics necessarily requires students to work through 
examples and thought experiments. To familiarize students 
with the connections between their personal expectations for 
equilibrium and maximization of the entropy with increas-
ing time, I describe a series of games that can be played out 
in class or on a computer. The student assumes the role of 
a Bingo-like caller transferring numbered marbles between 
urns based on the outcomes of spins of a lottery wheel. 
The relationships between entropy, time (i.e., spins of the 
wheel), and increases in the number of states are shown to 
be applicable to engineering concepts like diffusion and the 
derivation of equations-of-state. By establishing entropy 
maximization in terms of familiar concepts, I hope to form a 
stronger foundation for explaining the connection between the 
Second Law of Thermodynamics and equilibrium, and show 
how this principle pervades problems outside the traditional 
thermodynamics curriculum. 

Ehrenfest’s Lottery 
Paul and Tatiana Ehrenfest proposed a simple thought 

experiment to explore the connections between probability, 
entropy, and time.[9] The experiment is played out as a lottery 
obeying the following rules (Figure 1): You are given two urns 
and N sequentially numbered marbles. Initially, the first urn 
is filled with n1 marbles, while the second urn is filled with the 
remaining n2 marbles. At regular time intervals, Δt, a lottery 
wheel is spun, randomly producing a number between 1 and 
N. The randomly selected marble is then located, taken from 
the urn it is in, and placed into the other urn. The wheel is 

then spun again and the process is repeated ad infinitum. On 
the molecular level the marbles can be thought of as repre-
senting individual gas molecules, while the urns correspond 
to discrete volume units. While the correspondence between 
the lottery’s random-transfer dynamics and molecular motions 
may appear tenuous, this model has been shown to provide 
an accurate description of gas mixing.[10] 

After describing the lottery, the class may already have a 
number of intuitive expectations about the evolution of urn 
occupancy trends, including: 

1) 	After playing the game for a sufficiently long time, the 
number of marbles in both urns will average N/2. 

2) 	The relative time sequence of different occupational states 
can be, roughly, worked out given the number of marbles 
in each urn. For example, say you are told N = n1 = 100 
marbles, and that at one point in the spin sequence there 
are n1 = 47 and n2 = 53 marbles distributed between the 
urns, while at another point there are n1 = 84 and n2 = 16 
marbles in the two urns. It is most reasonable to expect 
then that the second instance occurred before the first in 
the sequence. 

The first expectation reflects the limiting probability for a 
fair game so that each marble has a 50/50 chance of being in 
either urn. The second expectation, while perfectly reason-
able, is not as easy to justify based only on gut feelings. In 
the long time limit, the probability distribution of urn occu-
pational probabilities approaches a binomial distribution. For 
large N, the binomial distribution is sharply peaked about the 
50/50 occupational probability, but it does not rule out the 
observation of a heavily skewed distribution such as 84 and 
16 marbles. The probability of observing this configuration for 
a well-mixed system is approximately 10-12, small but finite. 
These skewed distributions become exceedingly rare with 
increasing N, so that in practice they can be neglected. We note 
that this omission provides a potential entry for Maxwell’s 
demon to wreak havoc, getting usable work by waiting for 
unlikely events. While outside the scope of this article, it may 
be useful to segue into a discussion of Maxwell’s demon after 
introducing Ehrenfest’s lottery.[11] 

The relationship between Boltzmann’s entropy and the urn 
occupational states can be evaluated by counting the number 
of ways of randomly choosing n1 marbles to be placed in urn 1 
and n2 marbles in urn 2 independent of the specific numbering 
of the individual marbles. To calculate the number of ways 
of divvying up the marbles between the two urns we draw a 
hypothetical random sequence of all the marbles, and then 
place the first n1 marbles in urn 1 and the remaining n2 marbles 
in urn 2. The number of ways of arranging all the marbles 
in a random sequence is N! following standard combinato-
rial arguments. The order in which the first n1 marbles are 
placed in urn 1, however, does not change the final state of 
the system, which is only specified by the number of marbles 
in each urn but not their identities. The number of ways of 



Vol. 44, No. 3, Summer 2010 231

choosing n1 marbles to be placed in 
urn 1 is therefore over counted by 
the number of ways of randomly 
selecting this subset of marbles, n1!. 
A similar over counting holds for 
the marbles designated for urn 2. 
The number of ways of randomly 
dividing n1 and n2 marbles between 
the two urns is then 

Ω=
N

n n
!

! !
. ( )

1 2

3

A perceptive student may notice 
that Eq. (3) implies that each marble 
is indistinguishable from one an-
other, but in fact we have indicated 
that the marbles are numbered from 
1 to N. When the marbles are dis-
tinguishable the number of ways of 
putting specified marbles in each 
urn is exactly one. For example for 
a 4-marble system we could specify 
that marbles 1 and 4 are in the first 
urn and marbles 2 and 3 are in the 
second, and there is only one way 
to achieve this distribution. The 
numbering scheme, however, is 
only a matter of convenience for 
the purpose of choosing a marble 
to move, and we are free after each 
spin to renumber the marbles for 

the next spin without changing the probabilistic distribution of marbles in the lottery. 
So, returning to our 4-marble example we could renumber the marbles 1 and 2 in the 
first urn and 3 and 4 in the second without changing the equilibrium outcome of the 
game. From the game’s point of view, only the number of ways of distributing the n1 
and n2 marbles matters, not the numbered identities of the individual marbles. The 
same can be said for mixing identical molecules in a volume, where only separations 
of chemical species, rather than specified individual molecules, can be achieved by 
manipulating the vastly smaller number of macroscopic thermodynamic state variables 
like temperature and pressure.[12] 

The entropy of a configuration of indistinguishable marbles can be evaluated by 
substituting Eq. (3) into Boltzmann’s entropy formula, yielding 

S k
N

n N
k n

n

N
n

n

N
=


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
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
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In this expression the factorial terms were simplified by applying Stirling’s approxi-

mation, i.e., ln X X X X! ln≈ − .[13] When all the marbles reside entirely in either urn 1 
or 2 (n1 = N or 0) there is only one way to generate this configuration and the entropy 
is zero. When the marbles are evenly distributed between the urns (n1 = n2 = N/2) the 
entropy is a maximum and equal to that Smax =kNln2. Between the two extremes, the 
entropy is a monotonically increasing function. 

The expectation that the entropy of the system increases on average with each spin of 
the lottery wheel can be verified by considering the marble transfer probabilities. The 
average change in the entropy as the result of a lottery spin is determined by summing 
over all possible transfer moves the probability of choosing to transfer a marble from 
one urn to the other (i.e., p(urn1→ urn 2) or p(urn 2→ urn 1) multiplied by the change 
in the entropy associated with each move (i.e., ∆ →( ) →( )S urn urn or urn urn1 2 2 1 )

∆ = →( )∆ →( )+ →( )∆S p urn urn S urn urn p urn urn S1 2 1 2 2 1 uurn urn2 1 5→( ). ( )

The angled brackets, … , denote an average. The probability of choosing to move 
a marble from an urn is equal to the number of marbles in that urn divided 
by the total number of marbles, e.g., p(urn 1→ urn 2)=n1/N. Expanding Eq. 
(4) in terms of n1 and substituting into Eq. (5), an accurate expression for 
the average change in the entropy between successive spins of the wheel 
can be derived, 

∆ =
− 








≥S k

n n

N

n

n
1 2 1

2

0 6ln . ( )

This average entropy change is positive when the occupation numbers 
differ and approaches zero as the occupations of each urn approach one 
another. As shown below, however, this expression does not preclude fleet-
ing, instantaneous, entropy decreases due to random fluctuations in the urn 
occupational state about the equilibrium average. 

Starting with n1 = N = 100 marbles in urn 1, Figure 2 (next page) shows 
the outcomes for two independent, random lotteries simulated using MAT-
LAB®. As the game plays out, the number of marbles in urn 1 decreases for 
the first ~150 spins of the lottery wheel, and then fluctuates about the 50/50 
occupational state (Figure 2a). The entropy concurrently increases as the 
marbles become more evenly distributed between the urns (Figure 2b). The 
occupational fluctuations about the 50/50 marble distribution are a result of 
the stochastic nature of Ehrenfest’s lottery. The relative magnitude of these 
occupational fluctuations decreases as N-1/2 in accordance with the central 
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Figure 1. Schematic illustration of the two-urn 
lottery with 10 marbles.
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limit theorem, so that on a per-marble basis excursions from 
the average diminish as the number of marbles increases 
(Figure 3). For a macroscopic number of molecules/marbles 
these fluctuations would appear insignificant, although they 
are manifested experimentally in measurable quantities like 
the heat capacity and isothermal compressibility.[14] While the 
occupation fluctuations are above and below the equilibrium 
50/50 state, these deviations are manifested as spontaneous 
decreases in the entropy below the maximum value (Figure 
2b). These downward fluctuations away from the maximal 
entropy point to the statistical nature of the Second Law of 
Thermodynamics. In particular, the Second Law of Thermo-
dynamics is more appropriately thought of as a statement 
about the equilibrium distribution rather than a property of a 
single snapshot of molecular positions.[15] 

The average urn occupancy can be solved analytically from 
a master equation for the discrete lottery spin dynamics. Given 
an average of n s

1( )  marbles are in urn 1 for spin s, the prob-
ability a marble in urn 1 is chosen to be moved into urn 2 is 
the number of marbles in urn 1 divided by the total number 
of marbles. Similarly, given n s

2 ( )  marbles are in urn 2, the 
probability a marble in urn 2 is chosen to be moved into urn 
1 is n s N

2 ( ) . The change in the average occupancy of urn 
1 between spin s and s+1 is the probability a marble is added 
to urn 1 less the probability one is taken away, 

n s n s
n s

N

n s

N

n s

N1 1

2 1 1
1 1 2 7+( ) − ( ) =

( )
−

( )
= −

( )
.( )

The long time equilibrium state for which the average 
occupancy does not change between successive spins, 

n s n s
1 1

1 0+( ) − ( ) = , is

n s
N

1 2
8( ) = , ( )

as expected for a fair lottery. Conservation of the number 
of marbles dictates the average occupation of urn 2. For an 
initial occupation of 0≤n1(0)≤N in urn 1, the solution of 
Eq. (7) yields 
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N
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It is straightforward to verify that Eq. (9) satisfies Eq. (7) 
by back substitution. The occupation dynamics and entropy 
evolution described by Eq. (9) are compared to the simulated 
example discussed in Figure 2. The agreement between the 
random lotteries and master equation results is excellent, al-
though the fluctuations are suppressed by the master equation 
since it only describes the mean behavior. 

Application to Multiple Urns – 
A Model for Diffusion 

Ehrenfest’s lottery can be extended to an arbitrary number 
of urns numbered from 1 to imax. In difference to the two-
urn lottery, the marbles are moved following the spins of 
two lottery wheels. The first spin chooses the marble to be 
moved as in the two-urn game. The second wheel chooses 
whether the marble is moved to the urn above or below the 
starting urn in the sequence, i.e., from urn i to either urn i+1 
or i–1. When a marble is chosen to move to an urn outside 
the sequence, i.e., from urn 1 to urn 0 or from urn imax to 
urn imax+1, the marble is returned to its starting urn. 

The combinatorial counting of states described by Eq. 
(3) can be extended by replacing the denominator with the 
product of factorials of the occupancy of each urn. The 
entropy in this case is 

S k
N

n

k n
n

N
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where Stirling’s approximation has again been used to sim-
plify the factorials. It is worthwhile to consider the limits 
of Eq. (10) to assure ourselves the entropy follows intuitive 
expectations for the marble distribution as the lottery is 
played out. When all the marbles sit in urn j, substituting 
nj = N and ni j≠ = 0  into Eq. (10) there is only one way to 
achieve this distribution and the entropy is zero. In the other 
extreme, the entropy is maximized when the occupancies 

Figure 2

Figure 2. Outcomes of two random simulations of the two-urn 
lottery with 100 marbles and the master equation description of 
the mean behavior. Plots a and b show the occupation of urn 1 

and the entropy, respectively.  
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of each urn are the same and equal to N/imax.
[16] The 

entropy maximum in this case is Smax =kNlnimax, which 
is a generalization of the entropy maximum obtained 
for the two-urn lottery where imax = 2. 

While a derivation of the mean change in the entropy, 
∆S , following each spin is more involved for the 

multi-urn lottery, each spin of the lottery wheel results 
in an exchange between only two urns. The mean 
entropy change is then expected to follow an equation 
comparable to Eq. (6). The entropy of the multi-urn lot-
tery should therefore increase as the game is played out 
following the same logic as for the two-urn lottery. 

Figure 4 shows the outcome of a multi-urn game with 
imax = 10 urns and N = 100 marbles all initially placed in 
the first urn. The occupancy of the first urn decreases as 
the lottery is played out, and the marbles disperse among 
the remaining urns (Figure 4a). After approximately 
10,000 spins, the distribution of marbles is essentially 
uniform and equilibrium is attained within the statistical 
fluctuations. As in the two-urn game, the relative fluc-
tuations about the occupation averages decrease as the 
number of marbles in the game increases. The entropy 
of the lottery increases as the game is played, and ap-
pears to asymptotically approach the equilibrium value 
of Smax/kN = ln10 = 2.3 (Figure 4c). 

As in the two-urn game, statistical fluctuations about 
the equilibrium occupational state where all urns have 
equal numbers of marbles results in downward fluctua-

tions in the entropy. Indeed these fluctuations appear more prominent 
in the 10-urn lottery than in the two-urn lottery. For a fixed number 
of marbles (e.g., N = 100), the probability of observing the marbles 
to be evenly distributed between all the urns is lower for the multi-
urn case than compared to the two-urn lottery, resulting in entropies 
below the maximum when each urn has equal numbers of marbles. 
Moreover, for a fixed number of marbles fluctuations about the mean 
occupational state have a larger relative effect on the fractional oc-
cupations used to calculate the entropy [Eq. (10)] as the number of 
urns increases. These spurious deviations from the monotonic increase 
in the entropy dictated by the Second Law diminish as the number of 
marbles increases, in agreement with the two-urn lottery. 

A discrete master equation for the mean multi-urn occupation dynam-
ics can be developed analogous to the two-urn equation [Eq. (7)]. In 
the present case, the change in the number of marbles in urn i as the 
result of a lottery spin is equal to the probability a marble from either 
urn i-1 or i+1 is chosen to be added to n s n s N

i i+ −( ) + ( )
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When a marble is chosen to move to an urn outside the sequence, 
the marble return boundary condition applied to urns i = 1 and imax 
reduces Eq. (11) to 

n s n s
n s

Ni or i i or i

or i

max max
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Figure 3 (above). Relative fluctuation, s / N, in the 
occupation number of urn 1 in the two-urn lottery as a 
function of the total number of marbles. Figure 4 (right). 
Results for a 10-urn lottery with all 100 marbles initially 
placed in the first urn. Occupational distributions after s spins for a random lottery and by numerical solution of the 
master equation description are plotted in a and b, respectively. The calculated entropies are plotted in c.  
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If the urns are considered as being evenly spaced apart 
from one another by Δx, this lottery can be thought of as a 
model for diffusion with no flux boundary conditions. Com-
paring Eq. (11) with Fick’s Second Law in one dimension, 
∂ ∂ = ∂ ∂n t D n x2 2, the change in the average occupation 
of urn i after the spin on the left-hand sign of the equals sign 
corresponds to a dimensionless time derivative, while the 
difference in mean urn occupations between neighboring urns 
on the right-hand side corresponds to a dimensionless spatial 
second derivative. The effective diffusion coefficient is 

D
x

N t
=
∆
∆

2

2
13. ( )

It should be noted that the diffusion coefficient decreases as 
the number of marbles increases since the marbles are moved 
only one at a time, while molecules truly move simultane-
ously. Equilibrium is achieved for Eqs. (11) and (12) when the 
mean occupation of all the urns is the same, at which point the 
entropy [Eq. (10)] is maximized. This lottery can be readily 
generalized to multi-dimensional diffusion depending on the 
spatial arrangement of urns. The occupational distribution 
evolution predicted by Eqs. (11) and (12) and correspond-
ing entropies are shown in Figure 4. The agreement with the 
random lottery is excellent. 

A Technical Issue Regarding the 
Convergence of the Two-Urn Lottery 

It was recently pointed out that Ehrenfest’s two-urn lottery 
technically does not converge to the binomial distribution in 
the limit of an infinite number of spins, but rather oscillates 
between two distributions whose average is the binomial 
distribution.[17] Perhaps the simplest demonstration of this 
non-convergence is if we consider a two-urn lottery with a 
single marble placed in urn 1. After the first spin the marble 

will be moved to urn 2, and subsequently relocated to urn 1 
after the second spin. As the lottery progresses, the marble 
will oscillate back an forth between the urns, occupying urn 
1 after even numbers of spins and urn 2 after odd numbers 
of spins. After an even number of spins then, the marble will 
occupy urn 1 with a probability of one and urn 2 with a prob-
ability of zero. Similarly, after an odd number of spins the 
marble will occupy urns 1 and 2 with probabilities of zero and 
one, respectively. The occupational probability distribution 
then has not converged to a single distribution, but vacillates 
between two distinct distributions. If the even and odd spin 
probability distributions are averaged, however, we obtain 
a 50/50 probability distribution as dictated by the binomial 
distribution for a single marble. 

The nonconvergence of the two-urn probability distribution 
can be alleviated by breaking the even/odd symmetry by intro-
ducing spin outcomes where no marbles are moved, thereby 
opening up the possibility of the marble in the example above 
of being found in urn 1 (2) after an odd (even) number of 
spins. The no-flux boundary condition for the multi-urn lottery 
breaks the even/odd symmetry of the two-urn lottery, allow-
ing the occupational probability distribution to converge. The 
two-urn lottery could converge to a single distribution, rather 
than an average of even and odd distributions, by enforcing 
the no-flux boundary condition of the multi-urn lottery after 
performing a second move direction determining spin. In 
practice, however, the nonconvergence of the two-urn lot-
tery does not have any practical consequences on the results 
presented in Figures 2 and 3, since they track the evolution 
of states of individual spin sequences.[17]  

Relationship to the Ideal Gas Law 
The long-time equilibrium of the multi-urn lottery provides 

an inroad for deriving the ideal gas law as an outcome of 
entropy maximization. From standard thermodynamic rela-
tionships, the equation of state follows from the derivative 
of the equilibrium entropy with respect to volume at constant 
internal energy and number of marbles (molecules), i.e., 
P T S V

U N
= ∂ ∂( )max ,

. As pointed out above, the equilibrium 
entropy of the multi-urn lottery is Smax =kNlnimax. Based on the 
lottery rules, the marbles do not interact and an infinite number 
of marbles could potentially be placed in an urn, making the 
energy effectively constant. If each urn has the same volume, 
vurn, the total volume of the system is given by the product of 
the number of urns and their volumes V=i maxvurn. To this point I 
have not discussed the temperature, T, within the context of the 
lottery. Since the temperature is directly related to the average 
molecular velocity, Δx/NΔt, we can surmise the temperature 
is inversely related to the time between spins. 

Based on these considerations, the pressure is given by the 
increase in the equilibrium entropy associated with adding 
another urn (volume) increment to the lottery while keeping 
the number of marbles constant, 

By establishing entropy maximization 
in terms of familiar concepts, I hope 

to form a stronger foundation for 
explaining the connection between the 
Second Law of Thermodynamics and 

equilibrium, and show how this 
principle pervades problems 

outside the traditional 
thermodynamics curriculum. 
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In the final equality, n = N/NA is the number of marbles/molecules in mole units. Thus, the ideal gas law follows from the 
dispersal of marbles among a collection of urns. Non-ideal contributions to the equation-of-state arise from the introduction of 
energetic interactions between marbles, e.g., excluded volume and dispersion interactions, which temper the urn occupancies. 

Program Availability 
The lottery results reported in Figures 2 – 4 were generated using a MATLAB® simulation. I have uploaded the MATLAB® 

program, sample input files, and run instructions to the MathWorks file exchange website for free distribution.[18] This pro-
gram simulates the two- and multi-urn lotteries, solves the master equation spin dynamics, calculates entropies, and plots the 
results. 

Discussion 
Ehrenfest’s Lottery can be used at multiple points throughout the thermodynamics curriculum to reinforce the role of the 

Second Law of Thermodynamics in determining equilibrium and to highlight the molecular nature of substances. In practice, 
I have used the two-urn lottery at the beginning of our discussions of the Second Law during the first semester thermodynam-
ics class at Tulane University. The multi-urn lottery and the connection to the ideal gas law are introduced further along in 
the semester once thermodynamic partial derivative relationships have been discussed. I return to the multi-urn lottery in our 
second-semester thermodynamics class after our students have had transport phenomena to connect diffusion processes to 
the Second Law. This model can be readily extended to ideal mixing and the van der Waals equation of state by introducing 
additional rules into the game, like adding colors to the marbles (mixing) or finite marble volumes and attractive interactions 
between marbles in neighboring urns (van der Waals). An alternate formulation of this model, referred to as the Dog and Flea 
model, has also been developed to further explore transport phenomena for small systems and chemical reactions.[19] While not 
a panacea, Ehrenfest’s lottery provides a simple model that, when used in conjunction with other illustrative examples like the 
Carnot cycle, can shore up student appreciation of the Second Law of Thermodynamics. 
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