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The	conservation	of	energy	dictated	by	the	First	Law	of	
Thermodynamics	is	an	intuitively	appealing	concept.	
Simply	put,	energy	is	neither	created	nor	destroyed,	

but	 is	 just	 transformed	 from	one	 form	 to	another—kinetic	
energy	transformed	into	potential	energy,	electrostatic	energy	
transformed	into	gravitational	energy,	etc.	The	challenge	of	
applying	the	First	Law	of	Thermodynamics	then	reduces	to	
an	accountant’s	job,	maintaining	a	balance	sheet	for	energy	
in	its	different	forms.	Tracking	down	apparent	discrepancies	
in the First Law can serve as a tool for scientific discovery, 
having	played	a	vital	role	in	the	development	of	relativity,	
quantum	mechanics,	and	particle	physics.	Despite	the	power	
of	the	First	Law,	it	does	not	tell	us	how	systems	change	with	
time	when	they	are	freely	allowed	to	evolve	(e.g.,	a	locking	
pin	is	removed	from	a	piston	or	an	ice	cube	is	placed	in	a	hot	
cup of coffee) and what the final state is, despite our intuitions 
(the	piston	moves	to	equate	pressures	and	the	ice	cube	melts).	
Simply put, the First Law of Thermodynamics is insufficient 
to	determine	equilibrium.	

Thermodynamic	equilibrium	 is	determined	by	 the	 intro-
duction	of	the	concept	of	entropy,	which	unlike	the	energy	is	
not	a	conserved	property	but	obeys	a	maximization	principle	
encapsulated	by	the	Second	Law	of	Thermodynamics.	Ac-
cording	to	this	law,	the	entropy	change	of	an	isolated	system	
is	greater	than	or	equal	to	zero	for	any	spontaneous	process,	
and	the	entropy	is	maximized	at	thermodynamic	equilibrium.	
The Second Law of Thermodynamics identifies a time direc-
tion	by	equating	time	spontaneously	moving	forward	as	the	
direction	in	which	entropy	increases.	In	difference	to	other	
natural	laws	which	are	time	reversible,	like	Newton’s	laws	of	
motion,	the	arrow	of	time	is	unique	to	the	Second	Law	of	Ther-
modynamics.	Indeed,	it	has	been	asserted	that	all	phenomena	

that	behave	differently	in	one	time	direction	can	ultimately	be	
linked	to	the	Second	Law	of	Thermodynamics.[2]	

It	is	usually	at	this	point	in	an	introductory	thermodynamics	
class	that	reversible	and	irreversible	processes	are	introduced,	
and	the	differential	change	in	entropy	(dS)	is	equated	with	
the	reversible	heat	that	crosses	a	closed	system’s	boundaries	
(dQrev)	divided	by	the	absolute	temperature	(T),	

dS
dQ

T
rev= , ( )1

following	Clausius’	historical	development.	While	this	clas-
sical	statement	of	the	entropy	change	is	true,	the	connection	
between an idealized reversible process that takes an infinite 
amount	 of	 time	 to	 complete	 and	 real	 observable	 changes	
in properties that occur over finite time scales is somewhat 
abstract.	To	help	solidify	this	concept,	it	is	helpful	to	provide	
physically	motivated	examples	of	the	entropy	in	action	and	
the	approach	to	equilibrium.	

From	his	studies	of	gas	dynamics	and	equilibrium,	Ludwig	
Boltzmann	proposed	 an	 alternate	 entropy	 formulation	 that	
draws	connections	between	macroscopic	observables	and	the	
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“Why don’t you call it entropy? ... no one understands entropy very well, 
so in any discussion you will be in a position of advantage.”

– John von Neumann’s name suggestion to Claude Shannon 
for missing information in information theory.[1]
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molecular	nature	of	matter.	Boltzmann’s	entropy	formula,
S k= ln , ( )Ω 2 	

is	famously	engraved	above	his	bust	at	his	grave	marker	in	
Vienna.[3]	The	macroscopic	entropy	in	this	expression	is	iden-
tified as proportional to the logarithm of the number of avail-
able molecular states of a system, Ω, where the constant of 
proportionality k = R/NA	is	Boltzmann’s	constant,	and	is	equal	
to	the	ratio	of	the	ideal	gas	constant	to	Avagodro’s	number.	
Interestingly	from	a	historical	point	of	view,	Planck	was	the	
first to articulate Eq. (2) in resolving the black body radiation 
problem,	building	upon	Boltzmann’s	earlier	work	on	the	con-
nections	between	entropy	and	probability.[4,	5]	Following	Eq.	
(1),	Boltzmann’s	entropy	formula	directly	links	the	addition	
of	heat	to	an	increase	in	the	number	of	accessible	molecular	
states.	Boltzmann’s	 entropy	 formula	underlies	 the	popular	
conceptualization	of	entropy	as	disorder	or	randomness.	A	
literal	interpretation	of	entropy	as	disorder	can	be	problematic,	
however,	due	to	gut	feelings	of	what	constitutes	disorder,[6,	7]	
and	alternate	interpretations	that	equate	entropy	with	energy	
dispersal.[8] Adding to the confusion, a first principles deriva-
tion of Eq. (2) is unavailable and its justification is ultimately 
empirical,	resting	on	its	predictive	power.	

A	 better	 understanding	 of	 the	 Second	 Law	 of	Thermo-
dynamics	 necessarily	 requires	 students	 to	 work	 through	
examples	and	thought	experiments.	To	familiarize	students	
with	the	connections	between	their	personal	expectations	for	
equilibrium	and	maximization	of	the	entropy	with	increas-
ing	time,	I	describe	a	series	of	games	that	can	be	played	out	
in	class	or	on	a	computer.	The	student	assumes	the	role	of	
a	Bingo-like	caller	transferring	numbered	marbles	between	
urns	 based	 on	 the	 outcomes	 of	 spins	 of	 a	 lottery	 wheel.	
The	 relationships	 between	 entropy,	 time	 (i.e.,	 spins	 of	 the	
wheel),	and	increases	in	the	number	of	states	are	shown	to	
be	applicable	to	engineering	concepts	like	diffusion	and	the	
derivation	 of	 equations-of-state.	 By	 establishing	 entropy	
maximization	in	terms	of	familiar	concepts,	I	hope	to	form	a	
stronger	foundation	for	explaining	the	connection	between	the	
Second	Law	of	Thermodynamics	and	equilibrium,	and	show	
how	this	principle	pervades	problems	outside	the	traditional	
thermodynamics	curriculum.	

EhrEnfEsT’s loTTEry 
Paul	 and	Tatiana	 Ehrenfest	 proposed	 a	 simple	 thought	

experiment	to	explore	the	connections	between	probability,	
entropy,	and	time.[9]	The	experiment	is	played	out	as	a	lottery	
obeying	the	following	rules	(Figure	1):	You	are	given	two	urns	
and	N	sequentially numbered marbles. Initially, the first urn 
is filled with n1 marbles, while the second urn is filled with the 
remaining	n2 marbles. At regular time intervals, Δt, a lottery 
wheel	is	spun,	randomly	producing	a	number	between	1	and	
N.	The	randomly	selected	marble	is	then	located,	taken	from	
the	urn	it	is	in,	and	placed	into	the	other	urn.	The	wheel	is	

then	spun	again	and	the	process	is	repeated	ad infinitum.	On	
the	molecular	level	the	marbles	can	be	thought	of	as	repre-
senting	individual	gas	molecules,	while	the	urns	correspond	
to	discrete	volume	units.	While	the	correspondence	between	
the	lottery’s	random-transfer	dynamics	and	molecular	motions	
may	appear	tenuous,	this	model	has	been	shown	to	provide	
an	accurate	description	of	gas	mixing.[10]	

After	describing	the	lottery,	the	class	may	already	have	a	
number	of	intuitive	expectations	about	the	evolution	of	urn	
occupancy	trends,	including:	

1)  After playing the game for a sufficiently long time, the 
number of marbles in both urns will average N/2. 

2)  The relative time sequence of different occupational states 
can be, roughly, worked out given the number of marbles 
in each urn. For example, say you are told N = n1 = 100 
marbles, and that at one point in the spin sequence there 
are n1 = 47 and n2 = 53 marbles distributed between the 
urns, while at another point there are n1 = 84 and n2 = 16 
marbles in the two urns. It is most reasonable to expect 
then that the second instance occurred before the first in 
the sequence. 

The first expectation reflects the limiting probability for a 
fair	game	so	that	each	marble	has	a	50/50	chance	of	being	in	
either	urn.	The	second	expectation,	while	perfectly	reason-
able,	is	not	as	easy	to	justify	based	only	on	gut	feelings.	In	
the	long	time	limit,	the	probability	distribution	of	urn	occu-
pational	probabilities	approaches	a	binomial	distribution.	For	
large	N,	the	binomial	distribution	is	sharply	peaked	about	the	
50/50	occupational	probability,	but	it	does	not	rule	out	the	
observation	of	a	heavily	skewed	distribution	such	as	84	and	
16 marbles. The probability of observing this configuration for 
a	well-mixed	system	is	approximately	10-12, small but finite. 
These	 skewed	 distributions	 become	 exceedingly	 rare	 with	
increasing	N,	so	that	in	practice	they	can	be	neglected.	We	note	
that	this	omission	provides	a	potential	entry	for	Maxwell’s	
demon	to	wreak	havoc,	getting	usable	work	by	waiting	for	
unlikely	events.	While	outside	the	scope	of	this	article,	it	may	
be	useful	to	segue	into	a	discussion	of	Maxwell’s	demon	after	
introducing	Ehrenfest’s	lottery.[11]	

The	relationship	between	Boltzmann’s	entropy	and	the	urn	
occupational	states	can	be	evaluated	by	counting	the	number	
of	ways	of	randomly	choosing	n1	marbles	to	be	placed	in	urn	1	
and	n2 marbles in urn 2 independent of the specific numbering 
of	the	individual	marbles.	To	calculate	the	number	of	ways	
of	divvying	up	the	marbles	between	the	two	urns	we	draw	a	
hypothetical	random	sequence	of	all	the	marbles,	and	then	
place the first n1	marbles	in	urn	1	and	the	remaining	n2	marbles	
in	urn	2.	The	number	of	ways	of	arranging	all	the	marbles	
in	a	random	sequence	is	N!	following	standard	combinato-
rial arguments. The order in which the first n1	marbles	are	
placed in urn 1, however, does not change the final state of 
the system, which is only specified by the number of marbles 
in	each	urn	but	not	their	identities.	The	number	of	ways	of	
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choosing	n1	marbles	to	be	placed	in	
urn	1	 is	 therefore	over	 counted	by	
the	 number	 of	 ways	 of	 randomly	
selecting	this	subset	of	marbles,	n1!.	
A	 similar	 over	 counting	 holds	 for	
the	 marbles	 designated	 for	 urn	 2.	
The	 number	 of	 ways	 of	 randomly	
dividing	n1	and	n2	marbles	between	
the	two	urns	is	then	

Ω=
N

n n
!

! !
. ( )

1 2

3

A	 perceptive	 student	 may	 notice	
that	Eq.	(3)	implies	that	each	marble	
is	 indistinguishable	 from	 one	 an-
other,	but	in	fact	we	have	indicated	
that	the	marbles	are	numbered	from	
1	 to	N.	When	 the	marbles	are	dis-
tinguishable	the	number	of	ways	of	
putting specified marbles in each 
urn	is	exactly	one.	For	example	for	
a	4-marble	system	we	could	specify	
that marbles 1 and 4 are in the first 
urn	and	marbles	2	and	3	are	in	the	
second,	 and	 there	 is	 only	 one	 way	
to	 achieve	 this	 distribution.	 The	
numbering	 scheme,	 however,	 is	
only	 a	 matter	 of	 convenience	 for	
the	 purpose	 of	 choosing	 a	 marble	
to	move,	and	we	are	free	after	each	
spin	 to	 renumber	 the	 marbles	 for	

the	next	spin	without	changing	the	probabilistic	distribution	of	marbles	in	the	lottery.	
So,	returning	to	our	4-marble	example	we	could	renumber	the	marbles	1	and	2	in	the	
first urn and 3 and 4 in the second without changing the equilibrium outcome of the 
game.	From	the	game’s	point	of	view,	only	the	number	of	ways	of	distributing	the	n1	
and	n2	marbles	matters,	not	the	numbered	identities	of	the	individual	marbles.	The	
same	can	be	said	for	mixing	identical	molecules	in	a	volume,	where	only	separations	
of chemical species, rather than specified individual molecules, can be achieved by 
manipulating	the	vastly	smaller	number	of	macroscopic	thermodynamic	state	variables	
like	temperature	and	pressure.[12]	

The entropy of a configuration of indistinguishable marbles can be evaluated by 
substituting	Eq.	(3)	into	Boltzmann’s	entropy	formula,	yielding	

S k
N

n N
k n

n

N
n

n

N
=
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In this expression the factorial terms were simplified by applying Stirling’s approxi-

mation,	i.e.,	ln	 X X X X! ln≈ − .[13]	When	all	the	marbles	reside	entirely	in	either	urn	1	
or	2	(n1 = N or 0) there is only one way to generate this configuration and the entropy 
is	zero.	When	the	marbles	are	evenly	distributed	between	the	urns	(n1 = n2 = N/2) the 
entropy	is	a	maximum	and	equal	to	that	Smax =kNln2. Between the two extremes, the 
entropy	is	a	monotonically	increasing	function.	

The	expectation	that	the	entropy	of	the	system	increases	on	average	with	each	spin	of	
the lottery wheel can be verified by considering the marble transfer probabilities. The 
average	change	in	the	entropy	as	the	result	of	a	lottery	spin	is	determined	by	summing	
over	all	possible	transfer	moves	the	probability	of	choosing	to	transfer	a	marble	from	
one	urn	to	the	other	(i.e.,	p(urn1→ urn	2)	or	p(urn	2→ urn	1)	multiplied	by	the	change	
in	the	entropy	associated	with	each	move	(i.e.,	∆ →( ) →( )S urn urn or urn urn1 2 2 1 )

∆ = →( )∆ →( )+ →( )∆S p urn urn S urn urn p urn urn S1 2 1 2 2 1 uurn urn2 1 5→( ). ( )

The	angled	brackets,	 … ,	denote	an	average.	The	probability	of	choosing	to	move	
a	marble	from	an	urn	is	equal	to	the	number	of	marbles	in	that	urn	divided	
by	the	total	number	of	marbles,	e.g.,	p(urn	1→ urn 2)=n1/N.	Expanding	Eq.	
(4)	in	terms	of	n1	and	substituting	into	Eq.	(5),	an	accurate	expression	for	
the	average	change	in	the	entropy	between	successive	spins	of	the	wheel	
can	be	derived,	

∆ =
− 








≥S k

n n

N

n

n
1 2 1

2

0 6ln . ( )

This	average	entropy	change	is	positive	when	the	occupation	numbers	
differ	and	approaches	zero	as	 the	occupations	of	each	urn	approach	one	
another. As shown below, however, this expression does not preclude fleet-
ing, instantaneous, entropy decreases due to random fluctuations in the urn 
occupational	state	about	the	equilibrium	average.	

Starting	with	n1 = N = 100 marbles in urn 1, Figure 2 (next page) shows 
the	outcomes	for	two	independent,	random	lotteries	simulated	using	MAT-
LAB®.	As	the	game	plays	out,	the	number	of	marbles	in	urn	1	decreases	for	
the first ~150 spins of the lottery wheel, and then fluctuates about the 50/50 
occupational	state	(Figure	2a).	The	entropy	concurrently	increases	as	the	
marbles	become	more	evenly	distributed	between	the	urns	(Figure	2b).	The	
occupational fluctuations about the 50/50 marble distribution are a result of 
the	stochastic	nature	of	Ehrenfest’s	lottery.	The	relative	magnitude	of	these	
occupational fluctuations decreases as N-1/2	in	accordance	with	the	central	
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Figure 1

Figure 1. Schematic illustration of the twourn 
lottery with 10 marbles.
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limit	theorem,	so	that	on	a	per-marble	basis	excursions	from	
the	 average	 diminish	 as	 the	 number	 of	 marbles	 increases	
(Figure	3).	For	a	macroscopic	number	of	molecules/marbles	
these fluctuations would appear insignificant, although they 
are	manifested	experimentally	in	measurable	quantities	like	
the	heat	capacity	and	isothermal	compressibility.[14]	While	the	
occupation fluctuations are above and below the equilibrium 
50/50	state,	these	deviations	are	manifested	as	spontaneous	
decreases	in	the	entropy	below	the	maximum	value	(Figure	
2b). These downward fluctuations away from the maximal 
entropy	point	to	the	statistical	nature	of	the	Second	Law	of	
Thermodynamics.	In	particular,	the	Second	Law	of	Thermo-
dynamics	 is	 more	 appropriately	 thought	 of	 as	 a	 statement	
about	the	equilibrium	distribution	rather	than	a	property	of	a	
single	snapshot	of	molecular	positions.[15]	

The	average	urn	occupancy	can	be	solved	analytically	from	
a	master	equation	for	the	discrete	lottery	spin	dynamics.	Given	
an	average	of	 n s

1( ) 	marbles	are	in	urn	1	for	spin	s,	the	prob-
ability	a	marble	in	urn	1	is	chosen	to	be	moved	into	urn	2	is	
the	number	of	marbles	in	urn	1	divided	by	the	total	number	
of	marbles.	Similarly,	given	 n s

2 ( ) 	marbles	are	in	urn	2,	the	
probability	a	marble	in	urn	2	is	chosen	to	be	moved	into	urn	
1	is	 n s N

2 ( ) .	The	change	in	the	average	occupancy	of	urn	
1	between	spin	s	and	s+1	is	the	probability	a	marble	is	added	
to	urn	1	less	the	probability	one	is	taken	away,	

n s n s
n s

N

n s

N

n s

N1 1

2 1 1
1 1 2 7+( ) − ( ) =

( )
−

( )
= −

( )
.( )

The	 long	 time	 equilibrium	 state	 for	 which	 the	 average	
occupancy	 does	 not	 change	 between	 successive	 spins,	

n s n s
1 1

1 0+( ) − ( ) = ,	is

n s
N

1 2
8( ) = , ( )

as	 expected	 for	 a	 fair	 lottery.	Conservation	of	 the	number	
of	marbles	dictates	the	average	occupation	of	urn	2.	For	an	
initial	occupation	of	0≤n1(0)≤N	in	urn	1,	 the	solution	of	
Eq.	(7)	yields	
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N1 12
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It is straightforward to verify that Eq. (9) satisfies Eq. (7) 
by	back	substitution.	The	occupation	dynamics	and	entropy	
evolution	described	by	Eq.	(9)	are	compared	to	the	simulated	
example	discussed	in	Figure	2.	The	agreement	between	the	
random	lotteries	and	master	equation	results	is	excellent,	al-
though the fluctuations are suppressed by the master equation 
since	it	only	describes	the	mean	behavior.	

appliCaTion To mulTiplE urns – 
a moDEl for Diffusion 

Ehrenfest’s	lottery	can	be	extended	to	an	arbitrary	number	
of	urns	numbered	from	1	to	imax.	In	difference	to	the	two-
urn	lottery,	the	marbles	are	moved	following	the	spins	of	
two lottery wheels. The first spin chooses the marble to be 
moved	as	in	the	two-urn	game.	The	second	wheel	chooses	
whether	the	marble	is	moved	to	the	urn	above	or	below	the	
starting	urn	in	the	sequence,	i.e.,	from	urn	i	to	either	urn	i+1	
or i–1. When a marble is chosen to move to an urn outside 
the	sequence,	i.e.,	from	urn	1	to	urn	0	or	from	urn	imax	to	
urn	imax+1,	the	marble	is	returned	to	its	starting	urn.	

The	combinatorial	counting	of	states	described	by	Eq.	
(3)	can	be	extended	by	replacing	the	denominator	with	the	
product	of	 factorials	of	 the	occupancy	of	each	urn.	The	
entropy	in	this	case	is	

S k
N

n

k n
n

N
i

i

i i
i

i

i

= ≈−

=

=∏
∑ln

!

!

ln , ( )
max

max

1

1

10

where	Stirling’s	approximation	has	again	been	used	to	sim-
plify	the	factorials.	It	is	worthwhile	to	consider	the	limits	
of	Eq.	(10)	to	assure	ourselves	the	entropy	follows	intuitive	
expectations	 for	 the	marble	distribution	as	 the	 lottery	 is	
played	out.	When	all	the	marbles	sit	in	urn	j,	substituting	
nj = N and ni j≠ = 0 	into	Eq.	(10)	there	is	only	one	way	to	
achieve	this	distribution	and	the	entropy	is	zero.	In	the	other	
extreme,	the	entropy	is	maximized	when	the	occupancies	

Figure 2

Figure 2. Outcomes of two random simulations of the twourn 
lottery with 100 marbles and the master equation description of 
the mean behavior. Plots a and b show the occupation of urn 1 

and the entropy, respectively.  
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of	each	urn	are	the	same	and	equal	to	N/imax.
[16]	The	

entropy	maximum	in	this	case	is	Smax =kNlnimax,	which	
is	a	generalization	of	the	entropy	maximum	obtained	
for	the	two-urn	lottery	where	imax = 2. 

While	a	derivation	of	the	mean	change	in	the	entropy,	
∆S ,	 following	each	 spin	 is	more	 involved	 for	 the	

multi-urn	lottery,	each	spin	of	the	lottery	wheel	results	
in	 an	 exchange	 between	 only	 two	 urns.	The	 mean	
entropy	change	is	then	expected	to	follow	an	equation	
comparable	to	Eq.	(6).	The	entropy	of	the	multi-urn	lot-
tery	should	therefore	increase	as	the	game	is	played	out	
following	the	same	logic	as	for	the	two-urn	lottery.	

Figure	4	shows	the	outcome	of	a	multi-urn	game	with	
imax = 10 urns and N = 100 marbles all initially placed in 
the first urn. The occupancy of the first urn decreases as 
the	lottery	is	played	out,	and	the	marbles	disperse	among	
the	 remaining	urns	 (Figure	4a).	After	 approximately	
10,000	spins,	the	distribution	of	marbles	is	essentially	
uniform	and	equilibrium	is	attained	within	the	statistical	
fluctuations. As in the two-urn game, the relative fluc-
tuations	about	the	occupation	averages	decrease	as	the	
number	of	marbles	in	the	game	increases.	The	entropy	
of	the	lottery	increases	as	the	game	is	played,	and	ap-
pears	to	asymptotically	approach	the	equilibrium	value	
of	Smax/kN = ln10 = 2.3 (Figure 4c). 

As in the two-urn game, statistical fluctuations about 
the	equilibrium	occupational	state	where	all	urns	have	
equal numbers of marbles results in downward fluctua-

tions in the entropy. Indeed these fluctuations appear more prominent 
in the 10-urn lottery than in the two-urn lottery. For a fixed number 
of	marbles	(e.g., N = 100), the probability of observing the marbles 
to	be	evenly	distributed	between	all	the	urns	is	lower	for	the	multi-
urn	case	than	compared	to	the	two-urn	lottery,	resulting	in	entropies	
below	the	maximum	when	each	urn	has	equal	numbers	of	marbles.	
Moreover, for a fixed number of marbles fluctuations about the mean 
occupational	state	have	a	larger	relative	effect	on	the	fractional	oc-
cupations	used	to	calculate	the	entropy	[Eq.	(10)]	as	the	number	of	
urns	increases.	These	spurious	deviations	from	the	monotonic	increase	
in	the	entropy	dictated	by	the	Second	Law	diminish	as	the	number	of	
marbles	increases,	in	agreement	with	the	two-urn	lottery.	

A	discrete	master	equation	for	the	mean	multi-urn	occupation	dynam-
ics	can	be	developed	analogous	to	the	two-urn	equation	[Eq.	(7)].	In	
the	present	case,	the	change	in	the	number	of	marbles	in	urn	i	as	the	
result	of	a	lottery	spin	is	equal	to	the	probability	a	marble	from	either	
urn	i-1	or	i+1	is	chosen	to	be	added	to	 n s n s N

i i+ −( ) + ( )
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When	a	marble	is	chosen	to	move	to	an	urn	outside	the	sequence,	
the marble return boundary condition applied to urns i = 1 and imax	
reduces	Eq.	(11)	to	
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Figure 4

Figure 3 (above). Relative fluctuation, s / N, in the 
occupation number of urn 1 in the twourn lottery as a 
function of the total number of marbles. Figure 4 (right). 
Results for a 10urn lottery with all 100 marbles initially 
placed in the first urn. Occupational distributions after s spins for a random lottery and by numerical solution of the 
master equation description are plotted in a and b, respectively. The calculated entropies are plotted in c.  
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If	 the	 urns	 are	 considered	 as	 being	 evenly	 spaced	 apart	
from one another by Δx, this lottery can be thought of as a 
model for diffusion with no flux boundary conditions. Com-
paring	Eq.	(11)	with	Fick’s	Second	Law	in	one	dimension,	
∂ ∂ = ∂ ∂n t D n x2 2,	 the	change	 in	 the	average	occupation	
of	urn	i	after	the	spin	on	the	left-hand	sign	of	the	equals	sign	
corresponds	 to	 a	 dimensionless	 time	 derivative,	 while	 the	
difference	in	mean	urn	occupations	between	neighboring	urns	
on	the	right-hand	side	corresponds	to	a	dimensionless	spatial	
second derivative. The effective diffusion coefficient is 

D
x

N t
=
∆
∆

2

2
13. ( )

It should be noted that the diffusion coefficient decreases as 
the	number	of	marbles	increases	since	the	marbles	are	moved	
only	one	at	a	time,	while	molecules	truly	move	simultane-
ously.	Equilibrium	is	achieved	for	Eqs.	(11)	and	(12)	when	the	
mean	occupation	of	all	the	urns	is	the	same,	at	which	point	the	
entropy	[Eq.	(10)]	is	maximized.	This	lottery	can	be	readily	
generalized	to	multi-dimensional	diffusion	depending	on	the	
spatial	 arrangement	 of	 urns.	The	 occupational	 distribution	
evolution	predicted	by	Eqs.	(11)	and	(12)	and	correspond-
ing	entropies	are	shown	in	Figure	4.	The	agreement	with	the	
random	lottery	is	excellent.	

a TEChniCal issuE rEgarDing ThE 
ConvErgEnCE of ThE Two-urn loTTEry 

It	was	recently	pointed	out	that	Ehrenfest’s	two-urn	lottery	
technically	does	not	converge	to	the	binomial	distribution	in	
the limit of an infinite number of spins, but rather oscillates 
between	 two	 distributions	 whose	 average	 is	 the	 binomial	
distribution.[17]	 Perhaps	 the	 simplest	 demonstration	 of	 this	
non-convergence	is	if	we	consider	a	two-urn	lottery	with	a	
single marble placed in urn 1. After the first spin the marble 

will	be	moved	to	urn	2,	and	subsequently	relocated	to	urn	1	
after	the	second	spin.	As	the	lottery	progresses,	the	marble	
will	oscillate	back	an	forth	between	the	urns,	occupying	urn	
1	after	even	numbers	of	spins	and	urn	2	after	odd	numbers	
of	spins.	After	an	even	number	of	spins	then,	the	marble	will	
occupy	urn	1	with	a	probability	of	one	and	urn	2	with	a	prob-
ability	of	zero.	Similarly,	after	an	odd	number	of	spins	the	
marble	will	occupy	urns	1	and	2	with	probabilities	of	zero	and	
one,	respectively.	The	occupational	probability	distribution	
then	has	not	converged	to	a	single	distribution,	but	vacillates	
between	two	distinct	distributions.	If	the	even	and	odd	spin	
probability	distributions	are	averaged,	however,	we	obtain	
a	50/50	probability	distribution	as	dictated	by	the	binomial	
distribution	for	a	single	marble.	

The	nonconvergence	of	the	two-urn	probability	distribution	
can	be	alleviated	by	breaking	the	even/odd	symmetry	by	intro-
ducing	spin	outcomes	where	no	marbles	are	moved,	thereby	
opening	up	the	possibility	of	the	marble	in	the	example	above	
of	being	found	in	urn	1	(2)	after	an	odd	(even)	number	of	
spins. The no-flux boundary condition for the multi-urn lottery 
breaks	the	even/odd	symmetry	of	the	two-urn	lottery,	allow-
ing	the	occupational	probability	distribution	to	converge.	The	
two-urn	lottery	could	converge	to	a	single	distribution,	rather	
than	an	average	of	even	and	odd	distributions,	by	enforcing	
the no-flux boundary condition of the multi-urn lottery after 
performing	 a	 second	 move	 direction	 determining	 spin.	 In	
practice,	however,	 the	nonconvergence	of	 the	 two-urn	 lot-
tery	does	not	have	any	practical	consequences	on	the	results	
presented	in	Figures	2	and	3,	since	they	track	the	evolution	
of	states	of	individual	spin	sequences.[17]		

rElaTionship To ThE iDEal gas law 
The	long-time	equilibrium	of	the	multi-urn	lottery	provides	

an	 inroad	 for	deriving	 the	 ideal	gas	 law	as	an	outcome	of	
entropy	maximization.	From	standard	thermodynamic	rela-
tionships,	the	equation	of	state	follows	from	the	derivative	
of	the	equilibrium	entropy	with	respect	to	volume	at	constant	
internal	 energy	 and	 number	 of	 marbles	 (molecules),	 i.e.,	
P T S V

U N
= ∂ ∂( )max ,

.	As	pointed	out	above,	the	equilibrium	
entropy	of	the	multi-urn	lottery	is	Smax =kNlnimax.	Based	on	the	
lottery rules, the marbles do not interact and an infinite number 
of	marbles	could	potentially	be	placed	in	an	urn,	making	the	
energy	effectively	constant.	If	each	urn	has	the	same	volume,	
vurn,	the	total	volume	of	the	system	is	given	by	the	product	of	
the number of urns and their volumes V=i maxvurn.	To	this	point	I	
have	not	discussed	the	temperature,	T,	within	the	context	of	the	
lottery.	Since	the	temperature	is	directly	related	to	the	average	
molecular velocity, Δx/NΔt, we can surmise the temperature 
is	inversely	related	to	the	time	between	spins.	

Based	on	these	considerations,	the	pressure	is	given	by	the	
increase	in	the	equilibrium	entropy	associated	with	adding	
another	urn	(volume)	increment	to	the	lottery	while	keeping	
the	number	of	marbles	constant,	

by establishing entropy maximization 
in terms of familiar concepts, I hope 

to form a stronger foundation for 
explaining the connection between the 
second law of Thermodynamics and 

equilibrium, and show how this 
principle pervades problems 

outside the traditional 
thermodynamics curriculum. 
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In the final equality, n = N/NA	is	the	number	of	marbles/molecules	in	mole	units.	Thus,	the	ideal	gas	law	follows	from	the	
dispersal	of	marbles	among	a	collection	of	urns.	Non-ideal	contributions	to	the	equation-of-state	arise	from	the	introduction	of	
energetic	interactions	between	marbles,	e.g.,	excluded	volume	and	dispersion	interactions,	which	temper	the	urn	occupancies.	

program availabiliTy 
The lottery results reported in Figures 2 – 4 were generated using a MATLAB®	simulation.	I	have	uploaded	the	MATLAB®	

program, sample input files, and run instructions to the MathWorks file exchange website for free distribution.[18]	This	pro-
gram	simulates	the	two-	and	multi-urn	lotteries,	solves	the	master	equation	spin	dynamics,	calculates	entropies,	and	plots	the	
results.	

DisCussion 
Ehrenfest’s	Lottery	can	be	used	at	multiple	points	throughout	the	thermodynamics	curriculum	to	reinforce	the	role	of	the	

Second	Law	of	Thermodynamics	in	determining	equilibrium	and	to	highlight	the	molecular	nature	of	substances.	In	practice,	
I have used the two-urn lottery at the beginning of our discussions of the Second Law during the first semester thermodynam-
ics	class	at	Tulane	University.	The	multi-urn	lottery	and	the	connection	to	the	ideal	gas	law	are	introduced	further	along	in	
the	semester	once	thermodynamic	partial	derivative	relationships	have	been	discussed.	I	return	to	the	multi-urn	lottery	in	our	
second-semester	 thermodynamics	class	after	our	 students	have	had	 transport	phenomena	 to	connect	diffusion	processes	 to	
the	Second	Law.	This	model	can	be	readily	extended	to	ideal	mixing	and	the	van	der	Waals	equation	of	state	by	introducing	
additional rules into the game, like adding colors to the marbles (mixing) or finite marble volumes and attractive interactions 
between	marbles	in	neighboring	urns	(van	der	Waals).	An	alternate	formulation	of	this	model,	referred	to	as	the	Dog	and	Flea	
model,	has	also	been	developed	to	further	explore	transport	phenomena	for	small	systems	and	chemical	reactions.[19]	While	not	
a	panacea,	Ehrenfest’s	lottery	provides	a	simple	model	that,	when	used	in	conjunction	with	other	illustrative	examples	like	the	
Carnot	cycle,	can	shore	up	student	appreciation	of	the	Second	Law	of	Thermodynamics.	
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