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Optimization is often considered to be an advanced, 
highly mathematical, and sometimes a somewhat 
obscure discipline. While it is true that many ad-

vanced optimization techniques exist, optimization problems 
can be developed that are suitable for undergraduates at all 
levels. Two of these problems will be described in this paper, 
and many others are available on the web.[1] A pedagogy is 
described that requires students to identify the trends of the 
components of the objective function and to understand how 
trade-offs between these components lead to the existence 
of the optimum. 

The ability to solve “routine” optimization problems has 
been simplified by advances in computing power over the 
last generation. Earlier editions of current design textbooks[2] 
presented a sequence of optimization techniques aimed at 
minimizing the number of cases that had to be considered 
to close in on the optimum. Now, it is possible to perform 
optimization calculations involving numerous cases with a 
few clicks of a mouse, and an entire chemical process can be 
simulated and results exported to a spreadsheet in a matter 
of minutes. 

Several optimization examples are routinely discussed 
in undergraduate textbooks; however, the objective func-
tion does not usually involve economics. These examples 
include optimum interstage compressor pressure,[3] optimum 
insulation thickness,[4] and identifying conditions for the 
optimum selectivity.[5] Qualitative representations of the 

economic optimum pipe diameter[6] and reflux ratio[7] are 
also available. Other examples of optimization problems 
are available, but these do not involve an economic objec-
tive function.[8-10] The problems presented here all involve 
an economic objective function. 

TYPES OF PROBLEMS 
Three types of optimization problems are available, and 

they are summarized in Table 1. The ones highlighted in ital-
ics are discussed in this paper, and the others are available on 
the web.[1] The numbers in parenthesis indicate the number 
of different versions available for each problem. All of these 
have been used successfully in a freshman class designed to 
develop computing skills appropriate for an undergraduate 
chemical engineering student. Most of these problems would 
also be suitable for assignments or projects in unit operations 
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TABLE 1
Available Optimization Problems

Single 
Variable 

Multi-variable Projects 

Pipe diam-
eter (2) 

Absorber Generic chemical 
process (2) 

Reactor/
preheater 
(2) 

Batch reactor/pre-
heater 

Geothermal energy 
(2) 

Reflux ratio Staged compressors Fuel production 
from biomass (4)
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classes or as problem assignments for the portion of a design 
class where optimization is taught. 

Problem 1: Bioreactor 
Background

A liquid-phase, biological reaction is used to produce an 
intermediate chemical for use in the pharmaceutical indus-
try. The reaction occurs in a large, well-stirred, isothermal 
bioreactor, such that the reactor temperature is identical to 
the inlet temperature. Because this chemical is temperature 
sensitive, the maximum operating temperature in the reactor 
is limited to 65 ̊ C by using a heating medium available at this 
maximum temperature. The feed material is fed to the reactor 
through a heat exchanger that can increase the temperature of 
the reactants (contents of the reactor), which in turn increases 
the rate of the reaction. This is illustrated in Figure 1. The 
time spent in the bioreactor (known as the space time) must 
be adjusted to obtain the desired conversion of reactant. As the 
temperature in the reactor increases so does the reaction rate, 
thereby decreasing the size (and cost) of the reactor required 
to give the desired conversion. The problem to be solved is 
to determine the optimal value for the single independent 
variable; namely, the temperature (Tc,2) at which to maintain 
the reactor (preheat the feed). The costs to be considered are 
the purchase costs of the reactor and heat exchanger and the 
operating cost for the energy to heat the feed.  
Problem Statement 

It is desired to optimize the preheat temperature for a re-
actant feed flow of 5,000 gal/h. The feed has the properties 
of water ( ρ = 1,000 kg/m3, Cp = 4.18 kJ/kg ˚C) and enters 
the heat exchanger at a temperature of 20 ˚C. The reactor 
feed is to be heated with a heating medium that is available 
at a temperature of 65 ˚C and must leave the heat exchanger 
at 30 ˚C. Therefore, the desired reactor inlet temperature is 
adjusted by changing the flowrate of the heating medium. 
The physical properties of the heating medium are ρ  = 920 
kg/m3, Cp = 2.2 kJ/kg ˚C. 

The reaction rate for this reaction, –rA, is given in terms of the 
concentration of reactant A (CA) by the following equation: 
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The design equation for the reactor is given by: 
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where V is the reactor volume (m3), vo is the volumetric flow-
rate of fluid into the reactor (m3/s), and XA is the conversion 
(assumed to be 80% or 0.8 for this reaction).

The design equation for the heat exchanger is given by: 
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and 
F = log-mean temperature correction factor = 0.8 (assume 

that this is constant for all cases) 
U = overall heat transfer coefficient = 400 W/m2K 
The optimum reactor inlet temperature is the one that 

minimizes the equivalent annual operating cost (EAOC). The 
EAOC is given by 
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where PCi are the purchase equipment costs for the heat 
exchanger and reactor, UC is the operating (utility) cost for 
the heating medium, and (A/P, i, n) is the capital recovery 
factor given by 
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For this problem, use i = 7% and n = 12 years. 
The purchase cost of the reactor is given by: 

PC Vreactor = $ , ( ).17 000 80 85

where V is the volume of the reactor in m3. The cost of the 
heat exchanger is: 

PC A mexchanger =

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
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where A is the area of the heat exchanger in m2. The cost of 
the heating medium is: 
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Figure 1. Process flow diagram of the feed preheater 
and bioreactor.
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The results should be presented as two plots. The first should 
show how each term in Eq. (6) changes with Tc,2, and the 
second plot should show the EAOC (y-axis) as a function of 
Tc,2 (x-axis). The report should contain a physical explanation 
of the reason for the trends on these plots. 

Problem 2: Batch Bioreactor 
Background 

A liquid-phase, biological reaction is used to produce an 
intermediate chemical for use in the biotech industry. The 
reaction occurs in a large, well-stirred, isothermal bioreac-
tor, such that the reactor temperature is identical to the inlet 
temperature. Because this chemical is temperature sensitive, 
the maximum operating temperature in the reactor is set to 
55 ˚C. The feed material is fed to the reactor through a heat 
exchanger that increases the temperature of the reactants 
(contents of the reactor), which in turn increases the rate of 
the reaction. This is illustrated in Figure 2.  

The reactor runs as a batch operation in which the contents 
remain in the equipment for a given period of time. The time 
spent in the bioreactor must be adjusted to obtain the optimal 
conversion of reactant. Because of the fear of contamination 
by pathogens and parasitic fungi, the reactor must be cleaned 
thoroughly between batch operations. The cleaning time 
per batch (tclean) and the cost of cleaning both vary based 
on the size of the reactor used. 

As the time spent in the reactor increases, the amount 
of product also increases but at a decreasing rate. The 
problem to be solved is to determine the optimum values 
of the two independent variables; namely, the time for the 
products to spend in the reactor, or the batch time, and the 
reactor size.

For this problem, it is assumed that only standard size 
vessels are available (1,000, 5,000, or 10,000 gallons), and 
that the costs of the feed are fixed. Therefore, the 
costs that vary are the revenues from sales, the 
reactor cost, and the cost for cleaning.  

Problem Statement 
It is desired to optimize the production of 

product from the reactor. The feed has the 
properties of water ( ρ  = 1,000 kg/m3, Cp = 
4.18 kJ/kg ˚C) and enters the heat exchanger at 
a temperature of 20 ˚C. The reactor feed is to 
be heated with a heating medium that is avail-
able at a temperature of 65 ˚C and must leave 
the heat exchanger at 30 ̊ C. The desired reactor 
inlet temperature is fixed at 55 ̊ C. The physical 
properties of the heating medium are ρ  = 920 
kg/m3, Cp = 2.2 kJ/kg ˚C. 

The reaction rate for this reaction, -rA, is given 
in terms of the concentration of reactant A (CA) 

by the following equation: 

− =r kCA A ( )11

where 

k s
T K

−


 = −






















1 2 5 3 500 1. exp , ( 22)

The design equation for the reactor is given by: 
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where t is the time spent in the reactor and XA is the fractional 
conversion of reactants to products. The amount of product 
formed in time t is given as NXA, where N is the number of 
moles of reactant fed to the reactor. 

The energy balance equation for the heat exchanger is 
given by: 

Q M C T T M C T Tc p c c c h p h h h= −( )= −( ), , , , , , ( )2 1 1 2 14

where 
M is the mass of fluid to be heated or cooled (kg) 
Cp is the specific heat capacity of the fluid (kJ/kg ˚C) 

Figure 2. Process flow diagram of feed preheater and bioreactor.

Figure 3. Optimization plot for Example 1.
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The final results should be presented as two 
plots. The first plot should show how each 
term in Eq. (15) changes with the batch time, 
t, and the second plot should show the EAOC 
(y- axis) as a function of t (x-axis). The report 
should contain a physical explanation of the 
reason for the trends on these plots. 

OPTIMIZATION PROBLEMS 
In Problem 1, the optimum reactor feed 

temperature is to be determined. There is 
a trade-off, which is necessary to obtain 
an absolute maximum or minimum in the 
objective function (EAOC) as the decision 
variable (reactor feed temperature) varies. 
In this case, at higher temperatures, it costs 
more to heat the reactor feed, but, since the 
reaction rate increases with temperature, the 
reactor cost is lower because a smaller reac-
tor is needed. Additionally, at higher reactor 
feed temperatures, a larger heat exchanger is 
needed. Students can develop a spreadsheet 
that varies the reactor inlet temperature and 
plot the EAOC vs. the reactor inlet tem-

perature. This plot is illustrated in 
Figure 3. They can also plot EAOC 
vs. reactor cost, heating medium 
cost, and heat exchanger cost to 
see the trends. This is illustrated 
in Figure 4. The trend for the heat 
exchanger clearly illustrates how the 
heat exchanger cost goes to infinity 
as the reactor feed temperature ap-
proaches the heating medium inlet 
temperature, causing the log-mean 
temperature driving force to go to 
zero and the heat exchanger area to 
become infinite. This is an example 
of why it is important for students 
to analyze a series of data and un-
derstand the trends. It is possible to 
solve this entire problem on Excel 
using the Solver tool; however, 
much of the understanding/synthesis Figure 4. Component optimization trends in Problem 1.

T is the temperature (˚C) 
1 and 2 refer to inlet and outlet conditions, respectively. 
h and c refer to the hot and cold stream, respectively. 

The optimal reactor configuration is the one that minimizes the equivalent 
annual operating cost (EAOC). The EAOC is given by:
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where PCi are the purchase equipment costs for the heat exchanger and reactor; 
UCi are the operating (utility) costs for the heating medium, the cost of the 
feed stream, and the cost of cleaning; and R is the revenue from sales of the 
product. For this problem, use i = 0.07 and n = 12 years. 

The purchase cost of the reactor is given by 
PC Vreactor = $ , ( ).17 000 160 85

where V is the volume of the reactor in m3. The cost of the heat exchanger may 
be taken to be equal to 20% of the cost of the reactor from Eq. (16). 

The cost of the heating medium is given by: 
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where Q is the heat duty obtained from Eq. (14). 
The price of the feed is $2/mol, the value of the product is $10/mol, and the 

molar density (concentration) of both feed and product is 100 mol/m3. The 
cost of cleaning the reactor is given by 
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The ability to solve “routine” 
optimization problems 
has been simplified by

advances in computing power 
over the last generation.
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of the problem is lost. We believe that optimization is more 
than finding an answer. An understanding of the underlying 
trends is essential. 

It is also possible to illustrate how changes in operating con-
ditions change the optimum. In a problem similar to Problem 
1,[11] if the reaction kinetics are increased (pre-exponential 
factor increased to 7.0 and the activation energy reduced to 
3300), the optimum temperature shifts down to about 35 ˚C. 
Many different versions of this and other problems can be 
created by changing some parameters or by changing the 
economics. We use different versions of these for different 
groups in the same class. During oral presentations, we ask 
them to explain why the optima differ. 

In Problem 2, there are two decision variables (bivariate 
optimization) due to the batch processing. Therefore, this 
problem in slightly more complex than Problem 1, and it il-
lustrates that there may be more than one decision variable. 
One decision variable is the reactor volume, which in this 
case is limited to three standard sizes (an arbitrary number), 
and the other decision variable is the processing time. The 
trade-off is that for longer processing times, more product is 
made, but fewer batches can be made per year. For a larger 
reactor, more product can be made per batch, but fewer 
batches can be made per year due to the longer cleaning 
time. Although this problem does not include it, the reactor 
feed temperature could also be varied, as in Problem 1, to 
create a three-variable optimization. In this problem, it turns 
out that the optimum is the 10,000 L reactor with a 
reaction time of 9.1 h, at about 97% conversion, as 
is illustrated in Figure 5. For higher conversions, the 
additional processing time is long enough to make 
the annual product revenue drop. This problem also 
illustrates some of the issues associated with batch 
processing to students who might be very used to 
continuous processes. Figure 5 also illustrates a bi-
variate optimization plot, with the x-axis containing 
one decision variable with several curves indicating 
the second decision variable. 

DISCUSSION 
We believe that an important part of the pedagogy 

of optimization is for students to understand the 
trends of the components of the objective function 
and to understand how trade-offs between these 

components lead to the existence of the optimum. That is why 
methods, such as using the Excel Solver, are not emphasized, 
and making plots to investigate trends is emphasized. Once 
the trends are understood, Excel Solver can be used to obtain 
a more exact value of the optimum. 

We have used these problems as part of a freshman class 
taken by students who know that they are interested in chemi-
cal engineering. Other students take a college-wide program-
ming class. In our class, students are taught computer skills 
applicable to chemical engineering, mostly using the advanced 
features of Excel in addition to some elementary program-
ming techniques and algorithms. All assignments are based on 
industrially relevant chemical engineering problems. Some of 
these problems also appear in the optimization chapter of our 
textbook.[11] Since these problems have been used successfully 
in a freshman class for several years, we believe they can be 
used anywhere in the curriculum. 

Since all students in chemical engineering do not take the 
class in which these problems are assigned, assessment of 
their long-term impact is difficult. The freshmen do a good 
job on these problems, and they seem to appreciate the actual 
chemical engineering application compared to their peers in 
the programming class. 

Additional optimization problems are available on the 
web.[1] It is observed that virtually an infinite source of these 
problems could be obtained by manipulating some of the 
values given in these problems. 

CONCLUSION 
Two example optimization problems that are believed to be 

suitable for all levels of chemical engineering students have 
been presented. These problems do not require advanced 
mathematical techniques; they can be solved using typical 
software used by students and practitioners, such as Excel. 
These problems involve an economic objective function with 

Figure 5. Optimization plot for Example 2.

Since these problems have been used 
successfully in a freshman class for 
several years, we believe they can be 
used anywhere in the curriculum. 
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component capital and operating cost terms. An important 
part of the pedagogy of these problems is an understanding 
of how the trends of the components terms in the objective 
function contribute to the trade-off involved in most optimi-
zation problems. 
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