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The undergraduate laboratory plays a pivotal role in sci-
ence and engineering curricula.[1,2] Traditional physical 
laboratories are resource intensive, however, and due 

to these constraints, do not always achieve their diverse set 
of intended learning outcomes. One way to overcome these 
limitations is to use alternative modes of delivery, such as 
virtual or remote laboratories.[3] In a virtual laboratory, stu-
dents do not interact with real equipment to obtain data, but 
rather with computer simulations of laboratory or industrial 
process equipment that produce results that can be obscured 
by pre-programmed statistical variation.

In the most common approach, the virtual laboratory is 
used as an alternative mode and simulates a similar set of 
activities as in the corresponding physical laboratory at 
the university.[4-7] In a few cases, virtual laboratories have 
been used to create learning activities with no analog to the 
university instructional laboratory.[8,9] The instructional and 
software design of the virtual laboratories described in this 
study fall into the latter case and are based on the situated 
context of a practicing engineer in industry. The virtual labora-
tory project is structured around the task of having students 
determine the operating parameters for chemical processes 
for volume production through experimental design, inter-
pretation, and iteration. In this sense, the virtual laboratory 
project simulates what expert engineers do in practice, and 
ends up very different in character than the physical labora-
tory at the university.
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The virtual laboratory functions similarly to pedagogies 
described by problem-based learning,[10,11] model-eliciting 
activities,[12] and context-rich problems.[13] Like these pedago-
gies, a complex, ill-structured, open-ended, authentic problem 
forms the context for learning, and students actively and 
collaboratively engage in the solution. The environment also 
requires students to greatly extend their personal responsibil-
ity for learning. In the case of the virtual laboratory, however, 
the data are generated dynamically by the software based on 
each student team’s distinct choices of reactor parameters and 
measurements, as opposed to having the instructor provide 
static data sets. Therefore, not only is the solution path unique 
for each group, but the data that are used to find that solution 
are also unique.

Shavelson, et al.’s,[14] cognitive framework is used to inves-
tigate student learning in the virtual laboratory environment. 
This framework describes scientific achievement as consisting 
of four types of knowledge: declarative (“knowing that”), 
procedural (“knowing how”), schematic (“knowing why”), 
and strategic (“knowing when, where, and how our knowl-
edge applies”). Schematic knowledge includes principles, 
schemas, and mental models that explain the physical world. 
Strategic knowledge is demonstrated by determining how 
and what knowledge applies to a new situation and includes 
domain-specific conditional knowledge and strategies such 
as troubleshooting and problem-solving as well as monitor-
ing.[15] Although laboratory experiences are meant to draw 
upon and develop all four types of knowledge, often the 
physical laboratory at the university relies upon the declara-
tive and procedural aspects of recall of facts and adherence 
to proper protocol. In the virtual laboratories, however, the 
physical component is removed and students are able to 
focus on developing schematic knowledge, by integrating 
concepts and building models, and strategic knowledge, by 
intelligently combining these models to formulate a solution 
to an ill-structured and open-ended task.

This paper provides an overview to the instructional 
design of the virtual 
laboratory project as 
it has evolved over 
the past six years. 
This description is 
followed by presen-
tation of the three 
major research meth-
ods that have been 
used to investigate 
student cognition, 
metacognition, and 
social interactions 
in this environment, 
and a summary of 
some of the research 

findings from each method. The research aims to provide 
greater understanding of student learning in this environment. 
This understanding is needed for more systematic software 
development and instructional design, application to other 
engineering processes, and widespread use. With a clearer 
understanding of the cognitions and social interactions of 
students, the role of virtual laboratories in the curriculum and 
in accreditation processes can be explicitly identified.

INSTRUCTIONAL DESIGN
Two virtual laboratories have been developed: a Virtual 

Chemical Vapor Deposition (VCVD) Laboratory and a Virtual 
Bioreactor (VBioR) Laboratory. Screenshots of the three-di-
mensional student interfaces for each virtual laboratory are 
shown in Figure 1. The instructional design is “industrially 
situated” both in the scale of the process and by the nature of 
the engineering task that student teams complete. The VCVD 
Laboratory simulates an industrial-scaled vertical chemical 
vapor deposition reactor in which silicon nitride is deposited 
from dichlorosilane and ammonia gases at low pressure 
and high temperature. Students are tasked with achieving 
maximum thickness uniformity and minimum dichlorosilane 
utilization by adjusting operating parameters including gas 
feed rates, temperatures of five reactor zones, system pres-
sure, and duration of operation. The VBioR Laboratory is 
based on an industrial stirred-tank fed-batch bioreactor, and 
can be used for different applications, such as production of a 
recombinant protein or degradation of waste, and run in either 
batch or fed-batch mode. Students aim to achieve maximum 
volumetric productivity by varying input parameters such as 
temperature, substrate concentrations, cultivation times, and 
feed flow rate. Random process and measurement variation is 
added to the data for students from the simulation output. In 
both of these virtual laboratories, the students are experienc-
ing industrial aspects of engineering that they typically do not 
experience in university classes and laboratories. The details 
of the VCVD and VBioR Laboratories have been previously 
published.[16-18]

A. B.

Figure 1. Screenshots of the student interfaces: A. The Virtual CVD laboratory and B. The Virtual 
BioR Laboratory.
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Although centered in different domains, both the Virtual 
CVD and Virtual BioR laboratories have at their root reaction 
kinetics and material balances. Schematics of the simulated 
systems are indicated in Figure 2. The VCVD system can 
be described using a simulation with transient solid phase 
accumulation, and a pseudo-steady state gas phase. The 
VBioR is an inherently transient system, with cell growth, 
substrate consumption, and product synthesis and degradation 
occurring throughout the cultivation. Both scenarios present 
an adequate challenge to students while eliciting the use of 
engineering principles and models.

The instructional activities are constructed around prin-
ciples of scaffolding, coaching, reflection, articulation, and 
exploration.[19] The group-based project tasks teams to develop 
a process recipe (i.e., values for reactor parameters) for release 
to high-volume manufacturing, by:

• 	 Composing an experimental design strategy memoran-
dum and reviewing it with the instructor before access-
ing the virtual laboratory. (reflection-on-action activity);

• 	 Recording activity in an experimental journal, keeping 
track of the run parameters, data analysis, interpreta-
tion, and conclusions and decisions from the interpreta-
tion. (reflection-in-action activity);

• 	 Preparing an update memorandum and reviewing it with 
the instructor one week after having access to the virtual 
laboratory and revising experimental design (reflection-
on-action activity); and

• 	 Synthesizing experimental results in the form of a final 
written and oral report.

Consider two central learning events that occur in partner-
ship with the software: (1) as the students prepare to engage 
in the virtual laboratory and (2) when they respond to the data 
that is dynamically generated. Both require a transition from 

schematic knowledge to strategic knowledge. In both cases, 
the learning does not occur directly within the software inter-
face; rather, students need to engage at a range of cognitive 
activities, from anticipating data from planned experiment 
trials to sequencing runs, from evaluating data to linking data 
patterns to parameters that need to be changed.

The beginning of the project directs students to an infor-
mation gathering/problem scoping phase that places unusual 
responsibility on the students themselves to formulate the 
problem. This formulation is structured around a 20- to 30-
minute design meeting with the student team and a faculty 
instructor, the domain expert who acts in the role of manager 
and coach. In this role, the instructor reinforces the epistemic 
frame of the engineering profession by modeling the way 
an engineer thinks and acts.[20] At this meeting, the students 
must deliver a memorandum that specifies the parameters for 
their first “run,” a strategy for subsequent runs, the approach 
to evaluate the experimental data from the runs, and a vir-
tual budget. In pursuing their design strategy, students both 
search the literature to obtain reasonable reactor parameters 
and integrate prior knowledge from a diverse set of courses 
ranging from material balances and reaction kinetics to ap-
plied statistics and experimental design. Developing a project 
budget motivates the teams to consider the entire project scope 
(e.g., the number of runs and measurements that are needed), 
situates the problem in the context of engineering practice, and 
provides an urgency for students to be thoughtful and efficient 
in experimental design. During the meeting, the instructor 
provides feedback by asking questions to guide the students 
in developing features of the strategy, initial parameters, and 
budget that they have not appropriately addressed. Only after 
the team has an acceptable design (typically after a revision) 
are they given access to the virtual laboratory. Both the de-
sign meeting and the following intermediate update meeting 
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provide rich opportunities for reflection-on-action, which 
can result in improvements to the experimental approach and 
promote a deeper understanding of the process.[21]

A second primary learning mechanism occurs throughout 
the bulk of the project when students obtain the output data 
generated by their virtual experiment at the run conditions 
that they have chosen. When they perform an experiment 
and obtain data, the student teams must confront what they 
actually obtained vs. what they expected (or did not consider). 
We have noticed resulting cases of cognitive conflict and 
cognitive confirmation. Posner, et al.’s,[22] model proposes 
that conflict caused by anomalous data is a necessary first 
step to achieving conceptual change. It is believed significant 
learning occurs during the time when the students are trying 
to make sense of their data and trying to make decisions about 
what input parameters to try during their next run; however, 
more research is needed to elucidate the specific nature of 
the student cognition.

RESEARCH QUESTIONS AND METHODS
The mixed methodological basis of this research is grounded 

in a phenomenological perspective of ascertaining how students 
who are engaged in the virtual laboratory as a learning environ-
ment make sense of their experiences; how they operational-
ize their schematic and strategic knowledge; and how their 
cognitions manifest and the degree to which the cognitions are 
distributed. Specific research questions include:

1. 	 What is the nature of the experimental design process 
that students apply in the virtual laboratories?

2. 	 How does students’ tolerance for ambiguity change 
while completing the virtual laboratories?

3. 	 In what ways do students perceive the virtual laborato-
ries as an authentic experience that is reflective of real-
life engineering? How do the ways that students perceive 
virtual laboratories compare to physical laboratories?

4. 	 What types of knowledge structures and cognitions 
are demonstrated by students when engaging with the 
virtual laboratories?

Figure 3 shows the primary research meth-
ods that have been used in our research: survey 
analysis, talk-aloud protocol analysis, and model 
representation and usage maps. These methods 
do not align solely to a specific research ques-
tion, but rather can be analyzed through different 
lenses to address the four research questions. 
Having multiple data sources for each research 
question allows triangulation of results and test-
ing of alternative explanations to ensure research 
rigor.[23] The theoretical framework is based on a 
multi-tier teaching experiment design that is used 
both to assess iteratively the knowledge structures 
evoked by students engaged in the virtual labora-
tory experiments and to improve systematically the 

instructional design.[24] Rather than pre- and post-test design, 
this approach is to generate audit trails that reveal important 
and in-depth information about the nature of learning and 
development that occurs.

SURVEY ANALYSIS
A set of free response survey questions has been posed to 

students in the first term of the capstone Senior Laboratory 
class in which the virtual laboratory project is delivered. This 
method seeks to identify how students’ perceptions of their 
knowledge and awareness of their own learning evolve as they 
move through the three structured laboratory experiences in that 
class. The first and third laboratories are physical laboratories, 
based on the unit processes of heat exchange and ion exchange. 
The second is the virtual laboratory. Students’ perceptions of 
learning provide a lens into their metacognitive processes. 
Metacognition is the process of students monitoring their own 
learning and is an important element of student learning in the 
engineering context.[25] Student understanding of the goals of 
learning experiences is a critical element in student acquisition 
of the content understanding and deep cognitive and procedural 
skill development in higher education.[26]

The survey questions were asked after each of the three 
laboratories as soon as possible after submission of the fi-
nal laboratory report for that given laboratory. There were, 
in some cases, overlaps with content presentation for the 
next laboratory. The following questions were coded and 
analyzed:

Q1.	 What do you think the instructors intended you to 
learn by doing the (Ion Exchange/Virtual/Heat Ex-
change) laboratory?

Q2. 	 How would you explain this laboratory experience to 
a first-year student?

Q3.	 When you close your eyes and picture the lab experi-
ment, what do you see?

The course performance of students, measured by the 
weighted final score on all assignments, was used to correlate 
aggregate responses to performance. The survey has been 

Assess Student Learning and Social 
Interactions in Virtual Laboratories

Model 
Representations

Talk Aloud Protocol 
Analysis

Survey 
Analysis

Winter 2006 … Fall 2008 …Fall 2007 …

Figure 3. Research methods to assess student perceptions and learning 
in the virtual laboratories.
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administered for the past three years. To date, a total of 999 
student responses have been coded. The student responses 
were anonymous, and responses to all three laboratories were 
only analyzed after the course was complete.

The coding method for responses was developed as follows. 
The raw data were analyzed by content analysis to establish 
categories to group the responses.[27] The number of coded 
statements in each category was summed across all of the 
student surveys for each of three researchers for each of the 
three laboratories. To achieve adequate interrater reliability, 
the following process was used. The three faculty researchers 
met together and the independently coded responses were 
compared and the differences reconciled. To determine the 
validity and reliability, two other researchers with no connec-
tion to the project were given a subset of 60 responses from 
one of the survey questions (20 responses per question per 
laboratory). This subset of responses was randomized among 
the three laboratories, so the researchers could not identify 
what response was associated with what laboratory. The two 
researchers went through the same process of individually 
coding and then reconciling the data. The value of interrater 
reliability using the Cohen’s Kappa (κ ) statistic was 0.89. The 
fact that the second group had randomized responses suggests 
that there is not a bias based on the laboratory. Statistically 
significant categories of the nonparametric, ordinal coded 
response data to the survey questions were determined using 
the Pearson chi-square test.

A sample response to survey Question 1 for the Virtual 
Laboratory project follows:

“I believe the instructors wanted us to experience how 
lab work is and should be performed in the real world. 
We did not have to worry about actual lab procedures, so 
experimental design and analysis were the focal points of 
the lab. We had the added constraint of a budget, which 
made proper experimental design key, since we could not 
overcome problems created by collecting data from poorly 
planned experiments by running the experiment many times 
and collecting lots of data to get it right. I think they also 
wanted us to work on the process of looking at the theory 
behind the lab first to get an idea of where to start our 
experiments, and then perform intermediate data analysis 
to determine best course for future experiments as more 
information became known.”

This response was rated as higher-order cognition, and 
rated in the following categories: experimental design, critical 
thinking, and situated nature. Further details of this analysis 
are presented elsewhere.[28,29]

Analysis of the complete set of survey responses shows en-
hanced awareness of experimental design, a greater reference 
to critical thinking, and more responses rated at higher-order 
cognition in the virtual laboratory, and an enhanced awareness 
of laboratory protocol in the physical laboratories. The sum 
of high-cognition rated statements for the three laboratories 
correlated with student overall performance in the course. 

There is growing tolerance for ambiguity as students move 
through the course and a shift from a perception of ambiguity 
in the instruction and instructors’ expectations to an ambiguity 
in the experimental process itself. There is indication, how-
ever, that a significant portion of students may not view the 
virtual laboratory as a real system. Even with limitations in 
the physical presence induced by the software interface, many 
students have indicated an ability to suspend disbelief and 
demonstrate psychological immersion in the virtual labora-
tory project. There is evidence that cognitive partnerships are 
formed between students and the virtual laboratory artifact, 
characteristic of a rich learning experience.

TALK-ALOUD PROTOCOL ANALYSIS
Protocol analysis consists of audio recording selected 

student teams while they “talk aloud” as they solve the vir-
tual laboratory project. Protocol analysis has been shown to 
give insight into cognitive processes, especially in situations 
where higher-order critical thinking ability is needed.[3,30] In 
the virtual laboratory project, analysis of the talk-aloud data 
can provide information about the nature of the iterative 
experimental design process, how models are developed and 
the knowledge structures used, the nature of the feedback 
in the design and update meetings, the team’s tolerance for 
ambiguity, the effect that the team dynamic has on the proj-
ect direction, and instances in which cognition is distributed 
through cognitive partnerships.

Over the span of five years, complete data sets have been 
audio recorded from 16 student teams as they have completed 
the virtual laboratory project (12 CVD and four BioR). The 
method we have developed follows. The researcher observes 
and audio records the teams at all times they work on the 
project, which has averaged approximately 20 hours. To 
the extent possible, recording occurs at all times the teams 
are engaged in the project, from problem scoping to their 
final oral presentation. During data collection, students are 
instructed to verbalize their thoughts, but not encouraged to 
describe or explain their thoughts. As the students proceed, 
the researcher fills out a data sheet. This data sheet has been 
specifically designed to align with the qualitative analysis 
method in several ways.[31] The right side of the data sheet 
contains a table where observed tasks are chunked into the 
design processes and the quality is evaluated according 
to a rubric we have developed. Significant sociocognitive 

It is believed significant learning 
occurs during the time when students 
are trying to make sense of their data 
and trying to make decisions about 
what input parameters to try during 
their next run.…
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interactions that impact the completion of the task are noted. 
On the left side of the data sheet a task map visually depicts 
the flow of tasks. The “tolerance for ambiguity” demonstrated 
by the team during the session is quantified as rated according 
to Perry’s[32] empirical model with nine levels of intellectual 
growth. The data are then transcribed for more fine-grained 
analysis.

We have identified a set of performance tasks in which 
the students engage as they complete this situated project. 
An example of this analysis is shown in Figure 4, which 
depicts the experimental pathways taken by a student team. 
The sequence of tasks completed by the teams is indicated 
in numerical sequence in the pathway. Inspection shows the 
team achieved many iterative cycles, completing three design 
cycles (outer loop), 11 analysis cycles (inner loop), and one 
Design of Experiments (tasks 26-33). Similarly, results from 
the task analysis from the other teams participating in the 
think-aloud sessions have been compiled.[16, 31] In all cases, 
the teams demonstrated an iterative approach to experimental 
design, completing an average of three design loops and 12 
analysis loops. This evidence suggests that students were 
engaged in the intended approach of experimental design.

The modified Perry’s levels were applied to quantify the 
teams’ tolerance for ambiguity. Evaluation results elucidating 

tolerance for ambiguity indicate that by completing this open-
ended problem most students evolve past “blind acceptance 
of authority” and become aware of a “multiplicity of views”; 
however, while some teams continued to climb Perry’s levels, 
eventually becoming comfortable with the idea of “contextual 
relativism,” other students did not.[31] An interesting parallel 
to these differences is found in the nature of the sociocogni-
tive interactions found in the different student teams; these 
interactions seem to be able to either promote the desired 
learning, or they can be detrimental to the intended learning 
outcomes.

MODEL REPRESENTATION AND USAGE MAPS
To capture the model construction and higher cognition and 

to characterize the schematic and strategic knowledge invoked 
by the virtual laboratory project, we have developed Model 
Development and Usage Representations (Model Representa-
tions) as an analysis tool. The Model Representations are gen-
erated from student work products, such as journals/laboratory 
notebooks, written reports, and memorandums, and from the 
instructor interface, which records all groups’ run parameters 
and results. They are a visual and chronological coding tool 
used to identify and characterize student knowledge struc-
tures and cognition as students perform the virtual laboratory 
project. The Model Representations can be used to identify 

the ways students use their sche-
matic knowledge to build models 
and use their strategic knowledge 
to integrate these models into their 
project solutions.

Student journals serve as the 
primary source of information for 
coding since they are intended 
to contain all references, notes, 
results, and calculations over the 
course of the project. Model com-
ponents are identified from the 
student journals chronologically 
and are then supplemented with 
information from other sources that 
serve to confirm, explain, or expand 
upon the journal content. Student 
researchers first individually dissect 
the work products to construct the 
preliminary Model Representation. 
Consensus is then obtained by a 
group of two students and two 
faculty. One faculty member—the 
domain expert in the appropriate 
field—examines the source mate-
rial and evaluates the accuracy and 
context of the Model Representa-
tion. An Overview statement is 
then written that summarizes in 

Experimental design & 
measurement strategyOuter

loop

2,5,8,11,14,17,20,23
37 41 45 48 51 54

Conduct an 
experiment

Tasks 1,36,40,44

26,27,28,29,
30,31,32,33

35,39,
43 Inner

loop
37,41,45,48,51,54

3,6,9,12,15,18,21,24
34,38,42,46,49,52,55

4,7,10,
13,16,
19,22,
25,47,
50,53

Analyze and Interpret the 
data. 

Submit final recipe &

Draw conclusions & make 
decisions

56

Submit final recipe & 
report findings

Figure 4. Experimental paths derived from task analysis of one team that 
participated in the “talk-aloud” study.
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a concise manner the group’s approach and integration of 
model components in its unique solution to this authentic, 
ill-structured problem. To assure reliability of coding between 
the Model Representations of the two virtual laboratories, the 
student and faculty who analyze the other virtual laboratory 
participate in this process. A more complete description of 
the methodology for developing Model Representations is 
presented elsewhere.[33]

Figure 5 shows a summary of the coding key that has been 
developed. Model Representations specify the types of model 
components employed (quantitative or qualitative, statistical 
or empirical), their degree of utilization (operationalized, 
abandoned, or not engaged), their correctness, and the experi-

mental runs to which they are relevant. This information is 
combined along a timeline with experimental runs, emotional 
responses, and instructor interaction to show context and form 
the complete Model Representation.

To illustrate the effectiveness of Model Representations as a 
tool to study student learning, a subset from one Virtual CVD 
Laboratory group (CVD Team I) is presented in Figure 6 show-
ing the progression of the kinetics model component through 
the project. As illustrated in the first box from the left, the 
team started by using a form of the first order rate law found 
in a common textbook in silicon processing[34]; however, they 
did not explicitly recognize it as a first order rate law. The 
group then replaced this expression with a more complex, 
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Figure 7 (facing page). Four model representations 
placed in reference to evaluation of schematic knowledge 

(x-axis) and strategic knowledge (y-axis) demonstrated. 

higher-order rate equation that they were simultaneously 
covering in their reactors class. They were unable to solve for 
the higher-order rate parameters using the complex data sets 
generated from their runs and measurements. Consequently, 
they abandoned this approach (as illustrated by the dashed 
line in Figure 6 or a red line in Figure 7). They then simplified 
the expression to a pseudo-first order rate equation (third box 
from left). This form was utilized with an empirical correc-
tion factor in this team’s progression towards final parameters 
(fourth box). Integration of other model components (includ-
ing a material balance and the Arrhenius relationship) led 
to what the team anthropomorphically called “The Model,” 
which was used to predict run parameters to converge on the 
process recipe. The progression of this model component is 
reflective of deep learning and shows characteristic adapt-
ability of experts. This group was rated as high for their use 
of schematic knowledge in developing the model and high 
for their use of strategic knowledge in operationalizing the 
model effectively to obtain a useful solution.

A total of 27 Model Representations have been completed 
for the 2008 cohort in the capstone laboratory course at 
Oregon State University and four examples are presented in 
Figure 7. This figure places the Model Representations on 
axes of schematic and strategic knowledge. The complete 
model representation for CVD Team I is shown in the up-
per right as high schematic and high strategic. The different 
model components are illustrated with respect to the 17 
runs the team performed using the component key shown in 
Figure 5. Similarly the other 26 teams were rated on use of 
schematic and strategic knowledge. Examples of teams rated 
as high-strategic, low-schematic (Team II); high-schematic, 
low-strategic (Team IV); and low-schematic, low-strategic 
(Team III) are shown. Inspection of Figure 7 shows the wide 
range and variety of model development approaches in solv-
ing this authentic, ill-structured problem.

Team IV showed sound schematic knowledge and engineer-
ing skill using a model-based approach, and attained high 
uniformity after just four runs. Their strategic knowledge 
was insufficient to respond to a special cause of variation or 
to determine a meaningful end point to the project, however. 
Interestingly, failure to identify a reasonable end point was 
followed by largely incorrect methods, which later yielded 
to empirical adjustments. Conversely, Team II’s schematic 
knowledge is incomplete and demonstrates misconceptions. 
For example, their value for activation energy is originally 
inaccurate, due to an incorrect application of a model. The 
unreasonable value is recognized, however, and the value is 
quickly changed to a value from the patent literature (good 
strategic thinking), which is central to the team’s solution.

The Model Representations indicate learning may be occur-
ring across the spectrum of quality of knowledge structures. 
For example, consider Team III (low-schematic, low-strate-
gic). Initially, their methods appear to consist of randomly 

responding to cues within the problem without any evidence 
of drawing from a knowledge framework. As illustrated in 
the top line of the Model Representation, many methods from 
different classes are attempted. Run 6, however, allows the 
group to identify a core concept and integrate it into the project. 
This guides their future efforts. All run input parameters prior 
to run 6 used a gradient in temperature, and the group had 
trouble simultaneously considering both the kinetic influence 
of temperature and the influence of gas flow rate on reactant 
depletion. In run 6, zone temperatures were constant throughout 
the reactor. At this point the team identified that “decreasing 
growth rate up the tower (sic) is due to decreasing concentra-
tion.” While the team showed low schematic and strategic 
knowledge, the experience of Run 6 enabled a transformation 
in their solution process (see bottom line vs. top line of the 
Model Representation). This transformation may indicate 
genuine change of the students’ conceptual understanding, 
but other explanations are also plausible and this aspect needs 
to be more carefully studied. We believe traditional curricula 
characterized by fragmented courses emphasizing contrived 
end-of-chapter type calculations may contribute to the lack of 
coherence in knowledge structures.

CONCLUSIONS
The following major conclusions have been found from this 

research on student learning in industrially situated virtual 
laboratories:

• 	 Virtual Laboratories can provide a dynamic Problem-
Based Learning experience where students engage in an 
authentic industrially situated task.

• 	 Data analysis shows that students exhibit the intended 
iterative experimental design process and exhibit greater 
references to critical thinking and higher-order cogni-
tion in the virtual laboratories than in capstone physical 
laboratories.

• 	 Evidence suggests that the students’ tolerance for 
ambiguity is developed as students move through the 
project. Additionally, there is a shift from a perception of 
ambiguity in the instruction and instructors’ expectations 
to an ambiguity in the experimental process itself.

• 	 A significant portion of students may not achieve physical 
presence and view the virtual laboratory as a real system. 
Many demonstrate the ability to suspend disbelief leading 
to psychological immersion, however. In some cases, a 
clear cognitive partnership between the students and the 
virtual laboratory artifact is demonstrated.

• 	 Cognitive historical analysis of work products shows 
a diverse set of modeling approaches in the student 
solutions to the virtual laboratory project. This method 
shows promise for discriminating between widely vary-
ing the schematic and strategic knowledge structures of 
the teams.
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