
Vol. 54, No. 4, Fall 2020 189

ChE classroom

ENRICHMENT OF STUDENT LEARNING AND
HOMEWORK MANAGEMENT WITH USE OF

GITHUB® IN AN INTRODUCTORY CROSS-
DISCIPLINARY ENGINEERING COURSE
SERIES ON SOFTWARE ENGINEERING

AND DATA SCIENCE
Chad D. Curtis, Caitlyn M. Wolf, and David A.C. Beck
University of Washington • Seattle, WA 98195-1750

© Copyright ChE Division of ASEE 2020

Chad Curtis (0000-0001-6312-392X) is a lecturer
in the Department of Chemical Engineering at the
University of Washington. He teaches primarily
computational-based courses and design courses.
His teaching interests include the incorporation of
computational tools in engineering education and
an emphasis on statistics and scientific writing. His
graduate research focused on the use of data sci-
ence tools to improve the analysis of nanoparticle
trajectory datasets for nanotherapeutic applications.

Caitlyn M. Wolf (0000-0002-2956-7049) is a PhD
Candidate in the Department of Chemical Engineer-
ing at the University of Washington. As a member
of the campus data science community, she has
completed the Advanced Graduate Data Science
Option and is working as a teaching assistant for
the DIRECT program. Her research utilizes neutron
and x-ray scattering, molecular simulations, and data
science tools to explore molecular conformation and
dynamics and improve molecular modeling methods
of semiconducting polymers.

David A.C. Beck (0000-0002-5371-7035) is a
Research Associate Professor in the Department
of Chemical Engineering at the University of Wash-
ington and Director of Research in the eScience
Institute, which is the University of Washington’s
data science institute. He is also Associate Direc-
tor of the NSF funded NRT-DESE: Data Intensive
Research Enabling Clean Technologies (DIRECT,
award # 1633216). His work is at the intersections
of molecular data science and energy, environment
and health.

INTRODUCTION

GitTM and GitHub® have found a growing niche in aca-
demia as both software development tools to encour-
age reproducible research and as educational tools to

provide course content, receive student submissions, and foster
a collaborative environment.[1-4] At their core Git and GitHub
are tools to manage changes to files and documents, especially
among teams and groups.[5] Git refers to the version-control
software itself, while GitHub is a cloud-based implementation
of Git. In this work we will use the term GitHub to refer to the
synchronous use of both Git and GitHub.

GitHub’s initial and predominant user base was, and is, soft-
ware engineers. The application of this versatile platform in the
classroom has also largely been limited to computer science and
software engineering courses. Of 15 educators interviewed in
a 2015 study who use or have used GitHub to support teaching
and learning, 11 of them were in computer science courses,
2 in humanities courses, 1 in the natural sciences, and 1 in
statistics.[6] In a more recent work, authors similarly note that
the majority of GitHub implementations in the classroom are
related to computer science, but they emphasize the usefulness
of GitHub’s collaborative and version-tracking attributes in
other disciplines such as law.[7]

Despite many other available platforms for online course
delivery, GitHub is seeing an increased utilization for this pur-
pose, either alone or paired with traditional learning manage-
ment systems.[7,8] It can simultaneously serve as a collaborative
interface, a feedback mechanism, a version control system, and
a community base.[9] Angulo et al. notes advantages of using
GitHub for homework and team projects, including easy modifi-
cation of code by the students, direct code review and feedback

by instructors or teammates, and simple instructor access to and
management of assignments.[7] In a 2019 survey students and
instructors report improved teamwork skills, more project
management experience, and an increased “sense of belong-
ing” after the implementation of GitHub in the classroom.[3]

Chemical Engineering Education190

Beyond its importance in computer science coursework as
a lesson in version control,[8] GitHub has demonstrated its
utility as an educational tool for a broader audience.

We have implemented GitHub as a key component of
a course series on software engineering and data science
methods geared towards engineering students in the general
chemical sciences. While there are alternative version control
platforms available (e.g. BitBucket, SourceForge), we chose
to use GitHub for both its excellent classroom implementation
(GitHub Classroom) as well as its open-source orientation.
The Software Engineering for Molecular Data Scientists
(SEMDS) and Data Science Methods for Clean Energy Re-
search (DSMCER) dual course structure was originally devel-
oped as a part of the NSF funded NRT-DESE: Data Intensive
Research Enabling Clean Technologies (DIRECT, award #
1633216). It has since expanded to include students across
multiple disciplines with home departments of chemistry
(26%, current cohort), chemical engineering (34%), materials
science and engineering (14%), and molecular engineering
and sciences (16%) with the
remaining 10% distributed
across other departments
such as electrical engineering.
Many of the students have
little to no prior experience in
coding, software engineering,
or data science. In addition to
introducing students to valu-
able tools that are applicable
to their own research, we
are also interested in using
GitHub as a tool to foster col-
laboration and reproducibil-
ity. This is in part a response
to the increased emphasis
of open science and open
data in research.[10-12] In this
paper we will demonstrate
how GitHub can be used
to monitor student activity
and collaboration, measure
student perspectives on the
use of GitHub and other
aspects of the course before
and after, and measure class
performance metrics. We
will also highlight other key
components of the course
that contributed to student
learning. The glossary of
terms found in Table 1 will
be helpful to readers not fa-
miliar with GitHub and other
programming tools.

EXPERIENCES AND ASSESSMENT

The SEMDS and DSMCER graduate courses are a re-
quirement for graduate students in the NSF-funded DIRECT
program and part of the transcriptable data science degree
options in Chemical Engineering at UW, and are also avail-
able to other students as electives. There are no prerequisites
for these courses, and the courses are taught in conjunction
with one another over a ten-week period. Both classes take
place twice a week for a total in-class time of six hours. The
SEMDS course material focuses primarily on software engi-
neering skillsets: Bash shell scripting, package management,
Python®, formal software design, unit testing, continuous inte-
gration, reproducibility, etc. The DSMCER course focuses on
statistics and machine learning analyses, hypothesis testing,
bootstrapping, data visualization, classification, regression,
etc. The class schedules are interchangeable, allowing for
some SEMDS material-heavy weeks and some DSMCER
material-heavy weeks.

TABLE 1
Glossary of software-related terms

Term Definition

version
control

A system for managing and recording any changes to files over time.

Repository
(repo)

Similar to the concept of a computer folder — a location to store all proj-
ect files, documentation, and each file’s version history.

commit An individual change or revision to a file or set of files recorded by Git.

issue GitHub messaging tool for discussion around suggested improvements,
tasks, or questions related to the repository.

branch A parallel version of a repository.

fork A personal copy of another user’s repository that can be changed without
affecting the original.

shell A special user program that allows the user to send commands directly to
the operating system; a command-line interface.

Jupyter
notebook

A web application that allows users to create documents composed of live
code, visualizations, and narrative text.

clone A command to create a copy of a repository.

NumPy A widely used Python package for scientific computing making use of
multi-dimensional arrays.[13,14]

Pandas Short for “panel data,” a popular Python package for working with tabular
data.[15]

use case In software engineering, a description of how a person will use a process
or system to accomplish a task.

unit test A software testing method in which blocks or units of code are tested to
ensure they are working as intended.

Travis A continuous integration service that tests software projects and runs unit
tests as they are being built.

Vol. 54, No. 4, Fall 2020 191

The SEMDS and DSMCER courses are primarily project-
based, but each course includes five homework assignments.
All homework is managed using GitHub Classroom. Fiksel
et al. comment on the utility of GitHub Classroom as an
educational tool that enables private student repositories
in compliance with the United States Family Educational
Rights and Privacy Act of 1974 (FERPA).[16] This ensures
that student privacy is maintained during the homework
grading process. GitHub Classroom can also be linked to a
learning management system (LMS) such as Canvas® to aid
in assignment and grade management. For each homework,
feedback is given via GitHub issues, and the assignment can
be modified and resubmitted up to one week after grades are
posted for a chance to earn full points.

One project is given both a SEMDS grade based on good
software engineering practices and a DSMCER grade based
on data science tool implementation. Teams of 4-5 mem-
bers are formed in the fifth week, giving students roughly
five weeks to develop projects. Students are encouraged to
use data from their own research for the projects, and many
projects continue on past the end of the course. All projects
are managed by the students and hosted on public or private
GitHub repositories. While there can be unique circumstances
requiring project repositories to remain private (e.g. data usage
rights), we encourage students to develop their projects in a
public repository. This promotes an open science approach
and gives the students experience with open-source software
development. All assessments of student projects are, how-
ever, performed privately among the instructors rather than
over GitHub issues to ensure student privacy.

There are no prerequisites for these courses. That is, we
assume no prior computational or programming experience;
however, some knowledge of the molecular sciences helps to
contextualize the computation and data science education. For
example, some homework assignments refer to energy land-
scapes or basic molecular orbital concepts such as LUMO and
HOMO. As the courses run concurrently, we are able to utilize
the in-class time for both courses in the first two and a half
weeks to teach introductory to intermediate Python program-
ming to all students. The course materials are all open source,
and the syllabus is available at https://uwdirect.github.io.[17]

Course material is presented primarily with Jupyter® note-
book after some initial background material is presented
using traditional slides. Jupyter notebooks are a convenient
way to interweave code, text, and images in an interactive
format.[18-21] Class communication is managed using Slack®,
a collaboration platform with both general channels (similar
to a group discussion board) for class-wide conversation and
private messaging for student-student and student-instructor
discussions. Students are also provided access to weekly
office hours when in-person communication is preferred.

A course survey was sent out at the end of Winter quarter
2019 (n = 51 students, n = 44 responses). Students were asked

questions evaluating their experiences in both the SEMDS and
DSMCER courses related to their experiences with both course
content (e.g. software development, machine learning) and
course structure (e.g. homework feedback via GitHub issues,
communication via Slack). We were unable to administer a
similar pre-course survey and instead had to rely on student
recollections of their experience at the beginning of the course
from the post-course survey. A retrospective survey was also
collected from students of the previous two cohorts in 2017
and 2018 (n = 12 responses) evaluating their current use of
skills acquired in SEMDS and DSMCER as well as whether
those skills have proved useful in their current occupations.

COURSE PERFORMANCE

Homework
A key feature of the SEMDS/DSMCER course sequence

is the use of GitHub for both homework submission and in-
structor feedback. Each homework is created from a template
GitHub repository in which instructors can load any neces-
sary files, such as instructions, datasets, and other supporting
material. Each student creates their own personal copy of
the homework template from which they can work on their
local machine. As students work on their homework assign-
ments, they can commit and push their progress from their
local machine to their GitHub repository stored in the cloud.
Instructors can then clone a copy of each student homework
repository on the assigned due date. Github Classroom helps
streamline this process by allowing instructors to batch clone
all student submissions for a given homework assignment.[16]

Instructor feedback for our course was handled via another
key GitHub feature: GitHub issues. When instructors are
ready to comment on a student’s assignment, they can open
a new GitHub issue. After students have edited their docu-
ments accordingly, they can commit and push their changes
to the remote version of their homework and use the issue
to reply directly to the instructor comments. Instructors can
then review the edited documents and submit a new grade via
the same GitHub issue, creating a recorded dialogue with the
student so that all instructor and student comments are stored
together with the version-controlled homework documents
in one easily accessible and timestamped location. We have
further automated this process by writing a script for batch
submission of instructor feedback via GitHub issues.[22]

Each SEMDS/DSMCER homework was graded on a scale
of 0 to 5. A README.md file in each homework repository
defines how the points are distributed for each portion of the
assignment and the tasks required for full credit. Students
were given one week after each homework grade was returned
to address instructor comments and resubmit. Homework
assignments were regraded, and then only this updated score
was counted in the final student grade for the course.

https://uwdirect.github.io

Chemical Engineering Education192

Homework Resubmissions
Mastery and resubmission approaches to engineering and

programming homework assignments have already been
shown to be advantageous for student learning.[23, 24] By
allowing students to revise their homework, it has been re-
ported that students spend more time focused on learning the
concepts and responding to instructor feedback rather than the
homework grade.[23] It was also found that students were more
engaged in these courses and had more positive perspectives
of the homework process.[24] Similarly, we have found that
the two-fold grading scheme enhanced student success in the
classroom in our SEMDS and DSMCER classes.

Compiled grades before and after addressing
instructor comments are shown in Figure 1. All
homework assignments had a median grade of 5
after addressing revisions. The hardest assignments
were SEMDS-HW4, with an initial median score
of 3.0 (interquartile range [IQR] 2.0-4.0) and 18%
receiving a grade of 5, and DSMCER-HW4, with
an initial median score of 2.0 (IQR 1.0-3.0) and
12% receiving a grade of 5. Both of these assign-
ments were SEMDS-HW4 focused on development
of a k-Nearest Neighbor (KNN) classifier[25] while
DSMCER-HW4 focused on a multiple linear regres-
sor.[26] Both of these assignments were cumulative,
asking students to incorporate good programming
documentation practices and advanced machine
learning concepts they had been learning over the
duration of the course. The easiest homework was
DSMCER-HW1, with an initial median score of 5.0
(IQR 5.0-5.0) and 94% receiving a grade of 5, which
required students to summarize a paper about data
science in their own words.

Most of the students who did not get a perfect score
upon first submission chose to address instructor
comments. For SEMDS homework assignments 1
through 4, we found that 77, 93, 93 and 88% of stu-
dents without perfect scores revised their homework
based on instructor feedback, respectively. Median
improvements in grades were 1.0 (IQR 1.0-1.0),
1.0 (IQR 1.0-1.0), 1.0 (IQR 1.0-2.0) and 2.0 (IQR
1.0-3.0), respectively. For DSMCER homework as-
signments 1 through 4, we found that 100, 85, 87 and
95% of students without perfect scores revised their
homework based on instructor feedback, resulting in
median improvements in grades of 1.0 (IQR 1.0-1.0),
1.0 (IQR 1.0-2.0), 1.5 (IQR 1.0-2.75) and 3.0 (IQR
2.0-4.0), respectively. Prior to regrading, only 2%
of students had perfect scores on all SEMDS assign-
ments (mean score of 3.86), and only 2% of students
had perfect scores on all DSMCER assignments
(mean score of 3.44). No students had perfect scores

Figure 1. Homework grades for (a) SEMDS and (b) DSMCER. ‘Ini-
tial’ homework grades were based on each student’s initial submission
of their assignment. ‘Regrade’ scores were based on each student’s
second submission of their assignment after addressing instructor com-
ments from the first version. Grades for the fifth homework assignments
in each course were excluded as they were built into the final projects
and did not have a similar initial/regrade scheme. Box plots for each
homework assignment are shown overlaid on top of a scatter plot of
the raw data to more easily view the distribution of grades. The bottom
and top edges of the box reference the 25% and 75% percentiles, and
the middle line of the box represents the median. The bottom and top
whiskers reference the minimum and maximum of the data, respectively,
not including outliers. For some assignments, narrow grade distribu-
tions result in overlapping 25% and 75% percentiles, and thus have no
box present. For these assignments, they instead appear as horizontal
lines at the median. The plots were created using the Python packages

Matplotlib and Seaborn.[24]

on all assignments for both courses before regrading. After
regrading, 66% of students had perfect scores on all SEMDS
assignments (mean score of 4.79), and 62% of students had
perfect scores on all DSMCER assignments (mean score of
4.72). Additionally, 48% of students had perfect scores on
all assignments for both courses after regrading.

The two-tiered grading structure allowed students to in-
ternalize material and address errors or misunderstandings.
Small mistakes were not held against students in an arbitrary
fashion since they were able to address them in the second
round of grading. This also gave students the opportunity to
address errors that resulted from an incomplete understanding
of the concepts and to learn from their mistakes. As a result,

Vol. 54, No. 4, Fall 2020 193

all students were able to feel more in control of their
homework grades and obtain a deeper understanding
of the material.

Homework Commit Histories
GitHub commit histories allow instructors to gauge

student success not only by their grades, but also by
progression on their homework assignments. Instruc-
tors can observe trends in this data to learn more about
how students are approaching the work. For example,
many students continued to work on their homework
assignments after the initial deadline. There were often
many late submissions, especially for DSMCER-HW3,
but the chance for homework regrades gave students
this buffer. As an instructional team, we chose to give
feedback to assignments submitted after the first due
date. Final submissions had on average between 500-
1500 lines of code, but there was a wide range, with
some students submitting upwards of 10,000 lines of
code for some assignments.

A good practice during software development is to
commit early and often, and we tried to reinforce this
concept to students throughout the quarter. Especially
in team projects and collaborative efforts, committing
early and often prevents overly complex merge conflicts
and improves communication. We explored how well
this message came through by tracking the number of
commits in each homework assignment. These are
shown in Figure 2. Even at the beginning of the course,
students were submitting assignments with more than
one commit. SEMDS-HW1 had a median commit count of
4.0 (IQR 2.0-5.0) with 89% having more than one commit.
DSMCER-HW2 had a median commit count of 2.0 (IQR
2.0-4.0) with 91% having more than one commit. This was
also fairly consistent throughout the courses. SEMDS-HW4
had a median commit count of 3.0 (IQR 2.0-6.8) with 94%
having more than one commit. DSMCER-HW4 had a median
commit count of 3.0 (IQR 2.0-4.0) with 100% having more
than one commit. Resubmissions, on the other hand, were
often addressed using a single commit, e.g. DSMCER-HW2
resubmission had a median commit count of 1.0 (IQR 1.0-
1.0) with only 18% having more than one commit. However,
these additions were often not as substantial as completing
an entire assignment.

Projects
The course projects make up most of the final grade for

both the SEMDS and DSMCER courses. Each student is
part of a team having 4 to 5 members. Projects ideas are de-
veloped by the students themselves, with one member often
bringing a dataset from their research as a foundation for the

Figure 2. Number of GitHub commits per homework assignment
for (a) SEMDS and (b) DSMCER. ‘Initial’ homework grades were
based on each student’s initial submission of their assignment. ‘Re-
grade’ scores were based on each student’s second submission of
their assignment after addressing instructor comments from the first
version. Grades for the fifth homework assignments were excluded
as they were built into the final projects and did not have a similar
initial/regrade scheme. Grades for DSMCER-HW1 were excluded

because they were not submitted via GitHub.

project. There is only one project for both the SEMDS and
DSMCER courses, but each project is evaluated for SEMDS
and DSMCER content separately.

During the academic cycle when the data were collected,
there were a wide array of project topics:

P0. Prediction of battery degradation using a few cycles
of operation data.

P1. Prediction of enzymes with promiscuous activity
specific to a compound of interest based on activity
to chemically similar compounds.

P2. Analysis of particle characteristics from SEM images.
P3. Prediction of the bandgap of organic semiconductors

using data extracted from SMILES strings.
P4. Extraction of synthesis and performance metrics from

academic articles on perovskite solar cells.
P5. Prediction of the power conversion efficiency of

organic materials from data extracted from SMILES
strings.

P6. Using Raman spectroscopy measurements to identify
decomposition and formation products in a water
gasification reactor.

Chemical Engineering Education194

Figure 4. Project contributions from each team member by (a-b) lines of code (in thousands)
and (c-d) number of commits. In (b) and (d), the data in plots (a) and (c) have been normal-

ized to total lines of code and total number of commits per team, respectively

Figure 3. Final project commit histories in terms of (a) lines of code (in thousands)
and (b) lines of code normalized to final number of lines of code.

Figure 4.

a.

b.

c.

d.

P7. Feature extraction from fluores-
cent protein images using Fourier
transforms.

P8. Extraction of elevation profiles
from bus routes and comparison
of route difficulty for battery use.

P9. Prediction of fluorescence emis-
sion and absorption spectra using
photochemical datasets.

P10. Peak finding using cyclic voltam-
metry data.

P11. Prediction of the density of state
of new materials using X-ray dif-
fraction data.

Similar to tracking homework progress
individually, GitHub can be used as a tool
to measure team performance. Commit
histories of the project repositories not
only allow instructors to observe how
projects develop over time but also to
gauge individual contributions to each
project. Contributions to the code can
be an objective measure of individual
inputs that either balance or confirm more
subjective measures like peer
evaluations. The cumulative
repository history in lines
of code is shown in Figure
3. Some teams like P1 and
P3 got an early start on the
project with gradual additions
throughout the quarter, while
other teams like P2 and P4
made the biggest additions
to their code the day before
the due date.

Team Performance
The amount of cooperation

within teams was evaluated
in terms of both individual
contributions to project re-
positories, including number
of commits and lines of code
contributed as shown in Fig-
ure 4, and peer evaluations.
In this evaluation each team
member was asked to divide
100 points among the team
members, and then the results
were tallied up for each team

Vol. 54, No. 4, Fall 2020 195

TABLE 2
Standard deviations of normalized team member contributions to
final projects in terms of commits, lines of code, and peer evalua-
tions. Low standard deviations indicate equal contributions of all

team members. Extreme high and low values are bolded.

Commits
Lines of

code Composite
Peer

Evaluations
P0 0.24 0.29 0.27 0.09

P1 0.16 0.20 0.18 0.02

P2 0.18 0.15 0.17 0.00
P3 0.10 0.29 0.20 0.01

P4 0.17 0.24 0.21 0.03

P5 0.11 0.21 0.16 0.13
P6 0.18 0.09 0.14 0.00
P7 0.13 0.29 0.21 0.03

P8 0.12 0.37 0.25 0.08

P9 0.06 0.25 0.16 0.03

P10 0.21 0.45 0.33 0.11

P11 0.11 0.39 0.25 0.12

member. If a team member felt that each team member con-
tributed equally in a team of four, then he or she would assign
25 points to each team member, including himself or herself.

In order to quantify the distribution of work among team
members, the standard deviation of each normalized measure
(commits, lines of code, and peer evaluations) was reported
for each team (see Table 2). Teams with scores close to 0 had
high measures of “evenness” with team members contributing
equally. In terms of commits, the team that contributed the
most equally to their project was P9 (0.06), while in terms of
lines of code, it was P6 (0.09). When both scores are aver-
aged into a composite score, the team that achieved the most
even distribution among team members was also P6 (0.14).

Not all teamwork can be entirely captured in terms of lines
of code or commits. Some students may have contributed
more to the conceptualization of the project or to aspects of the
project that were not coded, such as documentation. There-
fore, we also included peer evaluation results in final scores.
Team members were usually generous to their teammates in
these peer evaluations. Peer evaluation evenness scores were
in all cases lower than the composite coding evenness scores.
However, it was found that the two scores were correlated with
each other (Pearson correlation coefficient of 0.61).

Course Survey
During the last week of the course, we sent a survey to all

students in the class to gauge student confidence in their learn-

ing of course material and the usefulness of certain aspects of
the course. In order to ensure a high response rate, we bundled
the survey with the non-mandatory project peer evaluation.
Out of a class of 51 students, we received 44 responses for
an 86% response rate.

Overall Course Material
First, we sought to measure student confidence in a few

key general areas in both the SEMDS and DSMCER mate-
rial both before and after the course series, including shell
scripting, version control, Python, software development, and
machine learning. Results from the questions “Before taking
the SEMDS/DSMCER course series, how confident were you
with the following?” and “After taking the SEMDS/DSMCER
course series, how confident were you with the following?”
on a scale of 0 to 10 are shown in Figure 5a.

Coming into the course, students were somewhat familiar
with Python (median 2.0, IQR 0.0-5.2) but were unfamiliar
with version control (median 0.0, IQR 0.0-2.0) and machine
learning (median 0.0, IQR 0.0-2.0). It is common for engi-
neering students to have an introductory knowledge of coding
concepts, often taught in MATLAB. At the end of the course,
students expressed the most confidence in programming with
Python (median 8.0, IQR 7.0-8.2). Given that the majority of
homework and project components are done in Python, this is
encouraging and shows that students gained a solid grounding
in coding concepts by the end of the course. Substantial gains

in confidence were made in version control (median
6.0, IQR 4.0-7.0), Bash shell scripting (median 5.0,
IQR 3.0-6.2), and software development (median
5.0, IQR 3.0-6.2).

Students remained least confident in machine
learning concepts by the end of the course (median
5.0, IQR 4.0-7.0). It is likely that this is partially due
to the newness of the concepts since most students
had no prior experience with machine learning.
However, it should also be noted that students did
comment in the feedback section that there was too
little time allotted in the course schedule to machine
learning concepts and that it felt much too fast-paced.
In future iterations of the course, we will consider
how to rebalance the course material to include more
time for the advanced data science topics.

Similar trends were seen in the retrospective survey
results of previous cohorts shown in Figure 5b. Com-
ing into the course, students reported some familiar-
ity with Python (median 2.5, IQR 0.0-5.0) but little
to no familiarity with Bash shell scripting (median
0.0, IQR 0.0-1.8), version control (median 0.0, IQR
0.0-1.0), software development (median 0.0, IQR
0.0-3.0), and machine learning (median 0.0, IQR
0.0-2.0). At the end of the course, previous cohorts

Chemical Engineering Education196

expressed the most confidence in Python (median 8.0,
IQR 7.0-10.0). The biggest gain in confidence was
made in version control (median 6.0, IQR 4.5-8.0),
while students were least confident in Bash shell
scripting after the course (median 6.0, IQR 4.0-
8.0). It appears that confidence in machine learning
concepts at the end of the course has decreased with
respect to previous cohorts (from median 6.5, IQR
5.0-7.2 to median 5.0, IQR 4.0-7.0) while confidence
in Bash shell scripting after the course has increased
(from median 6.0, IQR 4.0-8.0 to median 7.0, IQR
5.8-8.0). Since taking the course, students report
a slight decline in their Bash shell scripting ability
(from median 6.0, IQR 4.0-8.0 to median 5.5, IQR
4.0-8.0) and an increase in their Python (from me-
dian 8.0, IQR 7.0-10.0 to median 9.0, IQR 7.8-10.0),
software development (from median 6.5, IQR 5.8-8.2
to median 7.5, IQR 5.8-9.2), and machine learning
(from median 6.5, IQR 5.0-7.2 to median 7.5, IQR
5.5-9.0) abilities. It is encouraging that students con-
tinue to build on the skills covered in these courses.

SEMDS
As shown in Figure 6a, by the end of the course

students were most confident in navigation with the
Bash shell (median 9.5, IQR 7.0-10.0), NumPy and
Pandas (median 9.0, IQR 7.0-10.0), creating a repo
(median 9.0, IQR 7.8-10.0), creating a README
(median 9.0, IQR 8.0-10.0),
writing a function (median
9.0, IQR 8.0-10.0), and writ-
ing a loop (median 9.0, IQR
7.8-10.0). Substantial gains in
confidence were made in creat-
ing a repo (median 7.0, IQR
3.0-9.0), creating a README
(median 7.0, IQR 4.0-9.0),
unit testing (median 7.0, IQR
5.0-9.0), and creating an issue
on GitHub (median 7.0, IQR
5.0-9.0). Some of this confi-
dence was found to be related
to previous experience. Prior
to the course, students already
had some confidence writing a
loop (median 4.0, IQR 1.8-8.0),
writing a function (median 2.0,
IQR 2.0-8.0), and navigating
with the Bash shell (median 2.0,
IQR 1.0-8.0). These concepts
are also key foundational skills
introduced near the beginning
of the course that were then

Figure 6. Confidence expressed by students on a 0-10 scale in a given set of tasks in the
SEMDS course (1. navigation with shell, 2. shell scripting, 3. NumPy/Pandas, 4. create a
repo, 5. create a README.md, 6. write a function, 7. write a loop, 8. define a use case, 9.
unit tests, 10. create an issue, 11. fork a repo) before and after the course series for both (a)

current (n = 44) and (b) previous (n = 12) cohorts.
Figure 6.

a.

b.

Figure 5. Confidence expressed by students on a scale of 0 to 10 in key
topics from the SEMDS/DSMCER course before and after the course
series for (a) the current cohort (n = 44) and (b) previous cohorts
(n = 12). Question prompts given were “Before taking the SEMDS/
DSMCER course series, how confident were you with the following?”
and “After taking the SEMDS/DSMCER course series, how confident

were you with the following?”

Figure 5.

a.

b.

Vol. 54, No. 4, Fall 2020 197

Figure 7. Before and after experience with key course components (1. shell, 2. Jupyter, 3.
GitHub, 4. make a repo, 5. create an issue, 6. create a branch, 7. use a for loop, 8. make a
function, 9. make a unit test, 10. create a virtual environment, 11. Travis, 12. none; alternate
questions for retrospective survey: 3a. make a GitHub account, 4a. manage a repo, 4b. make
a repo, 4c. collaborate via Git for (a) current and (b) previous cohorts. (a) Counts of students
who answered in the affirmative to “Which of the following have you done prior to taking
the SEMDS course?” and “Which of the following are you likely to do again after taking the
SEMDS course?” for the current cohort (n = 44). (b) Counts of students who answered in the
affirmative to “Which of the following have you done prior to taking the SEMDS course?,”
“Which of the following have you performed since taking the SEMDS course?” and “Which
of the following do you perform on a semi-regular basis?” for previous cohorts (n = 12).

cumulatively built upon throughout the next ten weeks.
By the end of the course, students were least confident in

forking a repo (median 7.0, IQR 5.8-9.0). Forks are a useful
way of contributing to a project without affecting the original
project. However, branches were much more emphasized
throughout the course for project development, likely contrib-
uting to the slightly lower confidence using forks. Overall,
students were very comfortable with SEMDS course material.

Similar results were obtained in the retrospective survey
of previous cohorts as shown in Figure 6b. After the course
students were most confident in creating a repo (median 10.0,
IQR 8.0-10.0), writing a function (median 10.0, IQR 7.8-
10.0), writing a loop (median 10.0, IQR 8.8-10.0), navigation
with the Bash shell (median 9.0, IQR 8.0-10.0), creating a
README (median 9.0, IQR 7.0-10.0), and defining a use case
(median 9.0, IQR 8.0-10.0). Substantial gains in confidence
were shown for creating a repo (median 8.5, IQR 5.8-10.0),
creating a README (median 7.5, IQR 6.5-9.2), unit tests
(median 7.5, IQR 4.5-8.0), and creating an issue (median 7.5,
IQR 4.0-9.0). By the end of the course, previous cohorts were
least confident in Bash shell scripting (median 5.5, IQR 3.0-
8.0). It is interesting that confidence in Bash shell scripting
after the course has increased
compared to previous years
(from median 5.5, IQR 3.0-8.0,
to 8.0, IQR 6.0-9.0) indicating
that the SEMDS course mate-
rial is becoming more effective,
either through out-of-class sup-
port or improved implementa-
tion in the course material.

As shown in Figure 7a, most
students had already used a for/
while loop structure (80%),
used a function (73%), and
used a Jupyter notebook (57%)
before the course. However,
for a portion of the class (9%),
everything in the SEMDS
material was completely new.
Similar trends were observed in
the retrospective survey of pre-
vious cohorts (for/while loops
83%, functions 75%, Jupyter
notebooks 25%, none 17%) as
shown in Figure 7b. The use
of Jupyter notebooks prior to
the course has increased over
time, likely due to the higher
data science emphasis across
departments. Most of the class
were confident they would con-
tinue to use the course material

in their research (Bash shell scripting 91%, Jupyter notebooks
95%, GitHub 98%, make a repo 91%, use a for loop 98%,
make a function 95%, make a unit test 93%). In terms of
outcomes, this is a huge success. Introducing version control
and open-source software to students should help improve
collaborative workflows and reproducibility of analyses for
future research.

Students were less confident they would continue to use
continuous integration tools such as Travis (61%) and vir-
tual environments (75%). These were introduced near the
end of the course, and their utility may not have been fully
internalized by students. However, we did provide students
with resources they can use beyond the course, such as the
template repositories (e.g. http://github.com/dacb/codebase),
so they can continue to play around with these productivity
tools. We also seek to increase the number of touchpoints
students have with software and data science tools through
programs such as Software Carpentry and quarter-long
incubator grants sponsored by the eScience Institute at the
University of Washington.[28]

Previous cohorts reported that a large number of students
continue to use Jupyter notebooks (92%), for loops (92%),

Figure 7.

a.

b.

http://github.com/dacb/codebase

Chemical Engineering Education198

functions (92%), and Bash shell scripting (83%) regularly af-
ter the course, confirming that these skills become an integral
part of student workflows. Some aspects of the courses were
not rated as highly by previous cohorts when compared to the
reported likely future usage by the current cohort: GitHub
67% compared to 98% and unit tests 33% compared to 93%.
We seek to encourage good practices like open science and
purposeful use of software design, but these may continue to
seem like “extras” to students rather than essential practices
if further reinforcement is not implemented after the course.
Some students may also enter careers that are not software
oriented. The authors hope that by providing additional
infrastructure in the department, such as capstone projects
and collaborations with the eScience Institute, the number
of students regularly implementing these good practices after
the course will increase.

DSMCER
As shown in Figure 8a, by the end of the course students

were most confident in calculating measures of central ten-
dency (median 9.0, IQR 8.0-10.0) and simple linear regres-
sion (median 9.0, IQR 7.8-10.0). These are two concepts that
engineering students are likely to encounter even if they have
not taken a statistics course as reflected in the reported confi-
dence prior to taking the DSMCER course (median 6.5, IQR
2.0-9.0 and median 2.0, IQR 0.0-6.0, respectively). Substantial
gains in confidence were made in using a KNN classifier (me-
dian 7.0, IQR 5.0-8.2),
visualizations with Py-
thon (median 6.0, IQR
2.8-8.0), multiple linear
regression (median 6.0,
IQR 3.0-8.0), and boot-
strapping (median 6.0,
IQR 5.0-8.0). It is reas-
suring that some of the
more complicated mate-
rial in the course was
internalized, especially
the machine learning
component. Some of
the later concepts, such
as LASSO regression
and neural networks,
still felt unfamiliar to
students by the end of
the course (median 6.0,
IQR 4.0-8.0 and me-
dian 6.0, IQR 3.0-7.0,
respectively). Students
expressed that they felt
the pace of the class was
“exponential” with more

difficult topics being taught in rapid succession close to the
end of the course without sufficient time to work through and
internalize the concepts. Students wanting to implement neural
networks in their projects were not taught the concepts until
weeks 8 and 9 of the course, leaving short turn-around times
for implementation.

We found similar results for the DSMCER course in the
retrospective survey of previous cohorts. Students expressed
most confidence in measures of central tendency (median
10.0, IQR 8.8-10.0, Figure 8b), simple linear regression (me-
dian 10.0, IQR 8.8-10.0), multiple linear regression (median
10.0, IQR 7.5-10.0), and KNN classifiers (median 9.0, IQR
6.0-10.0). Confidence in multiple linear regression (from
median 10.0, IQR 7.5-10.0 to median 8.0, IQR 6.0-10.0) and
KNN classifiers (from median 9.0, IQR 6.0-10.0, to median
8.0, IQR 7.0-9.2) seems to have waned slightly with the cur-
rent cohort. Previous cohorts similarly struggled with later
concepts in the course such as neural networks (median 5.5,
IQR 5.0-8.5) and bootstrapping (median 6.0, IQR 3.8-7.5).
Previous cohorts also reported higher confidences in visu-
alization (from median 8.5, IQR 6.5-10.0, to median 10.0,
IQR 8.0-10.0), visualization with Python (from median 7.5,
IQR 5.0-9.2 to median 9.5, IQR 8.8-10.0), LASSO regression
(from median 7.0, IQR 5.0-10.0 to median 8.0, IQR 6.8-10.0)
and neural networks (from median 5.5, IQR 4.0-7.8 to median
7.5, IQR 5.0-8.5) since taking the course. These aspects of
the DSMCER course seem to have become integral to stu-
dent workflows, and confidence has increased with further

Figure 8. Confidence expressed by students on a 0-10 scale in a given set of tasks in the DSMCER
course (1. visualizations, 2. visualizations with Python, 3. central tendencies, 4. normal distribution,
5. hypothesis testing, 6. KNN classifier, 7. simple linear regression, 8. multiple linear regression, 9.
LASSO regression, 10. neural networks, 11. bootstrap) before and after the course series for both

(a) current (n = 44) and (b) previous (n = 12) cohorts.

Figure 8.

a.

b.

Vol. 54, No. 4, Fall 2020 199

Figure 9. The usefulness of key course features expressed by students on a 1-10 in the SEMDS/DSMCER course sequence.
Survey results were collected in an online survey at end of quarter. Results represent n = 44 students from n(total) = 51.

exposure. The only skillset that seems to have weakened and
seen less application since taking the course is bootstrapping
(from median 6.0 IQR 3.8-7.5 to median 5.5, IQR 4.8-8.2).

Contribution to Student Learning

We also wanted to gauge what students found most useful
for their learning throughout the course. We included a survey
outlining key components of content delivery throughout the
course and posed the question, “On a scale of 1 to 10, how
helpful were the following to your learning?” Results are
shown in Figure 9. We found that students ranked compo-
nents of GitHub in the top five contributors to their learning
experience (homework submitted via GitHub, median 9.0,
IQR 9.0-10.0 and homework feedback via GitHub issues,
median 9.0, IQR 7.0-10.0).

Post-Course Accomplishments
Students of previous cohorts reported significant accom-

plishments implementing software engineering and machine
learning methods since taking the dual course SEMDS/
DSMCER program: 42% reported accepting a software engi-
neering or data science-related job, 33% reported publishing a
paper or presenting a poster or talk implementing DSMCER/
SEMDS concepts, 42% further developed their projects
from the course, 58% reported starting new projects related
to data science, 25% took additional course work related to
data science, and 100% of students reported using Slack as a
means of collaboration. When students were asked, “SEMDS/
DSMCER helped me with my graduate work,” students re-
sponded with a mean (± standard deviation) score of 0.67 ±
0.59 on a scale of -1 (strongly disagree) to 1 (strongly agree)
as shown in Figure 10. Students were even more confident
that “SEMDS/DSMCER helped with [their] job prospects,”
responding with a mean score of 0.83 ± 0.42. Students re-
ported strongly positive results to the statements “SEMDS/

DSMCER skillsets are now an integral part of my workflow”
(mean 0.71 ± 0.56) and “I have built on my SEMDS/DSMCER
skillsets” (mean 0.79 ± 0.38).

CONCLUSIONS

We have examined how GitHub provides instructors
with an additional quantitative tool to monitor and assess
homework, project progress, and team contributions. As all
metrics are inevitably vulnerable to manipulation (i.e. “gam-
ing the system”), it is important that additional factors are
taken into account when assessing team performance, such
as peer review and manual checks. We have also assessed
student confidence in key software engineering and machine
learning concepts before and after the course, identifying
areas of strength (creating repositories, writing for loops and
functions, linear regression) and areas that could be improved
(Bash shell scripting, bootstrapping, neural networks). We
have demonstrated with data from previous cohorts that these
software engineering and machine learning skills have been
useful to students after the course for both their research and
job prospects. Finally, we have demonstrated positive student
feedback in using Slack as a primary in-class communication
tool forum.

ACKNOWLEDGMENTS

The SEMDS and DSMCER courses were developed as a
part of the NSF funded NRT-DESE: Data Intensive Research
Enabling Clean Technologies (DIRECT, award # 1633216).
We would like to thank the SEMDS and DSMCER course
teaching assistants, Caitlyn Wolf, Torin Stetina, and Theodore
Cohen for their help in course administration and for their
personal investment in the students’ education. We would
also like to thank Dr. Jim Pfaendtner for his advice while
writing the paper.

Chemical Engineering Education200

REFERENCES

1. Groen D, Guo X, Grogan JA, Schiller UD and Osborne JM (17 June
2015) Software development practices in academia: A case study
comparison. arXiv:1506.05272.

2. Geiger RS (8 June 2017) Summary analysis of the 2017 Github open
source survey. arXiv:1706.02777.

3. Hsing C and Gennarelli V (2019) Using GitHub in the Classroom
Predicts Student Learning Outcomes and Classroom Experiences:
Findings from a Survey of Students and Teachers. Proceedings ACM
Technical Symposium on Computer Science Education. 672-678.

4. Griffin T and Seals S (2013) Github in the classroom: Not just
for group projects. Journal of Computing Sciences in Colleges.
28(4):74-74.

5. Gunnarsson S, Larsson P, Månsson S, Mårtensson E and Sönnerup J
(2017) Enhancing student engagement using GitHub as an educational
tool, (Genombrottet, Lunds tekniska högskola).

6. Zagalsky A, Feliciano J, Storey M-A, Zhao Y and Wang W (2015)
The emergence of Github as a collaborative platform for education.
Proceedings ACM Conference on Computer Supported Cooperative
Work & Social Computing. 1906-1917.

7. Angulo MA and Aktunc O (2018) Using GitHub as a Teaching Tool
for Programming Courses. Proceedings ASEE Gulf-Southwest Sec-
tion Annual Meeting.

8. Sprint G and Conci J (2019) Mining GitHub Classroom Commit
Behavior in Elective and Introductory Computer Science Courses.
The Journal of Computing Sciences in Colleges. 35(1).

9. Lewis LM, Edwards MC, Meyers ZR, Talbot Jr CC, Hao H and Blum
D (2018) Replication Study: Transcriptional amplification in tumor
cells with elevated c-Myc. Elife. 7:e30274.

10. Sandve GK, Nekrutenko A, Taylor J and Hovig E (2013) Ten Simple
Rules for Reproducible Computational Research. Plos Comput Biol.
9(10).

11. Peng RD (2011) Reproducible Research in Computational Science.
Science. 334(6060):1226-1227.

12. Wilson G et al. (2014) Best Practices for Scientific Computing. Plos
Biol. 12(1):e1001745.

13. Oliphant TE (2006) A guide to NumPy, (Trelgol Publishing USA).
14. Walt Svd, Colbert SC & Varoquaux G (2011) The NumPy array:

a structure for efficient numerical computation. Comput Sci Eng.
13(2):22-30.

15. McKinney W (2010) Data structures for statistical computing in py-
thon. Proceedings of the 9th Python in Science Conference. 44551-56.

16. Fiksel J, Jager LR, Hardin JS and Taub MA (2019) Using GitHub
Classroom To Teach Statistics. J Stat Educ. 27(2):110-119.

17. Beck DA (2020) UWDIRECT/uwdirect.github.io. Zenodo.
18. O’Hara K, Blank D and Marshall J (2015) Computational notebooks

for AI education. Proceedings International Flairs Conference.
19. Wright AM, Schwartz RS, Oaks JR, Newman CE and Flanagan SP

(2019) The why, when, and how of computing in biology classrooms.
F1000Research. 8:1854.

20. Guerra H, Gomes LM and Cardoso A (2019) Agile approach to a CS2-
based course using the Jupyter notebook in lab classes. Experiment
International Conference (exp. at’19). 177-182.

21. DePratti R (2019) Using Jupyter Notebooks in a Big Data Program-
ming Course. The Journal of Computing Sciences in Colleges.157.

22. Curtis C and Wolf C (2019) UWDIRECT-2019/batch_issues:
batch_issues v1.1. Zenodo.

23. Moore JP and Ranalli J (2015) A mastery learning approach to engi-
neering homework assignments. Proceedings ASEE Annual Confer-
ence. 26.64.21 - 26.64.15.

24. Holland-Minkley AM and Lombardi T (2016) Improving Engage-
ment in Introductory Courses with Homework Resubmission. ACM
Technical Symposium. 534-539.

25. Peterson LE (2009) K-nearest neighbor. Scholarpedia. 4(2):1883.
26. Myers RH and Myers RH (1990) Classical and modern regression

with applications. Duxbury Press, Pacific Grove, CA.
27. Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput

Sci Eng. 9(3):90-95.
28. Wilson G (2006) Software carpentry: getting scientists to write better

code by making them more productive. Comput Sci Eng. 8(6):66-p

Figure 10. Student responses to the statements: SEMDS/DSMCER helped with my gradu-
ate work, SEMDS/DSMCER helped with my job prospects, SEMDS/DSMCER skillsets are
not an integral part of my workflow and I have built on my SEMDS/DSMCER skillsets.
Answers coded as “Strongly disagree”: -1.0, “Somewhat disagree”: -0.5, “ Neither agree

nor disagree”: 0.0, “Somewhat agree”: 0.5, “Strongly agree”: 1.0.

arXiv:1506.05272
arXiv:1706.02777

