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INTRODUCTION

Gilliland originally published a graphical correlation 
for estimating the number of equilibrium trays in 
rectifying columns as a function of the external reflux 

ratio.[1]  Several equations have since been proposed to model 
Gilliland’s correlation for convenient use in computational ap-
plications of the popular Fenske-Underwood-Gilliland (FUG) 
shortcut method of distillation column design.[2]  Most modern 
process simulators introduced in chemical engineering cur-
ricula, including Aspen Plus™, HYSYS®, CHEMCAD™, and 
PRO/II™, also have options for shortcut calculations that use 
a version of Gilliland’s correlation equation to calculate the 
number of distillation column trays.[3]  Chemical engineering 
textbooks on separation technologies and chemical process 
design provide the details of shortcut methods for distillation 
column design.[4,5]  An examination of published Gilliland 
correlation equations forms the basis of a case study used 
to introduce chemical engineering students to regression 
modeling and analysis in our computational methods course.  
This case study gives students practice with constructing 
and assessing an empirical model to meet the constraints of 
a problem. Topics incorporated into the case study include:

•  Graphical inspection and standardized residual 
plots for assessing model fitness.

•  Nonlinear least-squares (NLS) regression for de-
termining model parameters in new and improved 
equations for Gilliland’s correlation.

•  The versatility of rational functions for mathemati-
cal modeling.

The ubiquitous spreadsheet software Excel, with the Solver 
add-in, has all of the computational tools needed to implement 
the case study.[6]  However, this case study may be conducted 
in most general-purpose math and statistics software applica-
tions that feature optimization and graphing.

BACKGROUND
Gilliland developed a correlation between the following 

dimensionless variables (X and Y)  in terms of N, the num-
ber of equilibrium trays and R, the external reflux ratio in a 
distillation column:

where Nmin is the minimum number of trays, usually calculated 
from Fenske’s equation,[7] and Rmin is the minimum external 
reflux ratio calculated from Underwood’s equations.[8]  Gil-
liland’s correlation may be used to design for the optimal 
number of theoretical trays at a given reflux ratio or the opti-
mal reflux ratio when retrofitting an existing tray column.[9,10] 
Given X calculated from R and Rmin, a value for Y is determined 
from Gilliland’s correlation, which is then used to calculate 
the number of theoretical trays by solving Eq. (1) for N;

A similar approach may be followed to determine R given 
N from the inverse Gilliland correlation for X in terms of 
Y.  For example, Lotter and Diweker,[11] Liu, Jobson, and 
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Wahnschafft,[12] and Garcia, Loria, Marin, and Quiroz[13] have 
developed shortcut methods of analysis for batch distillation 
columns that rely on inverse Gilliland correlations to predict 
the reflux ratio for a specified number of trays.

The Gilliland correlation has theoretical limits of Y = 1 at 
X = 0 and Y = 0 at X = 1, corresponding to minimum and infi-
nite reflux, respectively. In the approach to Rmin in Gilliland’s 
correlation, the change in Y with X goes to negative infinity:

To help students visualize these limiting conditions, we 
review the McCabe-Thiele graphical method of binary dis-
tillation column design [2,4] where we determine Rmin from 
the slope of the rectifying line that intersects the feed tray 
at the pinch point on the vapor-liquid equilibrium curve, as 
shown in Figure 1.  Students observe how stepping off the 
number of trays increases exponentially towards infinity as R 
approaches Rmin.  Students also see how increasing the reflux 
ratio translates to a steeper slope of the rectifying line, which 

has the effect of decreasing the number of trays, hence the 
negative sign in Eq (4).

The graphical correlation originally produced by Gilliland 
is not amenable to modern implementation of shortcut dis-
tillation column design and analysis methods in computer 
applications such as process simulators.[14]  Several equations 
reproduced in Table 1 have been reported and reviewed in 
the literature to model the data in Gilliland’s graphical cor-
relation for use in computational applications.[14,17, 22,25] Cited 
weaknesses of these models include complicated functions, 
limited ranges of accuracy, and a lack of fit to the theoretical 
end conditions.  Complicated functions require multiple equa-
tions combined piecewise to cover the complete range of X, 
or they may involve nonlinear transcendental functions that 
exclude an analytical inverse of the equation for X in terms 
of Y.  Most authors acknowledged the limitations of their 
equations and reported a compromise between simplicity, 
range of application, and accuracy of the fit.[24]

Our case study uses Gilliland’s correlation to demonstrate 
regression analysis.  We begin with a review of the published 

TABLE 1 
 Published Gilliland correlation model equations and assessment statistics. 

Name Gilliland Equation for Y (X Range of application) AAD MAD ±U95% R2 

Harg [15] ( ) 1 30 1 1Y X X≤ ≤ = −  0.035 0.097 0.088 0.930 

Hengstebeck [16] 
( ) 2

3 4

log 0.02 0.8 1.364 3.092log 3.407log

1.747log 0.3327log

Y X X X

X X

< < = − − −

− −
 0.034 0.075 0.087 0.939 

Rusche [17] ( ) 0.29100 1 1 0.1256 0.8744Y X X X≤ ≤ = − −  0.025 0.088 0.068 0.959 

Hohmann [18] ( ) 0.65 0.500.02 0.8
1 1.25

XY X
X

−
< < =

+
 0.020 0.049 0.050 0.979 

Al-ameeri [19] ( ) ( )
0.096 0.25

0.096 0.25

1 10 0.5 ; 0.5 1
1 0.8 1 0.42

X XY X Y X
X X

− −
≤ ≤ = < ≤ =

− −
 0.019 0.072 0.053 0.977 

Chang [20] ( ) ( )0.10 1 1 exp 1.490 0.3150 1.805Y X X X −< ≤ = − + −  0.018 0.062 0.047 0.982 

Molokanov [21] ( ) 1 54.4 10 1 1 exp
11 117.2

X XY X
X X

⎡ ⎤+ −⎛ ⎞⎛ ⎞< ≤ = − ⎢ ⎥⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎣ ⎦
 0.018 0.056 0.047 0.981 

Eduljee [22] ( ) ( )0.56680.02 1 0.75 1Y X X< ≤ = −  0.017 0.052 0.045 0.982 

Van Winkle [23] 
( )
( ) 2 3

0.02 0.125 0.5039 0.5968 0.0908log

0.125 0.8 0.6257 0.9868 0.516 0.1738

Y X X X

Y X X X X

< < = − −

≤ < = − + −
 0.017 0.046 0.047 0.984 

Liddle [24] ( )0.02 0.8 0.545827 0.591422 0.002743Y X X X< < = − +  0.016 0.051 0.044 0.984 

McCormick [25] ( ) 0.0456ln 0.440.02 1 1 XY X X +< ≤ = −  0.016 0.045 0.040 0.986 
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model equations of Gilliland’s correlation in terms of accu-
racy, fit, and completeness.  We then show how to improve 
the models with an example of NLS regression and calculate 
the uncertainty of the model fit with the data.  Finally, we 
construct a new and improved model of Gilliland’s correlation 
using a versatile rational function.
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Figure 1. Example of McCabe-Thiele graphical 
analysis of binary distillation at minimum reflux 
showing an infinite number of equilibrium stages.

TABLE 2 
Excel worksheet formulas for calculating results of regression analysis where YG and Y represent 
ranges of cells on the worksheet that contain Gilliland’s data and the corresponding model values, 
respectively. n is the number of data pairs and k is the number of model parameters. 

Property Name Calculation Excel Worksheet Formulas 
Range of Residuals * r	 GY Y−  =	Y	–	YG	

Average Absolute Deviation * AAD	
1 r
n∑

	 =	AVERAGE(ABS(r))	

Maximum Absolute Deviation * MAD	 Max r 	 =	MAX(ABS(r))	

Residual Sum of Squares RSS	
2
i

i
r∑ 	 =	SUMSQ(r)	

Total Sum of Squares* TSS	 ( )2G G i
i
Y Y−∑ 	 =	SUMSQ(YG	–	AVERAGE(YG)	)	

Degrees of Freedom DOF	 n k− 	 =	n	–	k	
Standard Deviation of the Fit s	 RSS DOF 	 =	SQRT(RSS/DOF)	
Coverage Factor for 95% Confidence t95%	 	 =	TINV(0.05,	DOF)	
Expanded Uncertainty ±U95%	 t s⋅ 	 =	t95%*s	
Coefficient of Determination R2	 1 RSS TSS− 	 =	1	–	RSS/TSS	

∗ Excel worksheet array operations on cell ranges require the keyboard combination  
CTRL SHIFT ENTER. 

 

MODEL ANALYSIS
We organize the model analysis and assessment into three 

steps for the students to follow when comparing the current 
Gilliland correlation equations and for new models in general:

1. Calculate model assessment parameters, including 
the average absolute deviation (AAD), maximum 
absolute deviation (MAD), and expanded uncer-
tainty (U), as defined in Table 2 with their corre-
sponding Excel worksheet formulas.

2. Plot the model with the data for inspection of the 
quality of the fit.

3. Plot the standardized residuals to check for a nor-
mal error distribution and potential outliers.

4. Modify the model as necessary to improve the fit.

The published Gilliland equations in Table 1 are sorted 
in terms of the average absolute deviation and maximum 
absolute deviation relative to the values of the Y variable 
correlated by Gilliland. Gilliland’s correlation data cover 
a range of N-tray columns operating at optimal reflux.[1]  A 
deviation is the residual error of the model at a data point.  
We also included the uncertainty in the model fit at the level 
of 95% confidence and the coefficient of determination.  The 
Rusche, Harg, and Hengstebeck equations have the lowest 
accuracy of prediction in terms of the AAD > 0.02, MAD > 
0.07, and ± U95% > 0.068.
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None of the Eduljee, McCormick, Liddle, Hengstebeck, 
Hohmann, and Van Winkle equations properly incorporate the 
theoretical conditions at the limits of X = 0 or X = 1.  Upon 
inspection of the plots of the McCormick and Hengstebeck 
equations, students discover that their functions reverse direc-
tion away from Y = 1 toward Y = 0, as illustrated in Figure 2 
for the McCormick equation, and thus must never be used 
for X < 0.02. 

Only the Harg, Rusche, Chang, Molokanov, and Al-ameeri 
equations meet all the theoretical end conditions.  The Molo-
kanov and Chang equations satisfy the reflux condition at X 
= 1 and Equation (4) at X = 0, but are indeterminate at X = 
0 without some form of intervention, such as adding a small 
number to X near X→0 or using conditional statements that 
sets Y = 1 at X = 0.
The Eduljee, Liddle, Al-ameeri, Harg, McCormick, and 
Hohmann equations have convenient explicit functions for 
determining the optimal reflux ratio from X in terms of Y. 
The remaining nonlinear Gilliland equations are implicit in 
X and require numerical root-finding methods for calculating 
values of X at specific values for Y.

From their previous experience with linear least squares 
(LLS) regression and interpolation, students are typically 
satisfied with a model when R2 > 0.90.  However, all of the 
published models have R2 ≥ 0.93, with most at R2 ≥0.98 having 
one to six model parameters. R2 should not be used to assess 
NLS results.  In the next step of our analysis, we use residual 
plots to assess how well the models capture the behavior of 
Gilliland’s correlation.[26]

Standardized residuals are calculated by dividing the model 
residual error at each data point i by the standard deviation 
of the model fit:

where Y and YG are the Gilliland model equation and corre-
sponding Gilliland data value at point i.  Excel’s Regression 
Analysis add-in tool has the option for plotting residuals 
and calculating standardized residuals from ordinary LLS 
regression.  Unfortunately, Excel does not have a similar 
add-in tool for NLS regression analysis – we must perform 
these calculations in a worksheet and generate the plots for 
nonlinear least squares regression results.

Valid models typically show a normal random distribu-
tion of the standardized residuals about the X-axis with no 
discernable pattern or trend.  Potential outliers in the data 
are identified by standardized residuals that fall well outside 
the range of ± 2, which approximates the ± 95% confidence 
interval of the model fit.[27]  Values of MAD greater than the 
expanded uncertainty indicate potential outliers in the data 
relative to the model.  Several of the models in Table 1 develop 
discernable patterns in the plots of the residual errors that 
are not normally distributed or indicate significant outliers, 
including the often-recommended equations of Molokanov, 
Liddle, and Eduljee.[2,4,5]

We use the relatively simpler Eduljee and Rusche equa-
tions from Table 1 to illustrate the steps of model building 
and regression analysis. Eduljee [22] showed that Y correlates 
with a transformed X with an exponent, Xm, in the following 
log-linearized form:

Eduljee determined the value of the exponent m from the 
slope of the line through the plot of the log-linearized data, as 
shown in Figure 3.  However, Eduljee recommended increas-
ing the value of the coefficient from a0 = 0.72 to a0 =  0.75, 
as shown in Table 1, to enhance the accuracy of the model 
at Rmin where the theoretical end conditions at X = 0 are not 
satisfied by Eq 6.

Figure 2. Comparison of McCormick’s equation with Gil-
liland’s correlation at the low end of X. where the model 

diverges from the correlation.

Figure 3. Eduljee’s log-log plot [16] showing the exponential 
relationship between Y and X in the range of Gilliland’s data 

with parameters a0 = 0.72 and m = 0.5668.
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Rusche [17] enhanced the form of Eduljee’s equation to the 
following expression that matches all the theoretical end 
conditions without additional model parameters:

Eq. (7) is specifically arranged to allow students to quickly 
ascertain that Y = 1 when X = 0, Y = 0 when X = 1, and the 
limit at minimum reflux in Eq. (4) requires 0 < m < 1.  Rusche 
determined the model parameters by solving simultaneous 
model equations evaluated at a pair of points read from Gil-
liland’s published graphical correlation.

In the first step of Rusche’s model validation, students plot 
the model equation with Gilliland’s data to inspect the fit in a 
Y versus X scatter-plot as shown in Figure 4.  Rusche’s model 
performs reasonably well at matching the overall trend in the 
data. However, students observe that the model overshoots 
the data at low X and undershoots Gilliland’s data for X > 
0.3.  The standardized residuals for Rusche’s model plotted 
versus X in the second graph of Figure 4 confirms the lack of 
fit as indicated by a discernable trend in the residuals and an 
outlier well outside of ± 2.

NONLINEAR LEAST SQUARES 
REGRESSION

The method of NLS regression is recommended to the stu-
dents for improving Rusche’s model of Gilliland’s correlation 
to fit Gilliland’s data.  We use the Generalized Reduced Gra-
dient option in Excel’s Solver with multi-start to implement 
NLS regression in an Excel worksheet to find new Rusche 
model parameters that minimize the RSS, defined in Table 2. 
Using NLS regression, students find the following improved 
version of Rusche’s equation that has superior properties 
relative to all the previously published versions in terms of 
smallest AAD = 0.016, MAD = 0.042, and U95% = 0.040, and 
incorporates all the theoretical end conditions:

Scatter plots of the improved Rusche equation with Gil-
liland’s data and the standardized residuals in Figure 5 show 
random normally distributed residuals and no significant outli-
ers.  However, students observe that the largest standardized 

Figure 4.  Rusche’s original model compared with Gillil-
and’s data with the corresponding standardized residual plot 
showing a lack of fit as indicated by a distinct pattern in the 

residual distribution and an outlier.

Figure 5. Improved Rusche model compared with Gilliland’s 
data with the standardized residual plot showing a normal 

error distribution and no significant outliers.
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residual lands just outside of ± 2.   We then apply the following 
Grubbs’ test [27] to the maximum residual for an additional 
check, which fails to indicate an outlier:

where r is the range of model residuals (Y – YG), r  is the 
average of the model residuals, n is the number of residuals, 
and tg is the critical value of a two-tailed t-distribution with g 
= 0.05/2n and (n - 2) degrees of freedom at 95% confidence. 
Refitting Rusche’s equation to Gilliland’s data by NLS regres-
sion moved it from its position among the lowest-performing 
equations in Table 1 to the current best equation in terms of 
the assessment statistics. 

As a class, we then discuss the strengths and weaknesses 
of the current collection of Gilliland model equations.  The 
students settle on the following features to screen for potential 
new and improved equations to represent Gilliland’s graphical 
correlation that:

1. Improve the fit with a small number of model 
parameters relative to current equations.

2. Employ a single, continuous function for the 
complete domain of the reflux ratio, 0 ≤ X ≤ 1, that 
matches all the theoretical end conditions for Gil-
liland’s correlation.

3. Have a convenient analytical inverse explicit func-
tion for X in terms of Y.

NEW MODELS

For the last part of the case study, we introduce the rational 
function as a utilitarian modeling equation that generally 
outperforms polynomials.[28]  For comparison, we start with 
second- and third-order polynomial expansions of Eduljee’s 
Xm model written in a form that satisfies the screening criteria. 
The results are shown in Table 3 along with the result for a 
rational model described later.  We factor out the (1 − Xm) 
Eduljee term for easy inspection to confirm that these forms 
of polynomial and rational equations satisfy all the theoreti-
cal end conditions when 0 < m < 1.  Normally, we can use 
Excel’s Regression add-in to fit polynomials by ordinary LLS 
regression.  However, the transformed independent variable 
with the adjustable parameter m in the exponent requires 
NLS regression. We use Excel’s Solver to minimize the RSS.

Using NLS regression, we find that the second-order 
polynomial does not improve the fit when compared with the 
improved Rusche model and has a potential outlier, but does 
have an analytical solution by applying the quadratic formula. 
Plots of the model with the data and standardized residuals 

shown in Figure 6 indicate the lack of fit with Gilliland’s data. 
The third-order polynomial substantially improves the fit with 
a normal distribution of residuals and a minor outlier (plots 
not shown), but at the cost of an additional model parameter 
and an implicit function in X.

Convergence acceleration of a power series by Padé’s meth-
od [29] suggests substituting a rational function consisting of the 
ratio of lower-order polynomials for the power series in the 
polynomials in Table 3.  Hohmann and Lockhart recognized 
the versatility of rational functions for modeling several physi-
cal and graphical relations important to chemical engineering, 
including Gilliland’s graphical correlation.[18]  When compared 
to polynomials, rational functions can accommodate a wider 
variety of nonlinear trends in the data using the same or fewer 
number of model parameters.  Rational functions also have 
asymptotic properties not found in polynomials.  In general, 
rational functions tend to give the best fit when the orders of 
the polynomials in the numerator and denominator differ by 
no more than one.[29]

Figure 6. Second-order polynomial compared with Gilliland’s 
data with the corresponding standardized residual plot show-
ing a pattern in the residual error distribution and an outlier.
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Al-ameeri and Said [19] proposed a rational equation as the 
ratio of two first-order functions in Xm.  However, instead of 
fitting Gilliland’s data, they determined the values for their 
model parameters from the simultaneous solution to a pair 
of algebraic equations created from two pairs of values for X 
and Y calculated with the Molokanov equation.[21]   To achieve 
good accuracy relative to the Molokanov equation, they 
determined to apply their model piecewise in two separate 
elements in the range 0 < X < 0.5 and 0.5 ≤ X < 1.

The success of the third-order polynomial prompts us to 
accelerate the improvement in the fit with a simpler two-
parameter rational function with the NLS regression result 
in Table 3.  Figure 7 has plots of the new rational model 
with Gilliland’s correlation data and standardized residuals 
showing a good fit, a random normal residual error distribu-
tion, and no significant outliers (also confirmed by Grubbs’ 
test).  The new rational equation matches the quality of the 
fit of the improved Rusche equation in all measures, with a 
slightly smaller MAD, but with the advantage of an analytical 

inverse. The algebra for calculating the inverse of the rational 
equation for X in terms of Y makes it relatively easy to arrive 
at the following result:

STUDENT RESPONSES

As a class, we discuss the merits of the new and improved 
Gilliland correlation equations relative to previously pub-
lished equations.  The class recommends the new two-pa-
rameter rational equation for modeling Gilliland’s correlation 
with the benefits of good accuracy, simpler calculations, and 
an explicit function in X.  As part of their standard course 
evaluation, forty-eight students were surveyed on the impact 
of the Gilliland modeling case study for learning modeling 
and assessment with the following responses:

TABLE 3 
New and improved Gilliland correlation model equations and assessment statistics. 

Name Gilliland Equation for Y(0 ≤ X ≤1) m AAD MAD ±U95% 

Polynomial Order 2m ( )( )1 0.41 1m mY X X= + −  0.26 0.028 0.104 0.075 

Polynomial Order 3m ( )( )21 0.32 1.7 1m m mY X X X= − + −  0.19 0.016 0.044 0.040 

Rational 1
1 0.99

m

m

XY
X

−
=

−
 0.0031 0.016 0.040 0.040 

 

Figure 7.  Rational model compared with Gilliland’s data with the corresponding standardized residual 
plot showing a normal error distribution and no outliers.
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•  Nearly all of the students had experience with basic 
Excel worksheet calculations and graphing before 
participation with this case study.

•  A majority of the students were familiar with 
Excel’s “Add Trendline” feature for fitting and 
graphing polynomial models of plotted data by 
LLS regression and displaying R2.

•  None of the students had used the Solver add-in 
tool for NLS regression.

•  The class responded positively to learning how to 
use convenient features of Excel for data modeling 
and analysis using standardized residual plots.

•  All of the students liked the Gilliland model-
ing case study because it applied the methods of 
regression analysis to a familiar correlation from 
their textbooks and chemical process simulators.

•  Prior to this case study, the students were used to 
using polynomials for data interpolation and did 
not feel confident about rearranging equations or 
picking parameters to match end conditions.

•  The class was surprised to discover new and 
improved equations for Gilliland’s correlation not 
reported in the chemical engineering literature. The 
model assessment uncertainty results gave the class 
a sense of the limitations of short-cut methods for 
sizing distillation columns.

•  The class did not enjoy the work required to con-
duct the regression analysis for all of the equations 
in Table 1. They recommended practicing the steps 
of regression analysis on just two additional model 
equations from Table 1 that highlight different 
steps of the analysis.

•  One group asked for a simple example problem 
that uses the FUG shortcut design method to illus-
trate the utility of the result. FUG shortcut prob-
lems are available from their textbooks on separa-
tion processes and process design.[2,4] The shortcut 
problems also give the students additional practice 
using root-finding methods that were introduced 
earlier in this course.

For instructors, the Excel workbook with Gilliland’s data 
used for the case study is available for download: https://sites.
google.com/d.umn.edu/cee/home.  In a more advanced ver-
sion of this case study, we have used studentized residuals [27] 
for detecting outliers and the robust method of least absolute 
deviation regression [30,31] that is less sensitive to outliers but 
requires a global optimization method, such as the evolution-
ary genetic algorithm option in Excel’s Solver.  Studentized 
residuals are calculated by dividing the ith residual by the 

mean squared error of the residuals with the ith residual 
deleted.  We have also used the adjusted R2 for linear least 
square regression models and Akaike’s information criterion 
[32] to compare models from linear and nonlinear least squares 
regression to discuss the topic of overfitting the data with 
higher order polynomials and rational functions. The case 
study may be useful in other courses where the limitations of 
short-cut methods are discussed for distillation column siz-
ing, such as separation processes or chemical process design.

CONCLUSIONS

A case study of regression analysis based on NLS model-
ing Gilliland’s correlation was described for use in our com-
putational methods course. The case study uses a familiar 
correlation from short-cut distillation design and analysis 
to train students in NLS regression modeling and to use 
standardized residual plots for model assessment. Previ-
ously published equations for Gilliland’s correlation were 
improved by refitting Gilliland’s data using NLS regression. 
Previously unpublished uncertainty information is also pro-
vided for the correlations. The students use NLS regression 
analysis to find a new two-parameter rational equation that 
is superior to previously reported Gilliland equations as the 
only model that meets all the practical screening criteria 
without compromise. The rational function applies over the 
complete domain of reflux ratios, 0 ≤ X ≤ 1, incorporates all 
of the theoretical limits for Y at minimum and infinite reflux, 
has improved accuracy relative to Gilliland’s data with the 
lowest average and maximum absolute deviations, and has 
a convenient explicit expression for the inverse function of 
X in terms of Y for calculating the optimal reflux ratio of an 
existing column. The new and improved rational equation for 
Gilliland’s correlation is recommended for implementation in 
shortcut methods of distillation column design and analysis.
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