
Chemical Engineering Education202

Membrane separation processes, from reverse osmosis 
to ultrafiltration to microfiltration, are gradually re-
ceiving more and more emphasis in undergraduate 

chemical engineering curricula. Of these processes, ultrafiltra-
tion tends to be the most amenable to the standard chemical 
engineering approach of theory development, mass and/or 
energy balancing, and subsequent problem solving, whether it 
be process design, process analysis, or process optimization.[1]

Ultrafiltration is in many ways the perfect chemical engi-
neering subject from a teaching perspective: the underlying 
theory – concentration polarization—is couched in the famil-
iar language of mass transfer and it is not particularly com-
plex; but the application of the theory to batch, fed-batch, and 
continuous systems provides many opportunities for problem 
solving and creative thinking. Furthermore, it turns out that 
the solution of ultrafiltration problems usually requires the 
student to apply his or her knowledge of numerical methods, 
whether this involves the numerical solution of ordinary dif-
ferential equations, numerical integration, or the numerical 
solution of non-linear algebraic equations.

Reverse osmosis tends to be a little more challenging, requir-
ing a deeper understanding of both multi-component solution 
thermodynamics and intra-membrane transport, and so the 
coverage of this process in undergraduate programs, and in unit 
operations textbooks, tends to be brief and a little superficial.

Like all solid-liquid separation processes, microfiltration, 
especially crossflow microfiltration, suffers from the problem 
that the underlying theory is far less rigorous than is the case 
with ultrafiltration. Consequently, coverage of this topic tends 

to go little beyond the classic methods develop by Ruth when 
the theory of dead-end filtration was first formulated back in 
the 1940s.[2]

Pervaporation is a less well-known membrane separation 
technique that is used mainly for the removal of small quan-
tities of water from organic solvents. In pervaporation, hot 
liquid enters the module, which is operated in single-pass 
mode, and the solute transfers preferentially through the mem-
brane. Transport through the membrane occurs in the vapor 
phase. While a large body of academic research exists into 
the precise mechanism of vapor transport through pervapo-
ration membranes, less emphasis has been put on chemical 
engineering analyses to predict the performance of existing 
pervaporation modules, or to aid in the design of new ones. 
Nonetheless examples of pervaporation calculations are to be 
found in some well-known unit operations textbooks. In the 
third edition of his textbook, Wankat[3] has employed mass 
and energy balances, and the assumption of perfect mixing, 
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to conduct both feasibility and membrane area calculations. 
In contrast, Henley, et al.[4] emphasize the calculation of 
component permeances from flux and activity coefficient data.

The purpose of this paper is to outline a simple design meth-
odology for calculating the area of a single-stage, single-pass 
pervaporation system, a methodology that will be accessible 
to undergraduates. The approach we present requires no new 
knowledge of the precise mechanism of vapor transport in the 
membrane and employs standard mass and energy balances 
that will be very familiar to chemical engineering students in 
their junior and/or senior years.

MODEL DEVELOPMENT
The key assumptions in the proposed method are that the 

mass flux through the membrane is a linear function of the 
solute mass fraction in the liquid phase and that it exhibits 
an Arrhenius dependence on temperature. These properties 
of the pervaporation flux are commonly observed.[5-8] Thus 
we propose the following expression for the flux:

J = xJ0e
− E j /RT 1( )

where J is the flux, J0 is the maximum possible flux (i.e., 
the flux as T→ ∞ ), x is the local liquid composition (mass 
fraction), Ej is the activation energy of permeation, R is the 
ideal gas constant and T is the absolute temperature. Now let 
 �m be the local liquid mass flowrate in the module. Then the 
differential mass balance for the liquid phase can be written

d �m
dA

= −J 2( )

where dA is the differential area and J is the local flux. The 
total area of the membrane is given by

A = d �m
J�m r

�m f

∫ 3( )

where  �mr denotes the mass flowrate of the retentate and  �mf is 
the mass flowrate of the feed. Therefore, using Eq. (1) we get

A = d �m
xJoe

− E j /RT
�m r

�m f

∫ 4( )

Now the solute balance can be written

d x �m( )
dA

= −Jy 5( )

where y represents the composition of the permeate. To keep 
things simple we assume that the permeate is pure solute, 
i.e., y =1.

Now using the product rule and combining Eqs. (2) and
(5) gives

dx
d �m

= 1− x
�m

6( )

Separating variables gives

dx
1− xz

x

∫ = d �m
�m�m f

�m

∫ 7( )

where z is the liquid feed composition. Integrating gives

x =1− 1− z( ) �mf

�m
8( )

Now a heat balance for the system can be written

d �mcp T( ) = −JhvdA 9( )

where cp is the specific heat capacity of the liquid and hv is 
the specific enthalpy of the vapor.

Neglecting the effect of temperature and composition on cp 
(for now) we can combine this expression with Eq. (2) to give

cp T+ �mcp

dT
d �m

= hv 10( )

Separating variables gives

cpdT
hv − cp T

= d �m
�m�m

�m f

∫
Tf

T

∫ 11( )

Where Tf is the feed flowrate. Putting aside the temperature de-
pendence of hv (for now) we can integrate this expression to give

T = hv

cp

− hv

cp

− Tf











�mf

�m
12( )

The final expression for the membrane area then becomes

A = d �m

xJ0 exp −E j / R hv

cp

− hv

cp

− Tf











�mf

�m























�m r

�m f

∫ 13( )

Now defining 
 s = m� / m� f and p = m� p / m� f, where m� p is the 

permeate mass flowrate, we get the following expression 
for the dimensionless membrane area ( Â ):

Â =
AJ 0

�mf

=
exp a

b − b −1( ) / s











1− 1− z( ) / s1−p

1

∫ ds 14( )

where

a =
E j

RTf

15( )

and

b = hv

cp Tf

16( )

and where the physical properties are temperature- and 
composition-averaged values.
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where cp is the specific heat capacity of the liquid and hv is 
the specific enthalpy of the vapor.

Neglecting the effect of temperature and composition on cp 
(for now) we can combine this expression with Eq. (2) to give

Separating variables gives

where Tf is the feed temperature. Putting aside the temperature 
dependence of hv (for now) we can integrate this expression to give

The final expression for the membrane area then becomes

Now defining  is the 
permeate mass flowrate and p is the cut, we get the following 
expression for the dimensionless membrane area (Â):

where

and

and where the physical properties are temperature- and 
composition-averaged values.
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Box 1 Example Problem
Problem Statement
A 0.1 mass fraction water-in-ethanol solution is to undergo pervaporation. The feed is heated to 370K and p is 0.03. 

The activation energy for pervaporation is 30,000 J/mol. If J0 is 3.0 3 106 kg/m2h, calculate the membrane area required 
per unit mass flowrate of feed, i.e., A/ �mf

You may assume that the specific heat capacities are related to temperature by an equation of the form[9]

cp=A+BT+CT2+DT3

The constants for water and ethanol are given below, where cp is in J/kgK and T is in K.
        A      B          C        D
 Water       5109.8  -2.218     -0.01171  2.97310-5

 Ethanol        1288.1  7.892     -0.02640  3.91310-5

You may also assume that the specific heat capacity of the solution at any given composition
is a weighted average of the pure component values.
The specific enthalpy of water vapor can be computed using the following expression

hv=724.3T0.221

where T is in K and hv is in kJ/kg

Solution
With p = 0.03, z = 0.1, and y = 1, a component balance on the water gives xr = 0.072. Now, to
calculate the value of Tr, we follow the procedure shown below:

• Calculate the average specific heat capacity as

     
cpav = cpw

0.1+ 0.072
2







+ cpe

0.9 + 0.928
2









 where the pure component specific heats are evaluated at Tf.

•  Calculate hv at Tf

•  Calculate Tr using Eq. (12)

•  Re-calculate the physical properties using the average temperatures and compositions in the module

•  Re-calculate Tr using Eq. (12)

•  It is unlikely that further iterations will be required and, in fact, there is very little loss in accuracy if the 
physical properties are simply computed at the feed temperature and the iterative procedure omitted  
altogether.

In this case, we converge to Tr = 350.7K giving cpav = 2676 J/kgK and hvav = 2660 kJ/kg. With these values, we find a 
= 9.752 and b = 2.687. Thus the integral to be computed can be written

      

AJ0

�mf

= e
9.752

2.687−1.867 /s

1− 0.9 / s
ds

0.97

1.0

∫

We chose to use WolframAlpha to evaluate the integral. Thus we enter:
Simpsons Method exp(9.752/(2.687-1.687/x))/(1-0.9/x) from 0.97 to 1.0
Thus we get

      

A
�mf

= 8048
3.0 ×106

= 0.003 m2

kg / h
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An alternative and approximate approach to doing the area cal-
culation, one that avoids the numerical integration step, is to write

where Jav is the average flux in the module.
Expanding on similar work in our laboratory in which we 

examined pervaporation design in systems with composition-
independent flux,[5] we have conducted a large number of 
membrane area and average flux calculations for both water-
ethanol and water-IPA systems where the flux is described by 
Eq. (1). In our calculations, values of p up to 0.05 were chosen, 
giving values of xr /z between 0.175 and 0.9. For water-IPA, 
the water mass fraction ranged from 0.01 to 0.16 while for 
water-ethanol it ranged from 0.01 to 0.1. Feed temperatures 
ranged from 350K – 395K. Ej values ranged between 15,000 
J/mol and 63,000 J/mol. For both systems, we found that the 
average flux can be computed to within an accuracy of 8% 
by writing

J av = J f J r 18( )

where Jr is the flux evaluated at the retentate temperature. 
Figures 1 and 2 illustrate the accuracy of the geometric mean 
approximation for both systems.

Use of the geometric mean approximation, which is analo-
gous to Cheryan’s arithmetic mean approximation used in 
batch ultrafiltration,[10] simplifies the calculation outlined in 
the above example and can be used if the instructor wishes 
to avoid the numerical integration step. For the data used in 

the example problem above, the geometric mean approach 
yields a value for  of 7950 which is within 2% of the 
exact answer.

Finally, an alternative approach to solving the pervaporation 
design problem is to approach it as one requiring the solution 
of a system of ordinary differential equations. It would be a 
useful exercise for the students to show that the model can 
be expressed in dimensionless form as shown in Box 2. This 
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approach to pervaporation design that 
should not overly stretch junior- and 
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we have assumed a linear relationship 
between flux and composition, other 
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For example, there is evidence to suggest 
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dÂ

= − 1
m̂

b − T̂( )xe− a /T̂ with T̂ =1@Â = 0
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