
Chemical Engineering Education230

ChE class and home problems

PROGRAMMATIC COMPILATION OF
CHEMICAL DATA AND LITERATURE FROM

PUBCHEM® USING MATLAB®

Vincent F. Scalfani, Serena C. Ralph, Ali Al Alshaikh, and Jason E. Bara
The University of Alabama • Tuscaloosa, AL 35487.

© Copyright ChE Division of ASEE 2020

INTRODUCTION

Chemical engineering and chemistry are among the most
information-intensive disciplines; chemical problem
solving and discovery require access to numerous data

classes such as chemical structures, reactions, characteriza-
tion data, and property data. As a result, many extensive
secondary literature and data compilations are produced
that organize chemical information and facilitate discovery
(e.g. CAS SciFinder®).[1, 2] The demand for data, specifically
machine-readable chemical data, is rapidly increasing as new
informatics and machine-learning techniques are applied to
discover knowledge in drug discovery, chemical and materials
synthesis, and catalysis research.[3–7]

Machine-readable data processing, real-time data acqui-
sition, modeling, calculation, and analysis techniques are
established in chemical engineering education using MAT-
LAB®,[8–12] Mathematica®,[13] and Python®.[14, 15] However,
literature searches and property dataset compilations are still
largely a manual process; that is, bibliographic references and
datasets in chemical engineering are typically discovered and
prepared outside of any programmatic data processing work-
flow. This is unfortunate, as numerous databases such as Pub-
Chem®[16] and Engineering VillageTM[17] allow programmatic
access to machine-readable chemical data and/or literature
metadata. As programmatic information access continues to
grow and evolve, this presents a unique opportunity for chemi-
cal engineering to advance reproducibility by incorporating

Class and Home Problems (CHP) present scenarios that enhance the teaching of chemical
engineering at the undergraduate or graduate level. Submissions must have clear learning
objectives. CHP papers present new applications or adaptations that facilitate learning in
specific ChE courses. Submit CHP papers through journals.flvc.org/cee, include CHP in

the title, and specify CHP as the article type.

literature searches and data compilations directly into existing
programmatic analysis workflows.[18]

Over the past several years, the use and awareness of com-
putational notebooks in research have grown tremendously.
Computational notebooks are interactive digital laboratory
notebook environments that allow users to mix code, data,
results, text, and images all in one professionally formatted and
easily shareable document.[19, 20] Examples include Mathemat-
ica® notebooks,[21] Jupyter® notebooks,[22] and MATLAB live
scripts.[23] Even text markup languages can be configured and
used like computational notebooks.[18, 24] Computational note-
book methods can be ideal workflow tools for programmatic
reproducible literature searching and information sharing. For
example, Kitchin has developed a software library, org-ref, that
can be used within a markup language computational notebook
to programmatically search and cite references from databases
like Web of ScienceTM and PubMed®.[25] Moreover, Rose and
Kitchin have recently released a Python software package,
pybliometrics, that allows programmatic and reproducible ac-
cess to information in the Scopus® database.[26] Python code is
easily incorporated into Jupyter computational notebooks and
provides a convenient way to document and share reproducible
programmatic literature searches and analyses.[27] Another re-
cent example of programmatic literature searching uses Jupyter
notebooks as a platform for teaching computer-aided drug
design. Two of the notebooks allow programmatic retrieval

Vol. 54, No. 4, Fall 2020 231

of chemical data from the ChEMBL database and the Protein
Data Bank.[28] Such programmatic searching of information
resources and subsequent incorporation or combination with
scientific manuscripts greatly enhances the reproducibility
and transparency of the research.[29]

In this paper we extend these ideas of programmatic lit-
erature and data compilations by demonstrating how to use
MATLAB and MATLAB live scripts to compile chemical data
and literature from PubChem. PubChem contains millions
of molecules, associated literature, and bioactivity data.[16, 30]

Users can compile custom PubChem datasets by saving search
results from the traditional web interface or by bulk down-
loading data from the PubChem FTP file site.[31] PubChem
also offers programmatic access to data, for example, through
their Power User Gateway application programming interface
(PUG-REST).[32, 33] Some examples of how to interact with
PubChem programmatically are available as Perl scripts[33]

and within programming packages such as PubChemPy[34]

for Python and webchem for R.[35] We find the MATLAB
platform ideal for brand new programmers, students, and
information professionals since MATLAB has simple, com-
pact syntax, excellent documentation, and requires minimal
setup. In addition, many chemical engineering students and
faculty are already familiar with MATLAB, so it is a good
place to start. The methods presented herein are useful in
chemistry and chemical engineering education, specifically
to enhance student data/literature searching and interaction
with machine-readable chemical data.

INTERACTING WITH PUBCHEM
PROGRAMMATICALLY

In what follows we provide a step-by-step approach for
utilizing MATLAB with PubChem, along with the relevent
MATLAB code. Figure 1 orients the reader on the steps in
the process.

STEP 1: Identify Chemical Search Query
Before beginning to interact with PubChem programmati-

cally, it is useful to briefly review popular methods of encod-
ing molecular structures and patterns as line notation text
strings. Text string encoded molecular structures provide a
convenient way to construct programmatic database queries in
PubChem and other chemical databases. The two most widely
used and supported chemical line notations are the Simplified
Molecular Input Line-Entry System (SMILES)[36, 37] and the
IUPAC International Chemical Identifier (InChI).[38] SMILES
are machine-processable molecule structure representations
with a defined, often human-friendly, character syntax for
encoding features of molecules. There are relatively few
rules to understand the bulk of the SMILES syntax to encode

atoms, bonds, branching, and rings. Atoms are represented
by their atomic symbols, and hydrogen atoms are typically
omitted. Bonds are represented with symbols -, =, #, and :
for single, double, triple, and aromatic, respectively (single
and aromatic bond symbols often omitted). Branching is
represented with parentheses, and ring closures use numeric
digits to specify connection points. Aromatic molecules can
be represented with aromatic atoms denoted as lowercase
letters or as Kekule form with upper case letters containing
alternating double bonds. Additional syntax exists to repre-
sent disconnections (e.g. salts), charges, stereochemistry, and
isotopes (Figure 2).[36]

InChI is a machine-friendly chemical structure identifier.
The InChI software algorithm normalizes chemical structures
to produce a unique line notation with layers. In a standard
InChI (standardized options), these layers include characters
separated by a slash symbol that describe the molecular for-
mula, connectivity, charge, stereochemistry, and isotope layer
(Figure 3).[38] There is also a hashed shorter version of the
InChI called an InChIKey, which is useful for web searching.
InChIs are incredibly powerful for chemical data linking and
organization, as they can uniquely describe molecules.[40]

Finally, it is often useful to be able to describe a molecular
pattern within a compact line notation string for program-
matic substructure searching (i.e. find an input pattern as
part of a molecule). The most common line notation used
for this purpose is the SMILES arbitrary target specification

Figure 1. Steps for interacting with PubChem
programmatically.

Steps for Interacting with
PubChem Programmatically

	

	

	

STEP	1:		Identify	chemical	search	query	

STEP	2:	(a)	Construct	PubChem	web	
service	PUG-REST	URL	and	(b)	SDQ	URL	

STEP	3:	Retrieve	structured	data	with	
MATLAB	“webread”	function	

STEP	4:	Modify	MATLAB	code	with	a	
“for-loop”	to	process	multiple	

chemical	search	queries	

STEP	5:		Compile	MATLAB	code	
and	outputs	into	a		

Live	Script	for	sharing	and	
reuse	

Chemical Engineering Education232

Figure 2. Example SMILES notation for a 1,3-functionalized imidazolium chloride
(the D label on the molecule is for deuterium). Numbers represent the molecule atom
mapping. Some selected key features of the SMILES syntax are noted in the legend. The

chemical structure depiction and SMILES were generated with ChemAxon
MarvinSketch v19.27.[39]

Figure 3. Example InChI notation for a 1,3-functionalized imidazolium chloride
(the D label on the molecule is for deuterium). Numbers represent the InChI
molecule atom mapping. Individual layers of the InChI and InChIKey syntax are
noted in the legend. The chemical structure depiction was created with ChemAxon
MarvinSketch v19.27[39] and the InChI calclated directly from a molfile with the

InChI 1.05 software. [38]

[Cl-].[2H]c1n(C[C@@H](C)CC=C)cc[n+]1C
 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

10
83

7

6

5

2

4 9

13

12
11

14

- + Charges

. Disconnection

[2H] Isotope (D)

Ring closure1

c n Aromatic
atoms

 @@ Stereochemistry

Double bond=

Branch ()

10

5

6

11

9

7

4

3

2

1*

1

8

Hydrogen

12

InChI=1S/C10H17N2.ClH/c1-4-5-10(2)8-12-7-6-11(3)9-12;/h4,6-7,9-10H,1,5,8H2,2-3H3;1H/
q+1;/p-1/t10-;/m0./s1/i9D;

A

FE

DCB

G

A

B

C

D

Isotopic

E

F

G

Version and Type

Chemical Formula

Connectivity

Charge

Stereochemical

InChIKey=WPKQUPKYHGBBDA-MJRHTWEDSA-M

A E F,G B,C,D

(SMARTS) notation, which is a direct extension of the core
SMILES syntax.[36] SMARTS allows users to incorporate
ambiguity and logical operators into molecular structure
searches. Any atom can be defined with the wildcard asterisk
symbol and Boolean queries can be constructed with symbols
such as exclamations, ampersands/semicolons, and commas
to denote NOT, AND, OR, respectively. For example, the

query [C,N;H1]-Cl would match
molecules containing aliphatic
carbon OR nitrogen AND with one
hydrogen connected to chlorine
with a single bond.[36]

Many software tools and web
services are available to help us-
ers generate SMILES, InChI, and
SMARTS notations. Chemical
structure drawing tools such as
ChemAxon MarvinSketch®[39]
and the free PubChem Sketcher[41]
all have robust support for read-
ing and writing SMILES, InChI,
and SMARTS. There are also
free web conversion tools avail-
able for generating SMILES and
InChI, such as the NIH CACTVS
Chemical Identifier Resolver.[42]

In our experience with construct-
ing SMARTS queries, we have
found the online SMARTSviewer
and desktop SMARTSeditor soft-
ware particularly helpful.[43, 44]
While it is possible to construct
SMILES and SMARTS strings
manually, you must use software
to compute InChIs, as the InChI
software is required to apply the
appropriate normalization and ca-
nonicalization algorithms.[38]

STEP 2a: Construct PubChem
Web Service PUG-REST URL
The PubChem PUG-REST service
is a web interface that allows us-
ers to submit queries as HTTP
URLs and retrieve structured
machine-readable data, instead
of a formatted web page like in
a traditional database search.[32, 33]

The PUG-REST service and syntax for constructing the
requests are well documented in the official PubChem Docs.
[45] We recommend testing the PUG-REST service in your
web browser before attempting any request with a program-
ming language. Every PUG-REST URL request starts with
the same base prefix:

Vol. 54, No. 4, Fall 2020 233

https://pubchem.ncbi.nlm.nih.gov/rest/pug

For clarity, we will abbreviate this prefix as [api]:

[api] = https://pubchem.ncbi.nlm.nih.gov/rest/pug

To this prefix, three more pieces of information are added: an
input, operation choice, and an output format:

[api]/input/operation/output

The input specifies the record or query to use for the search. For
example, a PubChem Compound Identifier (CID) number, SMILES,
or InChIKey:

[api]/compound/cid/795/
[api]/compound/smiles/C1=CN=CN1/
[api]/compound/inchikey/RAXXELZNTBOGNW-
UHFFFAOYSA-N/

Next, the operation must be specified. Operations tell PubChem
what data to retrieve. Examples include compound properties,
synonyms, or a description of the record:

[api]/compound/cid/795/property/MolecularWeight/
[api]/compound/cid/795/synonyms/
[api]/compound/cid/795/description/

Finally, the output format is defined such as plain text or a struc-
tured machine-readable format like Extensible Markup Language
(XML)[46] or Javascript Object Notation (JSON)[47]:

[api]/compound/cid/795/property/MolecularWeight/TXT

Here, PubChem returns a value of 68.08 indicating the molecular
weight of CID 795 (imidazole).

We have found the plain TXT format and the
JSON format are the easiest to parse and work
with in MATLAB (vide infra). When using the
PUG-REST service, you will need to be aware
that some characters may require URL encoding
before sending the request to PubChem[45]; for
example, the following URL with the SMILES
for cyanoacetic acid containing a triple bond #
character will return a bad request error:

[api]/compound/smiles/C(C#N)C(=O)O/
property/MolecularFormula/JSON

The SMILES need to be URL encoded first.
There are many free online services that can
compute the URL encoding, or alternatively, text
can be URL encoded in MATLAB as follows:

[api]/compound/cid/795/property/Molecu-
larWeight/JSON

There is also a fourth parameter, operation
options, that can be added at the end of the
URL (?option). Operation options are useful
for changing default parameters. For example,
the Tanimoto coefficient is one of many differ-
ent measures used to describe the similarity in
structure of two different compounds.[3,49] If we
wanted to run a fingerprint Tanimoto-based 2D
similarity search in PubChem[48,50] on the cya-
noacetic acid with a similarity threshold of 95
instead of the default 90, the syntax is as follows::

[api]/compoundfastsimilarity_2d/smiles/
C%28C%23N%29C%28%3DO%29O/
cids/JSON?Threshold=95

 68.080000

 <PropertyTable
 xs:schemaLocation="http://pubchem.ncbi.nlm.nih.gov/pug_rest
 https://pubchem.ncbi.nlm.nih.gov/pug_rest/pug_rest.xsd">
 <Properties>
 <CID>795</CID>
 <MolecularWeight>68.08</MolecularWeight>
 </Properties>
 </PropertyTable>

 {
 "PropertyTable": {
 "Properties": [
 {
 "CID": 795,
 "MolecularWeight": 68.08
 }
]
 }
 }

 >> urlencode('C(C#N)C(=O)O')

 ans =

 'C%28C%23N%29C%28%3DO%29O'

[api]/compound/cid/795/property/MolecularWeight/XML

Chemical Engineering Education234

The aforementioned examples are a small sampling of the
available PUG-REST features. The complete and authorita-
tive specification is available from PubChem.[45]

STEP 2b: Construct PubChem Web Service SDQ URL
The PubChem Structured Data Query (SDQ) agent is used
internally by PubChem web pages.[51] The syntax is not of-
ficially documented; however, the SDQ agent query URLs
are visible on the PubChem compound web pages (e.g. see
literature download links). So with a bit of caution (see pro-
gramming etiquette note on pause in Step 4) and experimen-
tation, the basic syntax can be deconstructed. In addition, in
our experience, the PubChem staff are highly responsive to
questions about programmatic access.

The PubChem SDQ agent is similar to the PUG-REST
function where a unique HTTP URL is sent to PubChem,
and then structured machine-readable data is returned, such
as XML or JSON. The base SDQ URL prefix is as follows:

SDQ = https://pubchem.ncbi.nlm.nih.gov/sdq/sdqa-
gent.cgi?

To the base SDQ URL, an output format, input, and query
is added.

[SDQ]output&query{...{input}}}

The output format is defined similarly to the PUG-REST
API, though it is more explicit. For example, to specify JSON
format:

[SDQ]outfmt=json

Queries search the available “collections” within the
PubChem data. There are 33 collections that are linked to a
specific PubChem Compound Identifier (CID) and include
data such as literature collection reference metadata (e.g.
PubMed, Springer Nature, Wiley), associated substances
(depositor submitted), and assay data. To view the collection
data associated with imidazole (CID: 795), the SDQ search
is as follows:

In the above query, the “hide” parameter specifies to only
retrieve the total count, and not the actual data. The “*” is a
wildcard for all collections. To retrieve the actual data within
the collections, we can change the “hide” to “select” and then
specify how many results we want to retrieve with a limiter:

[SDQ]outfmt=json&query={"select":"*","collecti
on":"*","where":{"ands":{"cid":"795"}},"start"
:1,"limit":1}

This request displays one full data record from each of the
33 collections (not shown). We can also specify a collection
by replacing the wildcard (*) with the name of a specific col-
lection such as springernature:

[SDQ]outfmt=json&query={"select":"*","collectio
n":"springernature","where":{"ands":{"cid":"7
95"}},"start":1,"limit":1}

[SDQ]outfmt=json&query={"hide":"*","collection
"":"*","where":{"ands":{"cid":"795"}}}

 {
 "SDQOutputSet": [
 {
 "status": {
 "code": 0
 },
 "totalCount": 1,
 "collection": "compound",
 "type": "flattable",
 "rows": [
]
 },
 {
 "status": {
 "code": 0
 },
 "totalCount": 1241,
 "collection": "substance",
 "type": "flattable",
 "rows": [
]
 },
 {
 "status": {
 "code": 0
 },
 "totalCount": 406,
 "collection": "assay",
 "type": "flattable",
 "rows": [
]
 },
 …
 … (+ 30 more)
 …

 {
 "IdentifierList": {
 "CID": [
 9740,
 59463708,
 58931961,
 …
]
 }
 }

Vol. 54, No. 4, Fall 2020 235

Lastly, it is possible to add a search within a specific collection, limiting to one or
more available fields. We can refine the springernature query to only retrieve article
metadata with “synthesis” in the title (articletitle) and published in 2019 (articlepubdate):

[SDQ]outfmt=json&query={"select":"*","collection":"springernature","wh
ere":{"ands":{"cid":"795","articletitle":"synthesis", "articlepubdate":"2
019"}},"start":1,"limit":10}

 {
 "SDQOutputSet": [
 {
 "status": {
 "code": 0
 },
 "totalCount": 27824,
 "collection": "springernature",
 "type": "flattable",
 "rows": [
 {
 "cid": 795,
 "sid": 341139407,
 "oid": 7097783,
 "openaccess": 0,
 "scorefloat": 0.1052,
 "articlepubdate": "2002",
 "articletitle": "Cardiovascular Actions of Nitric Oxide",
 "articlejourname": "Nitric Oxide and Infection",
 "subject": "Medicine",
 "doctype": "book chapter",
 "language": "En",
 "doi": "10.1007/0-306-46816-6_7",
 "url": "https://doi.org/10.1007/0-306-46816-6_7",
 "imageurl": "https://pubchem.ncbi.nlm.nih.gov/image/
imgsrv.fcgi?doi=10.1007/0-306-46816-6_7",
 "extid": "5041005-10699077"
 }
]
 }
]
 }

 {
 "SDQOutputSet": [
 {
 "status": {
 "code": 0
 },
 "totalCount": 152,
 "collection": "springernature",
 "type": "flattable",
 "rows": [
 {
 "cid": 795,
 "sid": 341139407,
 "oid": 29259880,
 "openaccess": 0,
 "scorefloat": 0.4852,
 "articlepubdate": "2019",
 "articletitle": "Development of a New Method for Synthesis of
Tandem Hairpin Pyrrole–Imidazole Polyamide Probes Targeting Human
Telomeres",
 "articlejourname": "Synthesis and Biological Evaluation of
Pyrrole–Imidazole Polyamide Probes for Visualization of Telomeres",
 "subject": "Chemistry and Material Science",
 "doctype": "book chapter",
 "language": "En",
 "doi": "10.1007/978-981-13-6912-4_2",
 "url": "https://doi.org/10.1007/978-981-13-6912-4_2",
 "extid": "5041005-10699077"
 },
 …
 … (+ 9 more)

 …

Chemical Engineering Education236

 % set weboptions
 options = weboptions('Timeout', 30,'ContentType','json');
 % retrieve synonyms for imidazole (CID 795)
 api = 'https://pubchem.ncbi.nlm.nih.gov/rest/pug';
 myURL = [api '/compound/cid/795/synonyms/JSON'];
 myData = webread(myURL,options)

 myData =

 struct with fields:

 InformationList: [1×1 struct]

There are likely many more features available through the
SDQ agent. Some of the SDQ URLs we have seen suggest
it is possible to filter and order results; however, we have
not experimented with those features yet. The PubChem
SDQ agent is still being rapidly developed by PubChem. In
our experience the SDQ agent has been stable over the past
year with only minor changes observed in the data structure
JSON output. We have used the SDQ agent frequently to
obtain bibliographic literature data in PubChem. Literature
bibliographic data in PubChem are also programmatically
accessible through alternative web services including Pub-
Chem PUG-VIEW[52] and the NCBI E-Utilities.[53,54] NCBI
also maintains a free software package, EDirect, which uses
E-Utilities for programmatic access to NCBI data from a
Unix Shell[54]. We have recently started to explore EDirect's
capabilities and plan to discuss EDirect in a future report.

STEP 3: Retrieve Structured Data with MATLAB
“webread” Function

Interacting with the PubChem PUG-REST and SDQ agent
through a web browser is perfect for learning and testing, but
moving to a programming language like MATLAB offers
many advantages. Some of these advantages include the
ability to execute a series of searches in a script, capture er-
ror messages, and the ability to compile and analyze the data
from within MATLAB. The MATLAB function webread
allows reading content from web services.[55] The webread
function, therefore, can be used instead of an internet browser
to interact with PubChem. URLs are constructed as shown in
the previous sections and used as the webread input. Before
using the webread function, it is a good idea to adjust a few
of the webread options including increasing the server time-
out (in case PubChem is slow to respond) and specifying the
returned data format.

MATLAB imports the requested JSON imidazole
synonyms list as a structure array. If we visualize the
structure array as a directory tree, it looks like this:

 myData
 InformationList
 Information
 CID
 795
 Synonym
 imidazole
 1H-Imidazole
 288-32-4
 Glyoxaline
 Imidazol
 ...

 >> myData.InformationList.Information.Synonym

 ans =

 395×1 cell array

 {'imidazole'}
 {'1H-Imidazole'}
 {'288-32-4'}
 {'Glyoxaline'}
 {'Imidazol'}

 ...

The synonyms can then be accessed by using dot
indexing,[56] returning a cell array.

This technique is analogous for using webread and
dot indexing for interacting with the PubChem SDQ
agent data.

STEP 4: Modifying MATLAB Code with a “For-
Loop” to Process Multiple Chemical Search
Queries

In the previous section we reviewed how to perform
one programmatic PubChem request with webread
in MATLAB. In order to make multiple requests,
we can still use webread , but we need to add a few
programming techniques to process multiple requests.
Consider the following programmatic search using the
PUG-REST API to perform a similarity search with
1-butyl-3-methylimidazolium:

Vol. 54, No. 4, Fall 2020 237

The similarity search returned a list of 127 PubChem CIDs, or compounds that match our search. Next,
we want to retrieve information associated with each of the CIDs. Manually constructing hundreds of
URLs would be inefficient, so we can write a script to assist. In the example below each CID is sent back
to PubChem. The Isomeric SMILES are requested through the PUG-REST web service, and the total count
of PubMed literature associated with the CID is requested with the SDQ agent (see code on next page).

When the sim_infoSearch.m script is executed, it produces the following output:

 % set weboptions
 >> options = weboptions('Timeout', 30,'ContentType','json');

 % PubChem API
 >> api = 'https://pubchem.ncbi.nlm.nih.gov/rest/pug';

 % 1-Butyl-3-methyl-imidazolium; CID = 2734162
 >> CID_SS_query = '2734162';

 % Search for chemical structures by Similarity Search (SS),
 % 2D Tanimoto threshold 97% to 1-Butyl-3-methyl-imidazolium;
 % CID = 2734162
 >> SS_url = [api '/compound/fastsimilarity_2d/cid/' CID_SS_query...
 '/cids/JSON?Threshold=97'];
 >> SS_CIDs = webread(SS_url,options);

 % index into SS_CIDs to extract out list of CIDs
 >> SS_CIDs = num2cell(SS_CIDs.IdentifierList.CID)

 SS_CIDs =

 127×1 cell array

 {[304622]}
 {[61347]}
 {[11448496]}
 {[11171745]}
 {[2734161]}
 ...

 >> sim_infoSearch

 SS_CIDs =

 127×3 cell array

 {[304622]} {'CCCCN1C=CN=C1C ' } {[7]}�

 {[61347]} {'CCCCN1C=CN=C1 ' } {[21]}�

 {[11448496]} {'CCCCN1C=C[N+](=C1)C.[I-] ' } {[0]}�

 {[11171745]} {'CCCCN1C=C[N+](=C1)C.C(=[N-])=…'} {[0]}
 {[2734161]} {'CCCCN1C=C[N+](=C1)C.[Cl-] ' } {[323]}�

 {[118785]} {'CCCN1C=CN=C1 ' } {[3]}�

 {[2734236]} {'CCCCN1C=C[N+](=C1)C.[Br-] ' } {[323]}�

 {[2734162]} {'CCCCN1C=C[N+](=C1)C ' } {[668]}�

 {[529334]} {'CCCCCN1C=CN=C1 ' } {[1]}�

 ...

Chemical Engineering Education238

 sim_infoSearch.m

 % PubChem API and weboptions
 api = 'https://pubchem.ncbi.nlm.nih.gov/rest/pug';
 options_api = weboptions('Timeout', 30);

 % PubChem SDQ agent and weboptions
 sdq = 'https://pubchem.ncbi.nlm.nih.gov/sdq/sdqagent.cgi?';
 options_sdq = weboptions('Timeout', 60,'ContentType','json');

 % setup a for loop that processes each CID one-by-one.
 for j = 1:length(SS_CIDs)
 CID = SS_CIDs{j};

 % define url for isomeric SMILES property data request
 CID_IsoSMILES_url = [api '/compound/cid/' num2str(CID)...
 '/property/IsomericSMILES/TXT'];
 % retrieve isomeric SMILES
 try
 CID_IsoSMILES = webread(CID_IsoSMILES_url,options_api);
 catch ME
 CID_IsoSMILES = 'not found';
 end
 % be polite to PubChem servers and pause for 1s between requests
 n = 1;
 pause(n)

 % add isomeric SMILES data to 2nd column of SS_CIDs cell array.
 SS_CIDs{j,2} = CID_IsoSMILES;

 % define sdq url to retrieve collection count data
 litQ_url = [sdq 'outfmt=json&query={"hide":"*","collection":"*","where":
 {"ands":{"cid":"'...
 num2str(CID) '"}}}'];
 % retrieve collection count data
 try
 litCountQ = webread(litQ_url, options_sdq);
 catch ME
 litCountQ = 'not found';
 end
 n = 1;
 pause(n)

 % index into the litCountQ structure array
 % the pubmed count data is in the 7th row
 % add selected collection count data to 3rd column of SS_CIDs data array
 SS_CIDs{j,3} = litCountQ.SDQOutputSet{7,1}.totalCount;

 end

There are four key concepts within the sim_infoSearch.m
script:

1.	 for-loop[57]: The for statement repeats the code so
we only need to provide the list of CIDs. The URLs
are then generated, differing only by the CID. These
unique URLs are then input into the webread function
to retrieve the data. for-loops can be used for thousands
of requests.

2.	 try,catch[58]: The try,catch statement can “catch” errors
if the “try” fails. This is a basic error handling method
in MATLAB and is particularly useful when processing

multiple web data requests. In the event the webread
fails for a particular request, it sets the data to “not
found”.

3.	 IMPORTANT: pause[59]: The pause function allows
us to practice good programming etiquette when in-
teracting with PubChem web services. According to
the PubChem documentation, the limit is five requests
per second.[45] We typically add a pause of 0.5 or 1.0
second between requests, which is well below the limit.
If you go over five requests per second, PubChem will
likely block your requests.

Vol. 54, No. 4, Fall 2020 239

4.	 Adding variables to a cell array[60]: We need some-
where to store the data as the for-loop is iterating over
the CID list and executing the code. A convenient
method is to store the data in a cell array variable. In
the sim_InfoSearch script, the line ‘SS_CIDs{j,2} =
CID_IsoSMILES;’ adds the isomeric SMILES data
to the second column of SS_CIDs cell array. Since
j increases by 1 on each iteration, the first isomeric
SMILES gets added to {1,2} (row 1, column 2) , the
second to {2,2}, and the third to {3,2}.

STEP 5: Compile MATLAB Code and Outputs into a
Live Script for Sharing and Reuse

MATLAB live scripts allow for the combination of both the
input code and output in one formatted interactive document.
Using the programming techniques described in the previous
sections, we created four in-depth live scripts with MATLAB
R2020a that further explore how to interact with PubChem
programmatically (Supporting Information). The included
live scripts allow for programmatic searching of chemical
substances by similarity or SMARTS substructure queries.
A literature search live script is also included for retrieving
references associated with a compound and sharing reproduc-
ible literature searches.[20, 29] Finally, a live script is included
that is useful for programmatically compiling bibliometric
compound data. Compound-based bibliometrics are useful
for identifying gaps in the literature.[61-63]

EDUCATIONAL CONSIDERATIONS

Learning Outcomes
Interacting with literature and data from PubChem program-

matically presents several learning outcomes for students,
including an understanding of:

1.	 Machine-readable data (e.g. JSON) and chemical file
representation (SMILES), identifier (InChI) syntax,
and pattern matching (SMARTS).

2.	 Basic programming techniques including interacting
with programmatic web services, structured data que-
ries, for-loop syntax, error handling, and data indexing.

3.	 How to formulate workflows for reproducible literature
searching, compound searching, and data compilations.

We co-developed the PubChem programmatic literature and
data MATLAB live scripts with an undergraduate student and
an MS chemical engineering student. The code presented in
this paper and supporting information are a result of combin-
ing and harmonizing code that we have written for several
internal research and informational education projects over the
past couple years. We envision these MATLAB live scripts
will be ideal for chemistry and chemical engineering capstone

courses where students can dedicate several weeks to work
on one project, focused on reproducible programmatic com-
pilation of data and literature. Since many research methods
courses require a written paper, these techniques could be used
to produce the literature review. Furthermore, the methods
documented herein can be used as a modern case study in
an “computer methods” course for chemical engineering
seniors and graduate students such as the one taught annually
by Professor Bara at the University of Alabama. In order to
produce graduates that are prepared to tackle 21st century
chemical engineering challenges, students must learn that
many modern programming applications will not just rely on
code run on the local machine and need to learn methods by
which large data sets are retrieved from remote sources and
further processed/analyzed.

For instructors already familiar with MATLAB, the tech-
niques presented in this paper for interacting with PubChem
programmatically will likely be straightforward and only
require a couple days of practice and preparation in order to
teach. It will also be helpful to review chemical line notations
(SMILES and InChI) and pattern matching syntax (SMARTS)
since they are core components of many programmatic
chemical information queries. For new users of MATLAB,
we recommend first starting with the introductory tutorials
from MathWorks,[64] then working through the examples in
this paper.

In the classroom we recommend working with students in a
similar workflow to that presented in this paper; that is, start
with reviewing chemical line notations and experimenting
with the PubChem web services in a standard web browser.
Then the students can work up to MATLAB in stages, first
with one programmatic query, then multiple in a for loop.

There is a learning curve involved with these methods;
however, we believe one of the pedagogical benefits is that
searching for data and literature programmatically forces stu-
dents (and instructors) to thoughtfully construct their literature
and data search queries. The process requires users to think
about key information concepts such as the data source, data
search fields, type of search, and information access. As a
result, these searches also make student work more transpar-
ent for instructors as they can immediately see what kind of
literature search the student is performing and how, which can
be particularly helpful when offering assistance with keyword
ideas. We also note that searching for data and literature
programmatically is engaging and fun!

While the live scripts available in the supporting infor-
mation can be used directly with students to reproduce the
datasets and literature searches presented herein, greater
pedagogical value will be achieved by using the live scripts
as a starting point for related programmatic data compila-
tion and literature search projects. What follows are a few
examples of how we envision instructors may incorporate

Chemical Engineering Education240

these live scripts into chemical engineering research methods
course assignments:

1.	 Complete a compound bibliometrics study using the
PubChem_SDQ_Bibliometrics live script with a dif-
ferent compound input. Students can then extend the
script to plot and analyze the compiled bibliometrics
data within MATLAB. From the analyzed data, stu-
dents can be tasked to identify gaps in the literature and
present a systematic overview of a subset of chemical
compounds.

2.	 Adapt the PubChem_SDQ_LitSearch to complete a
new programmatic literature search using different
compound and metadata field keyword inputs based on
an assigned topic area. A more challenging adaption
would be to incorporate additional literature search
web service functionality into the script such as the
Engineering Village programmatic web service[17] or
the NCBI Entrez Programming Utilities service.[53,54]

3.	 The PubChem_Similarity and PubChem_SMARTS
live scripts can be adapted with different CID input
queries or SMARTS substructure queries, respectively.
Both live scripts are also straightforward to extend with
additional PubChem compound property requests such
as retrieving the IUPAC name or stereochemistry atom
counts.

CONCLUSIONS

Core programmatic MATLAB techniques for interacting
with PubChem web services are discussed in a guided tuto-
rial style. The guided tutorial includes a review of chemical
line notations, the PubChem web service HTTP URL syntax,
the MATLAB webread function, and processing multiple
PubChem web service requests in MATLAB with a for-
loop. Several programmatic searches are demonstrated and
discussed, including chemical structure similarity searching,
substructure searching, literature searching, and compound-
based bibliometric data compiling. These techniques are ex-
panded into MATLAB live scripts included in the supporting
information, which are available openly for instructors to use
and adapt as desired. The live scripts are useful for chemical
education, particularly for teaching students how to interact
with information programmatically and reproducibly. We plan
to continue promoting programmatic literature searching with
MATLAB and are also exploring the Python programming
language combined with Jupyter notebooks.

Supporting Information
GitHub Repository (Software license: BSD 2-Clause

License): https://github.com/vfscalfani/MATLAB-chemin-
formatics

ACKNOWLEDGMENTS
JEB acknowledges NSF CBET 1605411 for support of this

work. We thank the NIH/NLM/NCBI PubChem staff for their
timely helpful responses to our programmatic access ques-
tions. VFS thanks ChemAxon for the MarvinSketch academic
research license.

REFERENCES

1.	 Currano J and Roth, D (2014) Chemical Information for Chemists: A
Primer. Royal Society of Chemistry. Cambridge, UK.

2.	 Krallinger M, Rabal O, Lourenço A, Oyarzabal J, and Valencia A
(2017) Information Retrieval and Text Mining Technologies for
Chemistry. Chem. Rev. 117(12): 7673-7761. https://doi.org/10.1021/
acs.chemrev.6b00851

3.	 Engel TD and Gasteiger J (2018) Chemoinformatics : basic concepts
and methods. Wiley-VCH, Weinheim, Germany.

4.	 Engel TD and Gasteiger J (2018) Applied chemoinformatics : achieve-
ments and future opportunities. Wiley-VCH, Weinheim, Germany.

5.	 Senderowitz H and Tropsha A (2018) Materials Informatics. J.
Chem. Inf. Model. 58(7): 1313–1314. https://doi.org/10.1021/acs.
jcim.8b00016

6.	 Audus DJ and de Pablo JJ (2017) Polymer Informatics: Opportunities
and Challenges. ACS Macro Letters. 6(10): 1078–1082. https://doi.
org/10.1021/acsmacrolett.7b00228

7.	 Medford AJ, Kunz MR, Ewing SM, Borders T, and Fushimi R (2018)
Extracting Knowledge from Data through Catalysis Informatics. ACS
Catalysis. 8(8): 7403–7429. https://doi.org/10.1021/acscatal.8b01708

8.	 Shacham M, Brauner N, and Cutlip MB (2003) An exercise for
practicing programming in the ChE curriculum: Calculation of ther-
modynamic properties using the Redlich-Kwong Equation of State.
Chem. Eng. Educ. 37: 148–153.

9.	 Li X and Huang Z (Jacky) (2017) An inverted classroom approach
to educate MATLAB in chemical process control. Educ. Chem. Eng.
19: 1–12. https://doi.org/10.1016/j.ece.2016.08.001

10.	 Joss L and Müller EA (2019) Machine Learning for Fluid Property
Correlations: Classroom Examples with MATLAB. J. Chem. Educ.
96(4): 697–703. https://doi.org/10.1021/acs.jchemed.8b00692

11.	 Lee K, Comolli NK, Kelly WJ, and Huang Z (2015) MATLAB-based
teaching modules in biochemical engineering. Chem. Eng. Educ.
49(2): 95–100.

12.	 Ricker NL (2001) Using MATLAB/Simulink for data acquisition and
control. Chem. Eng. Educ. 35(4): 286–289.

13.	 Housam B (2008) Equilibrium-stage separations using Matlab and
Mathematica. Chem. Eng. Educ. 42:69–73.

14.	 Golman B (2019) A set of Jupyter notebooks for the analysis of
transport phenomena and reaction in porous catalyst pellet. Comput.
Appl. Eng. Educ. 27: 531–542. https://doi.org/10.1002/cae.22095.

15.	 Weiss CJ (2017) Introduction to Stochastic Simulations for Chemical
and Physical Processes: Principles and Applications. J. Chem. Educ.
94(12): 1904–1910. https://doi.org/10.1021/acs.jchemed.7b00395

16.	 Kim S et al. (2016) PubChem Substance and Compound databases.
Nucleic Acids Res. 44(D1): D1202–D1213. https://doi.org/10.1093/
nar/gkv951

17.	 Elsevier Engineering Village API. https://dev.elsevier.com Accessed
April 3, 2020.

18.	 Kitchin JR (2015) Examples of Effective Data Sharing in Scientific
Publishing. ACS Catal. 5(6): 3894–3899. https://doi.org/10.1021/
acscatal.5b00538

19.	 Perkel JM (2018) Why Jupyter is data scientists’ computational note-
book of choice. Nature. 563(7729): 145–146. https://doi.org/10.1038/
d41586-018-07196-1.

20.	 Rule A et al. (2019) Ten simple rules for writing and sharing com-
putational analyses in Jupyter Notebooks. PLOS Computational

Vol. 54, No. 4, Fall 2020 241

Biology, 15:(7), e1007007.https://journals.plos.org/ploscompbiol/
article?id=10.1371/journal.pcbi.1007007

21.	 Wolfram Notebooks. https://www.wolfram.com/notebooks/. Accessed
April 3, 2020.

22.	 Project Jupyter. https://jupyter.org/. Accessed April 3, 2020.
23.	 MathWorks Documentation: Live Scripts and Functions. https://

www.mathworks.com/help/matlab/live-scripts-and-functions.html
Accessed April 3, 2020.

24.	 Kitchin JR (2016) Data sharing in Surface Science. Surface Science,
647: 103–107. https://doi.org/10.1016/j.susc.2015.05.007

25.	 Kitchin JR. org-ref: org-mode modules for citations, cross-references,
bibliographies in org-mode and useful bibtex tools to go with it.
https://github.com/jkitchin/org-ref. Accessed April 3, 2020.

26.	 Rose ME and Kitchin JR (2019) pybliometrics: Scriptable biblio-
metrics using a Python interface to Scopus. SoftwareX 10:100263.
https://doi.org/10.1016/j.softx.2019.100263.

27.	 Heldens S, Sclocco A, and Dreuning H (Zenodo, 2019) NLeSC/au-
tomated-literature-analysis https://doi.org/10.5281/zenodo.3386072

28.	 Sydow D, Morger A, Driller M, and Volkamer A (2019) TeachO-
penCADD: a teaching platform for computer-aided drug design using
open source packages and data. J. Cheminform. 11:29 (2019). https://
doi.org/10.1186/s13321-019-0351-x

29.	 Vaganay A. To save the research literature, let’s make literature
reviews reproducible. https://blogs.lse.ac.uk/impactofsocialscienc-
es/2018/06/19/to-save-the-research-literature-lets-make-literature-
reviews-reproducible/. Accessed April 3, 2020.

30.	 Kim S et al. (2019) PubChem 2019 update: Improved access to chemi-
cal data. Nucleic Acids Research, 47(D1): D1102–D1109. https://doi.
org/10.1093/nar/gky1033

31.	 PubChem Docs: Downloading PubChem Data. https://pubchemdocs.
ncbi.nlm.nih.gov/downloads. Accessed April 3, 2020.

32.	 Kim S, Thiessen PA, Bolton EE, and Bryant SH (2015) PUG-SOAP
and PUG-REST: Web services for programmatic access to chemical
information in PubChem. Nucleic Acids Research, 43(W1):W605–
W611. https://doi.org/10.1093/nar/gkv396

33.	 Kim S, Thiessen PA, Cheng T, Yu B, and Bolton EE (2018) An
update on PUG-REST: RESTful interface for programmatic access
to PubChem. Nucleic Acids Res. 46(W1), W563–W570. https://doi.
org/10.1093/nar/gky294

34.	 Swain M. PubChemPy: Python wrapper for the PubChem PUG REST
API. https://github.com/mcs07/PubChemPy. Accessed April 3, 2020.

35.	 Szöcs E. webchem: Chemical Information from the Web. https://
github.com/ropensci/webchem. Accessed April 3, 2020.

36.	 Daylight Chemical Information Systems. Daylight Theory Manual
v4.9. https://www.daylight.com/dayhtml/doc/theory/. Accessed
April 3, 2020.

37.	 Weininger D (1988) SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Comput. Sci. 28: 31–36 https://doi.org/10.1021/ci00057a005.

38.	 Heller SR, McNaught A, Pletnev I, Stein S, and Tchekhovskoi D
(2015) InChI, the IUPAC International Chemical Identifier. J. Chemin-
form. 7:23. https://doi.org/10.1186/s13321-015-0068-4.

39.	 ChemAxon MarvinSketch. https://chemaxon.com/products/marvin
Accessed April 3, 2020.

40.	 Chambers J, Davies M, Gaulton A, Hersey A, Velankar S, Pet-
ryszak R, Hastings J, Bellis L, McGlinchey S, and Overington, JP
(2013) UniChem: A unified chemical structure cross-referencing
and identifier tracking system. J. Cheminform. 5(1): 3. https://doi.
org/10.1186/1758-2946-5-3.

41.	 Ihlenfeldt WD, Bolton EE, and Bryant SH (2009) The PubChem
chemical structure sketcher. J. Cheminform. 1:20. https://doi.
org/10.1186/1758-2946-1-20.

42.	 NIH Chemical Identifier Resolver. https://cactus.nci.nih.gov/chemi-
cal/structure. Accessed April 3, 2020.

43.	 Schomburg K, Ehrlich H-C, Stierand K, and Rarey M (2010) From
Structure Diagrams to Visual Chemical Patterns. J. Chem. Inf. Model.
50(9): 1529–1535. https://doi.org/10.1021/ci100209a.

44.	 Schomburg KT, Wetzer L, and Rarey M (2013) Interactive design of
generic chemical patterns. Drug Discov. Today 18(13-14): 651–658.
https://doi.org/10.1016/j.drudis.2013.02.001.

45.	 PubChem Docs: PUG-REST. https://pubchemdocs.ncbi.nlm.nih.gov/
pug-rest. Accessed April 3, 2020.

46.	 Extensible Markup Language (XML) 1.0 (Fifth Edition). https://www.
w3.org/TR/xml/. Accessed April 3, 2020.

47.	 Introducing JSON. https://www.json.org/json-en.html. Accessed
April 3, 2020.

48.	 Kim S (2016) Getting the most out of PubChem for virtual screening.
Expert Opin. Drug Discov. 11(9): 843–855. https://doi.org/10.1080/
17460441.2016.1216967.

49.	 Holliday JD, Hu C-Y, and Willett P (2002) Grouping of Coefficients
for the Calculation of Inter-Molecular Similarity and Dissimilarity
using 2D Fragment Bit-Strings. Comb. Chem. High Throughput
Screen. 5(2): 155-166. https://doi.org/10.2174/1386207024607338.

50.	 PubChem Substructure Fingerprint, v1.3. ftp://ftp.ncbi.nlm.nih.gov/
pubchem/specifications/pubchem_fingerprints.pdf. Accessed April
3, 2020.

51.	 Warr WA (2016), Herman Skolnik Award Symposium 2016 Honoring
Stephen Bryant and Evan Bolton - Open chemical information: where
now and how? ACS Chemical Information Bulletin. 68 (4): 37–39.
https://digital.library.unt.edu/ark:/67531/metadc967401/

52.	 Kim S, Thiessen PA, Cheng T, Zhang J, Gindulyte A, and Bolton
EE (2019) PUG-View: Programmatic access to chemical annota-
tions integrated in PubChem. J. Cheminform. 11(1): 56. https://doi.
org/10.1186/s13321-019-0375-2

53.	 S. Kim, et al. Literature information in PubChem: associations
between PubChem records and scientific articles. J. Cheminform. 8,
(2016). https://doi.org/10.1186/s13321-016-0142-6

54.	 NCBI Entrez Programming Utilities Help. https://www.ncbi.nlm.nih.
gov/books/NBK25501/. Accessed May 22, 2020.

55.	 MathWorks Documentation: webread. https://www.mathworks.com/
help/matlab/ref/webread.html. Accessed May 26, 2020.

56.	 MathWorks Documentation: Access Data in a Structure Array. https://
www.mathworks.com/help/matlab/matlab_prog/access-data-in-a-
structure-array.html. Accessed May 26, 2020.

57.	 MathWorks Documentation: for. https://www.mathworks.com/help/
matlab/ref/for.html. Accessed May 26, 2020.

58.	 MathWorks Documentation: try,catch. https://www.mathworks.com/
help/matlab/ref/try.html. Accessed May 26, 2020.

59.	 MathWorks Documentation: pause. https://www.mathworks.com/
help/matlab/ref/pause.html. Accessed May 26, 2020.

60.	 MathWorks Documentation: Cell Arrays. https://www.mathworks.
com/help/matlab/cell-arrays.html. Accessed May 26, 2020.

61.	 Tomaszewski R (2019) Substance-Based Bibliometrics: Identifying
Research Gaps by Counting and Analyzing Substances. ACS Omega.
4(1): 86–94. https://doi.org/10.1021/acsomega.8b02201.

62.	 Barth A and Marx W (2012) Stimulation of Ideas through Compound-
Based Bibliometrics: Counting and Mapping Chemical Compounds
for Analyzing Research Topics in Chemistry, Physics, and Materi-
als Science. ChemistryOpen 1: 276–283. https://doi.org/10.1002/
open.201200029.

63.	 Scalfani VF, Alshaikh AA, and Bara JE (2018) Analysis of the Fre-
quency and Diversity of 1,3-Dialkylimidazolium Ionic Liquids Ap-
pearing in the Literature. Ind. Eng. Chem. Res. 57(47): 15971–15981.
https://doi.org/10.1021/acs.iecr.8b02573.

64.	 MathWorks MATLAB and Simulink Tutorials. https://www.math-
works.com/support/learn-with-matlab-tutorials.html. Accessed May
26, 2020. p

