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Multiple stage operations are widely used in sepa­
ration processes . There are two commonly used 
approaches for modeling of multi-stage processes. 

The "simultaneous" approach involves modeling of the 
complete process (which includes all the stages) as one large 
set of equations. This approach is widely used for modeling 
of distillation columns and its main advantage is the high 
computational efficiency. In the "sequential modular" ap­
proach a model of a single stage (module) is prepared and 
tested separately. The complete multi-stage process is then 
constructed by tying together several modules by means of 
the material and energy flows between them. The advantages 
of this approach are that the model building is more straight­
forward; that the models are easier to construct, to follow, and 
to debug; and that the computer code can actually serve as 
problem documentation. Thus this approach is more adequate 
for educational use than the simultaneous approach. 

An example presented by Foleyl'l that concerns the design 
of a multi-stage ultrafiltration unit operated in a feed and 
bleed mode will be used to demonstrate the advantages of 
the "sequential modular" approach in the solution of various 
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types of problems. This example is suitable for courses in 
separation processes, introduction to modeling and computa­
tion, and process and product design . 
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PROBLEM BACKGROUND 

Continuous concentration of a protein solution by 
multi-stage feed and bleed ultrafiltration 

A typical 3-stage feed-and-bleed ultrafiltration process is 
shown in Figure 1. Fresh feed with a volumetric flow rate of 
Q

0 
(m3/s) and solute concentration of c

0 
(g/L) is mixed with 

retentate (product stream) recycle from the first stage and 
enters the first membrane module . Some of the solvent (and 
possibly some of the solute) passes the membrane and exits 
the unit as permeate (filtrate) . The concentrated product stream 
(with solid concentration of c

1 
g/L) is partially recycled in 

order to increase the flow rate into the unit to ensure well­
mixed conditions. The product (bleed) stream from the first 
unit is fed into the second stage with a volumetric flow rate 
of Q

1 
(m3/s). 

Detailed discussion of the multi-stage ultrafiltration pro­
cess, including the associated design equations, is provided, 
for example, by Seader and Henley.121 Here the assumptions 
suggested by Foleyl1J are used for simplification of the model. 
These assumptions are that 1) no solute passes the membrane 
(complete rejection), and 2) the gel polarization model ap­
plies. Thus the membrane is operating at the limiting flux (j , 
mis) given by 

• C 
J=kln _!_ 

c, 
(1) 

where k is the mass transfer coefficient (mis) , cg is the limiting 
or "gel" concentration (g/L) , and ci is the solute concentration 
in stage i. The solute balance on stage i (assuming complete 
rejection) yields 

(2) 

The total balance on the feed , retentate, and permeate 
streams of stage i can be written 

( =QH -Q, - jA, (3) 

where Ai is the membrane area in stage i. 

Eqs. (1 ), (2) , and (3) represent a complete model of stage 
i . At the solution f, must vanish (( = 0). One of the variables 
associated with stage i (say c,, A, , etc.) can be selected as 
unknown and values for the rest must be specified. 
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Recycle 3 

Permeate 3 

Final 
Retentate Figure 1. Schemat­

ic plot of the Multi­
stage Ultrafiltration 
System. 

The sequential modular approach requires building the 
model of a single unit so that it can calculate the "output" 
variables (Qi, ci, and the permeate flow rate) if the input 
variables (Qi-i and ci_

1
) and the design parameters (k, cg, and 

A) are specified. One possibility to carry out this calculation 
is to solve Eq. (2) for Q, yielding 

Q, =Q,_,c,_, Jc, (2A) 

Introducing Eqs . (1) and (2A) into Eq. 3, and replacing 
the input variables and design parameters by their numeri­
cal values , yields a single nonlinear algebraic equation that 
can be solved for the unknown output variable ci. The other 
output variable Qi can be consequently calculated directly by 
solving Eq . (2A) . 

If all the input variables and design parameters are specified 
and the output variables need to be calculated, the problem 
is categorized as a "simulation problem." In a "design prob­
lem" some of the output variables are specified and the same 
number of input variables and/or design parameters need to 
be determined, so that the specification regarding the output 
variables is met. Adding an objective function that contains 
input variables and/or design parameters that need to be mini­
mized to meet an economic objective , subject to constraints 
related to the output variables, constitutes an "optimization 
problem." 

The different parts of the following problem statement are 
related to these three types of problems. 

PROBLEM STATEMENT 
The assignments and numerical data presented by Foleyl11 

are considered. A multistage feed-and-bleed ultrafiltration 
unit is used for concentrating a protein solution . Fresh feed 
enters the first stage at the rate of ~ = 1 L/min with solute 
(protein) concentration of c

0 
= 10 g/L. Complete rejection can 

be assumed for the protein. The membrane is operating at the 
limiting flux with the mass transfer coefficient: k = 3 .5· 10·6 

mis and the gel concentration c = 300 g/L. 
g 

a) Given that the membrane area in the first stage is A,= 
2.7 m2, calculate the product 's outlet concentration: c, 
and flow rate : QJrom this stage. 

b) A 3-stage system with equal membrane areas of A; =0.9 
m2 is used to separate the protein solution. Calculate the 
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product's outlet concentrations and.flow rates for the 
three stages ( a simulation problem). 

c) Find the total membrane area of a three-stage ultra.filtra­
tion system that yields retentate concentration leaving 
the third stage of JOO g/L assuming equal membrane 
areas for the three stages ( a design problem). 

d) Repeat question ( c) but this time allow for different 
membrane areas for the different stages so as to obtain 
the same final concentration but minimizing the total 
membrane area ( an optimization problem). 

PROBLEM SOLUTION 
Modeling a single stage using the sequential 
modular approach 

Modeling a single stage can proceed following the al­
gorithm outlined in the problem background section. Sev­
eral available software packages can be used for solving the 
nonlinear algebraic equation of the single-stage model. The 
POLYMATH[31 software package was used for this purpose. 

The input of part (a) of the problem into the POLYMATH 
software package is shown in Table 1. The POLYMATH 
program includes the code and comments (text that starts 
with the "#" sign and ends with the end of the line) . The row 
numbers shown in Table 1 are not part of the program; they 
were added as references for the explanations that follow. 

In the POLYMATH program, the equations and data are 
grouped into "model equations" [lines 1-4, Eqs. (1) , (3), and 
(2A)], problem-specific data, including units (lines 6-11, 
including the input variable and design parameter values), 
and initial estimates for the unknown exit concentration. The 

TABLE I 
POLYMATH program for the solution of 

Part (a) of the assignment 

No. Equation/# Comment 

1 #Model equations 

2 j=k*ln(cg/cl) #Membrane Flux 

3 QI=c0*Q0/c I #Complete Rejection of Protein 

4 f(cl) = QO-Ql-j*A#Overall Material Balance 

5 

6 # Problem specific data 

7 QO=l/(60*1000) #m"3/s 

8 k=3 .5e-6 #mis 

9 c0=lO#g/L 

10 A=2.7 #m"2 

11 cg =300# g/L 

12 

13 # Initial estimates 

14 cl(min)=20 

15 cl(max)=lOO 
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POLYMATH software automatically orders the equations 
prior to solution. The solution with POLYMATH using this 
equation set was c

1 
= 66.93 g/L and Q

1 
= 0.15 L/min. 

The program shown in Table 1 provides a clear, precise, and 
complete documentation of the problem and its mathemati­
cal model. Observe that there is actually no need to combine 
the three basic equations into one equation and this provides 
an easier-to-follow problem documentation. Combining the 
equations can also be a source of errors. 

Modeling the three-stage system using the 
sequential modular approach 

The model used for the first stage can be used for the sub­
sequent stages except that the outlet variables of the earlier 
stage become the inlet variables of the subsequent one and 
the design parameters need to be updated, if necessary. Thus, 
modeling the operation of three consecutive stages of the ultra­
filtration system [Part (b) of the problem statement] involves 
writing the model equations that were used for the first stage, 

TABLE2 
POLYMATH program for the solution of Part (b) of the 

assignment 

No. Equation/ # Comment 

l #Model equations 

2 #First Stage 

3 jl=k*ln(cg/cl ) #Membrane Flux 

4 Ql=c0*QO/cl #Complete Rejection of Protein 

5 f(c l) = QO-Ql-jl *A #Overall Material Balance 

6 #Second Stage 

7 j2=k*ln(cg/c2) #Membrane Rux 

8 Q2=c I *Q l /c2 #Complete Rejection of Protein 

9 f(c2)=Ql-Q2-j2*A#Overall Material Balance 

10 #Third Stage 

11 j3=k*ln(cg/c3) #Membrane Flux 

12 Q3=c2*Q2/c3 #Complete Rejection of Protein 

13 f(c3)=Q2-Q3-j3* A #Overall Material Balance 

14 

15 #Problem specific data 

16 QO=l/(60* 1000) #m"3/s 

17 k=3 .5e-6 #mis 

18 A=0.9#m"2 

19 c0=10 # g/L 

20 cg =300# g/L 

21 

22 # Initial estimates 

23 cl(0)=20 

24 c2(0)=50 

25 c3(0)=170 
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TABLE3 
Results summary for Parts (b), (c) , and (d) of the 

3. Observe that the total area 
required to reach c

3 
= 100 

g/L is A, = 2.136 m2
• multi-stage ultrafiltration problem 

Part (b) Part (c) 

Stage c, Q; A c, Q, 
No. (g/L) (m3/s) (~2) (g/L) (m3/s) 

1 20.34 0.492 0.712 17.4 0 .575 

2 56.07 0.178 0 .712 37 .7 0 .265 

3 163.45 0 .061 0 .71 2 100 0.100 

Total 2.136 

A B C D E 

1 POLYMATH NLE Migration Document 
2 Variable Value Polymath Equation 
3 Explicit Eqs j1 9.1218E-06 j1 =k*ln(cglc1) 
4 Q1 7.5266E-06 01=c0*QO!c1 

j2 6.2903E-06 j2=k*ln(cglc2) 
02 3.3516E-06 Q2=C1 *Q1 /c2 
j3 3 .8451 E-06 j3=k *ln(cglc3) 
03 1.6667E-06 03=c2*Q2/c3 
At 2.01539045 At=A 1 +A2+A3 
QO 1.6667E-05 00=11{60*1000) 
k 0.0000035 k=3.5e-6 
co 10 C0=10 
c3 100 C3=100 
cg 300 cg=300 
A1 0.94676198 A1=0.7 
A2 0.50474175 A2=0.7 

Implicit Vars c1 22.1436941 c1(0)=20 
c2 49.7272272 c2/0)=50 
A3 0.56388672 A3(0)=1 

Implicit Eqs f(c1) 5 .0389E-07 f(c1)=00-Q1-j1 *A 1 
f(c2) 1E-06 f(c2)=01-Q2-j2*A2 

22 f(A3) -4.833E-07 f(A3)=02-Q3-j3*A3 
23 Sum of Squares: 1.4875E-12 F = f(c/ )'2+f(c2)"2+f(A3}'2 

Part (d) 

A c, Q, 
(~ 2) (g/L) (m3/s) 

0.947 22.14 0.452 

0.505 49.73 0 .201 

0 .567 100 0.l00 

2 .019 

F 

Comments 
Membrane Flux 
Complete Rejection of Protein 
Membrane Flux 
Complete Rejection of Protein 
Membrane Flux 
Complete Rejection of Protein 
Objective function 
m'3ls 
mis 
g/L 
g/L 
g/L 

Overall Material Balance 
Overall Material Balance 
Overall Material Balance 

These examples demon­
strate the flexibility provid­
ed by the sequential-modu­
lar approach to investigate 
various design alternatives . 

Minimizing the total 
membrane area of the 
ultrafiltration system 

In part (d), it is requested 
to minimize the total area 
of the multi-stage system 
with a pre-specified c

3 
value 

while allowing different 
areas A,, A

2
, and A

3 
for the 

three stages . This prob­
lem can be formulated as a 
constrained minimization 
problem to minimize A, 
= A, + A

2 
+ A

3 
subject to 

the constraints f(c) = 0, 
f(c2) = 0,and f(A3) = 0 . The 
variables are A,, A

2
, A

3
, c, , 

and c
2

. 

Only minor changes need 
to be introduced in the pro­
gram shown in Table 2 
to accommodate this new 
problem formulation.As the 

Figure 2. Excel Worksheet for the solution of Part ( d) of the multi-stage ultrafiltration problem. 
POLYMATH package does 
not solve constrained non­
linear optimization prob­

for the second and third stage while changing the indices of 
the inlet and outlet streams and introducing equal Ai = 0 .9 
m2 membrane areas as design parameters. The POLYMATH 
program prepared according to these principles is shown in 
Table 2 and the results are presented in Table 3. Observe 
that (as was pointed out by Foley[ll) the final concentrate in 
this case is c

3 
= 163 .45 g/L, which is much higher than the 

concentration reached by a single stage unit of the same total 
membrane area [in Part (a), c

1 
= 66.93 g/L] . 

The model shown in Table 2 can be easily modified to solve 
Part ( c) of the assignment. In this part the exit concentration 
of the protein from the third stage ( c

3
) is specified and it is 

required to calculate the membrane areas in the three stages, 
assuming equal areas (A) . There is no need to modify the 
model equations in Table 2 except to change the status of 
c

3 
to a specified design parameter (instead of unknown) and 

to include the unique A value as one of the unknowns . The 
results of the computation for Part ( c) are shown also in Table 
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lems , the program should be solved with a software package 
that includes tools for solving such problems. POLYMATH 
can automatically export programs to MATLAB[4J or Exce1r51 

that can solve a constrained minimization problem. The Excel 
solution will be shown here . 

In Figure 2 the Excel worksheet-as obtained by exporting 
the POLYMATH program to Excel-is shown. Note that the 
Excel formulas of the various equations are in column C. The 
additional information, generated by the POLYMATH export 
routine, is textual and serves as documentation. The names 
of the variables, as defined in the POLYMATH program, are 
shown in column B. The original POLYMATH equations are 
displayed in column E and the associated comments are given 
in column F. The Excel "Solver" Add-In is used for finding the 
minimal area. The following information is used to specify the 
"Solver" parameters; the minimum is sought for "Target cell" 
C9 (A,) by changing cells C15 through C19 (A, ,A

2
,A

3
, c, , and 

c
2

) , subject to the constraints C20 = 0, C21 = 0, and C22 = 0 

173 



[ which forces the residuals of the nonlinear equations given by 
f(c

1
), f(c) , and f(A

3
) to be zero]. The optimal solution found 

is shown in Table 3 and Figure 2. At the minimum, A,= 2.015 
~• which is slightly lower than the total area required (A,= 
2.136 m2) when stages with equal areas are used to achieve 
the same final concentration. 

Solution approach presented by Foley 

To highlight the educational advantages of the "sequential 
modular" approach for solving problems that involve staged 
processes, the solutions provided here can be compared with 
the solution techniques used by FoleyY1 According to his ap­
proach, the equations representing a single stage [Eqs. (1), 
(2) , and (3)) are brought into the form of a single nonlinear 
algebraic equation containing two unknowns, xi-t and xi , 
where xi= c/ci . 

Qo (x -x )-ln c. -lnx =0 (4) kA ,_, ' C
0 

' 

This model is inconsistent with the "sequential modular" 
approach as it includes the input variables of the first stage 
( c

0 
and~) in the models of all the subsequent stages. While 

the definition of the unknown xi used in this equation was 
essential for graphical solution of the ultrafiltration problems, 
it is absolutely unnecessary for numerical solution. Keeping 

TABLE4 
MATLAB function (model) for the solution of part (d) of the 

ultrafiltration problem 

No. Command % Comment 

l function fx = MNLEfun(x); 

2 cl = x(l) ; 

3 c2 = x(2); 

4 A3 = x(3); 

5 cg = 300; %g/L 

6 c0 = 10; %g/L 

7 k = .0000035; %mis 

8 Q0 = l / (60 * 1000); %mA3/s 

9 jl = k * log(cg I cl); %Membrane Flux 

10 c3 = 100; %g/L 

11 A2= .7 %mA2 

12 QI= c0 * Q0 I cl ; %mA3/s, Complete Rejection of Protein 

13 j2 = k * log(cg I c2); %Membrane Flux 

14 Q2 = cl * Ql / c2; %mA3/s, Complete Rejection of Protein 

15 Q3 = c2 * Q2 / c3; %mA3/s, Complete Rejection of Protein 

16 j3 = k * log(cg / c3); %Membrane Flux 

17 Al= .7 %mA2 

18 fx(l ,l) = QO- QI - (jl * Al); %Overall Material Balance 

19 fx(2 ,l) =QI - Q2 - (j2 * A2); %Overall Material Balance 

20 fx(3 ,1) = Q2 - Q3 - (j3 * A3); %Overall Material Balance 
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the original variables associated with a particular stage makes 
it much easier to understand, to interpret, and to modify the 
model in order to fit the various problem types (design, op­
timization, etc.). Furthermore, the model equations cannot 
provide full documentation of the problem as some of the 
original variables (Qi and c) do not appear in them. 

USING THE EXAMPLE TO DEMONSTRATE 
GOOD PROGRAMMING PRACTICES 

Software packages such as POLYMATH and Excel are very 
convenient tools for problem solving, but there are more com­
plex tasks that may require programming. One such complex 
assignment can be optimization of the membrane areas of the 
multi-stage system for different final concentration: c

3 
values 

(parametric runs). In this section the membrane area optimiza­
tion assignment (d) is carried out for various c

3 
values: c

3 
= 

50, 60 ... 150 g/L and the resultant optimal areas are plotted 
vs. c

3
• Such parametric optimization runs can be carried out 

with Excel by manually changing the parameter values. This 
approach is inefficient and cumbersome, however, particu­
larly for problems where there are many parameters and a 
wide range of parameter values to be considered. In such 
cases, programming is required for repetitive solution of the 
problem with the various parameter values. One option is to 
carry out the parametric runs efficiently using MATLAB . The 

development of the MATLAB program can serve for 
demonstration of good programming practices. 

The MATLAB function representing the operation 
of the multistage ultrafiltration unit can be auto­
matically and efficiently generated by POLYMATH 
(Table 4). The function is named MNLEfun. It accepts 
c

1 
,c

2
, andA

3 
as input parameters and returns the val­

ues of f(c 1), f(c
2

) , and f(A
3
) to the calling program. 

Note that MATLAB requires input of the variable 
values into the function in a single array (x , in this 
case) , and return of the function values in a single 
array (fx, lines 18-20 in Table 4). The variable values 
are put back into variables with the same names as 
used in the POLYMATH model (lines 2-5) to make 
the MATLAB code more meaningful. POLYMATH 
orders the equations sequentially as required by 
MATLAB and converts any needed intrinsic func­
tions and logical expressions. 

The function in Table 4 contains several variables 
(cg, c

0
, c

3
, Q

0
, A

1
, and A) to which constant numeri­

cal values are assigned. Assigning numerical values 
to variables inside functions is considered poor 
programming practice as it limits the use of the func­
tion to one particular problem with just one set of 
parameter values. To enable general use of the func­
tion the numerical values of these variables must be 
passed to the function by the program that calls this 
function . One possibility to pass variable values to a 
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function is by defining these variables as "global" variables. 
Unlike "local" variables , which are separate for the different 
functions and the main program, a single copy of a "global" 
variable is shared by all of them. The use of "global" variables 
is not considered good programming practice, however, as 
it overrides the hierarchical structure of the program. This 
means that change of a global variable in a lower-hierarchy­
level function may cause unforeseen changes in higher-level 
functions or in the main program. Good programming practice 
requires the passing of the numerical values of constants as 
input parameters to the function . 

In Table 5 the revised form of the MNLEfun is shown. 
Observe that in this version all the numerical values of the 
variables are passed through one array, named parm. Good 
programming practice requires introducing the numerical 
values into the original variables (see lines 5 to 11 in Table 5) 
so that the original forms of the equations (lines 12 through 
20) can serve as clear documentation of the ultafiltration 
system model. 

The MATLAB multiple variable minimization function: 
fminsearch combined with the nonlinear equation solver func­
tion: fsolve can be used to find the minimal membrane area 
configuration for various c

3 
values. Thefminsearch function 

is called with the following parameters: 

[ Aopt,TArea,exitflag] = fminsearch( @minA ,A 1 A2 ,[],parm); 

The input parameters are: minA is the name of the function 
that calculates the objective function At =Al+ A2 + A3 value, 
AIA2 is an array containing the current values of A1 and A2, 

and parm is the same array of the parameter values that is 
used in the MNLEfun function (Table 5). The output param­
eters are: Aopt is an array that contains the optimal values 
of A

1 
and A

2
, TArea contains the optimal value of the total 

membrane area, and exitflag indicates whether a minimum has 
been found (exitflag = l) or the search has been terminated 
for other reasons ( exitflag ':/:. 1) . 

The function minA is shown in Table 6. This function 
obtains the values of AIA2 and parm from the jminsearch 
function and returns Asum (A,). The minA function passes the 
current Al and A2 values to the MNLEfun function (through 
the parm array) and uses the nonlinear equation solver func­
tionfsolve to solve the system of nonlinear equations: f( c,) = 
0, f(c

2
) = 0 , and f(A

3
) = 0. This is necessary in order to find 

the A3 value that satisfies the constraints with the current set 
of Al and A2 values. 

The complete MATLAB program can be downloaded from 
the ftp site: <ftp://ftp.bgu.ac.il/shacham/Ultrafiltration/>. The 
calculated optimal areas are plotted vs. the exit concentration 
c

3 
in Figure 3 (next page). As expected, higher outlet concen­

trations require larger membrane areas . 

A similar example involving development of a MATLAB 
program for modeling of imperfect mixing in a Chemostat 
that involves the use of minimization and nonlinear equation 
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TABLES 
Generalized form of the MATLAB function (model) of 

the ultrafiltration system 

No. Command % Comment 

I function fx = MNLEfun(x,parm); 

2 cl= x(l ); 

3 c2 = x(2); 

4 A3 = x(3) ; 

5 cg= parm(l); %g/L 

6 c0 = parm(2); %g/L 

7 k = parm(3); % mis 

8 Q0 = parm(4); %m"3/s 

9 c3 = parm(S); % mis 

10 Al = parm(9);% m"3 

11 A2 = parm(10);% m"3 

12 jl = k * Jog(cg / cl ); %Membrane Flux 

13 QI= cO * Q0 / cl ; %m"3/s, Complete Rejection of 
Protein 

14 j2 = k * log(cg / c2); %Membrane Flux 

15 Q2 = cl * QI / c2;%m"3/s , Complete Rejection of 
Protein 

16 Q3 = c2 * Q2 / c3; %m"3/s, Complete Rejection of 
Protein 

17 j3 = k * log(cg / c3); %Membrane Flux 

18 fx(l ,l) = (QO- QI - (jl * Al)) ; %Overall Material 
Balance 

19 fx(2,1) = QI - Q2 - (j2 * A2); %Overall Material Bal-
ance 

20 fx(3, l ) = Q2 - Q3 - (j3 * A3); %Overall Material Bal-
ance 

TA B LE 6 
MATLAB Function for calculating the total membrane 

area 

No. Command % Comment 

I function Asum=rninA(A 1A2,parm) 

2 cl=parm(6); c2=parm(7); A3= parm(8); 

3 xguess = [cl c2 A3] ; 

4 Al= AIA2(1); A2 =AIA2(2); 

5 parm(9)=Al ; parm(IO)=A2; 

6 options = optimset( 'Display' ,['off' ],'TolFun ' ,[le-
14] ,'To!X' ,[le-14]); 

7 xsolv=fsolve(@MNLEfun,xguess,options ,parm); 

8 A3=xsolv(3); 

9 Asum=Al +A2+A3; 

solver functions can be found in Cutlip, et. aJ.C61 The example 
presented there can also be used for demonstration of good 
programming practices. 
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CONCLUSIONS 
The example presented here provides an opportunity to 

practice several aspects of modeling and design of multi­
stage processes 

• Using a consistent "sequential modular" approach for 
modeling the single units. 

• Solving problems of increasing levels of difficulty-simu­
lation, design , and optimization-while selecting the 
most effective software tool for numerical solution of the 
problem at hand. 

• Building the model and the computer input so that they 
can serve as clear and complete documentation of the 
problem and its solution . 

• Using advanced tools available for solving nonlinear 
algebraic equations and optimization problems. 
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