
Vol. 52, No. 4, Fall 2018 243

The goal of this article is to demonstrate the use of ma-
chine learning (ML) as a tool to potentially identify
key assignments or critical sections in engineering

courses. The article begins with a brief overview of the field
of ML, including some of the tools and terminology used in
ML. The discussion is not intended to be comprehensive but,
instead, to provide some common terminology and highlight
some of the more common ML techniques for someone with
a background in engineering. The main topic here is an il-
lustration of how ML tools can provide insight into grade
analysis, student assessment, and the relative importance of
different course components in predicting the overall course
performance of a student.

Courses on ML have existed for decades at many academic
institutions.[1,2] ML is considered a sub-field of computer sci-
ence and the students in ML courses are likely to be in com-
puter science or a closely related field such as data science.
It is easy to document the widespread use of ML tools for
solving problems in computer science such as spam filtering
and imaging recognition, and there is recent evidence that
ML use is growing in chemical engineering.[3,4] Growth in the
range and diversity of problems where ML approaches are be-
ing applied should cause almost anyone to pause and consider
the potential role of ML in the future. Before discussing grade
analysis and prediction, a brief overview of ML is provided.

OVERVIEW OF MACHINE LEARNING
If it is possible, machine learning—which includes arti-

ficial intelligence and deep learning as closely related and
overlapping fields—is both over-hyped and underappreci-
ated simultaneously.[5] The mathematical algorithms that
form the foundation of ML go back more than a century
(e.g., optimization of an objective function, regression, and

clustering). Critics point to the deep history of the underlying
mathematics as evidence that the recent surge in ML interest
is merely hype. However, this fails to recognize extraordinary
improvements made by ML researchers on new algorithms for
ML that are more flexible, more adaptable, easier to imple-
ment, easier to use, require minimal mathematical training,
and can be executed on very large data sets (e.g., millions of
data points) using only modest, inexpensive computational
hardware. The first two major applications of ML were optical
character recognition in the 1980s and email spam filtering
that started in the 1990s.[6] Research in ML actually declined
during the first decade of the 21st century, but ML interest
has exploded with the recent demand for speech recognition,
image recognition, self-driving vehicles, and other related
technologies. Simultaneously, the availability of graphical
processing units (GPUs) to support the computational burden
and large datasets provided by the internet were significant
enablers of ML.[7,8] The use of ML in engineering applications
is relatively recent, but ML methods including support vector
machines and artificial neural networks for chemical process
modeling are growing rapidly, especially in areas where large
datasets are now available.[3,4]

MACHINE LEARNING AS A TOOL
TO IDENTIFY CRITICAL ASSIGNMENTS

Jeffrey J. Heys
Montana State University • Bozeman, MT

ChE classroom

© Copyright ChE Division of ASEE 2018

Jeffrey J. Heys is a professor and depart-
ment head in the Chemical and Biological
Engineering Department at Montana State
University. He received his B.S. in chemical
engineering in 1996 from Montana State
University, and his M.S. and Ph.D. from the
University of Colorado at Boulder in 1998
and 2001, respectively. His research area is
computational transport and computational
fluid dynamics in biological systems with an
emphasis on fluid-structure interaction and
porous media flows.

Chemical Engineering Education244

ML approaches can be roughly divided into two categories:
supervised learning and unsupervised learning.[9] Supervised
learning requires an existing dataset with the values of the
desired output variables included. Optical character recogni-
tion is an example where supervised learning is used. The data
typically consists of a pixelated image of a single handwritten
character, i.e., the data is a vector of pixel color values for ev-
ery pixel in the image and the corresponding character shown
in the image is given. In ML, the color value of each pixel is
called a “feature” and the true character shown in the image
is called the “label.” In short, supervised learning requires
labeled input data, and the result after training is an algorithm
that can predict labels for future, unlabeled, input data. The
most common approaches for supervised learning include:

• Multivariable Regression[6]: the large datasets with
many features (i.e., independent variables) in typical ML
applications can lead to very large-scale multivariable
linear regression problems (and, sometimes, multivari-
able polynomial or nonlinear regression problems)
where the minimization of the objective function is
usually performed using a gradient descent algorithm
because the data sets are too large for a direct solution
algorithm.

• Logistical Regression (or Logit Regression): this ap-
proach starts with the use of linear regression to predict
a probability that some set of features from a data set
should have a certain label applied. For example, the
probability that a vector of pixel colors corresponds to
the letter “b.” Then, the logistic of the probability is
taken (i.e., a sigmoid function is used) to determine the
final label that is applied. Hence, logistical regression is
an extension of linear regression so that it can be used
as a classification technique.[7]

• Decision Trees: these algorithms build decision trees by
first identifying the most important features in the data
(e.g., the most important pixels in an image for deter-
mining the character in the image) and then building
decision trees for classification.[9]

• Support Vector Machines (SVM): these algorithms
identify boundaries that optimally separate data based
on the different labels connected with each item in the
data set. For example, the pressure, temperature, opaci-
ty, and other data might be collected for various steps in
a chemical process, and then the final product is labeled
as “off-spec” or “acceptable.” An SVM algorithm could
be used to determine the boundaries between conditions
that frequently lead to the different outcomes so that the
final product quality could be predicted in the future as
the process measurements are being made at each step
in the process.[7]

Beyond the basic learning methods mentioned above, much
of the research in ML today is directed towards the use of
artificial neural networks (ANN) and other deep learning ap-
proaches. These methods use multiple, hidden layers of inputs
and outputs to develop networks with more flexibility and the

potential to provide significantly greater predictive power
than methods with a single layer of weights. For example,
imagine if the output of a multivariable linear or nonlinear
regression model was used as the input for another, hidden,
linear or nonlinear regression model. The resulting network
would have twice as many parameters and would require
significantly more data for training, but it would have the
potential to provide a better model of the data. Deep learning
approaches are beyond the scope of the current discussion, but
they are some of the most promising and exciting methods in
ML when very large quantities of data are available.

Unsupervised learning uses clustering algorithms to identify
related or correlated features among the different samples
in a dataset.[6] These algorithms do not require that the data
be labeled or that a result is known. For example, a website
might have data on the various items individuals purchase. The
website could use a clustering algorithm to recognize that indi-
viduals that purchased shoes also frequently purchased socks
and then use that information to advertise socks to every future
customer searching for shoes. The most common clustering
algorithms include k-means and hierarchical cluster analysis.
Principle component analysis is also an unsupervised learning
algorithm used for dimensionality reduction with large datasets.
It is the author’s opinion that the potential applications for su-
pervised learning in chemical engineering are significant while
the applications for unsupervised learning are probably limited.

There are a number of commercial software packages
for ML, but the field is dominated by open source libraries
that support a number of different programming languages,
including C++, Java, R, and MATLAB, but the most popu-
lar language in the field of ML is Python.[11] Some of the
most widely used libraries are Torch,[12] Caffe,[13] Keras,[14]
Therano,[15] TensorFlow,[7] and Scikit-Learn.[7] Most libraries
provide tools that help with importing data, preprocessing
and scaling the data, multiple ML algorithms for supervised
and unsupervised learning, and postprocessing algorithms.
The libraries include computationally efficient implementa-
tions with some even supporting parallel execution of many
calculations on a GPU.

MACHINE LEARNING FOR GRADE ANALYSIS
AND PREDICTION

Many studies have been published on the topic of grade
prediction, including the prediction of grades in engineering
programs.[16,17] Most of these studies focus on the identifica-
tion of factors that can be used to predict students that might
need additional support in order to be successful in their
engineering program.[18] While most of these studies used
traditional statistical analysis to identify differences (e.g., t-
tests) and trends (e.g., linear regression), a few recent studies
have examined the use of ML algorithms to predict students’
overall GPAs at graduation[19,20] or student retention.[21,22]

The only examples of using ML to predict performance

Vol. 52, No. 4, Fall 2018 245

in a single class that were found were a pair of studies on
predicting student performance in distance learning courses
by Kotsiantis et al.,[23, 24] and no publications on predicting
engineering course performance using ML were found. The
focus here is on both predicting the final grade in a chemi-
cal engineering course—based on assessment elements like
homework or quizzes within the course—and using the results
of the ML analysis to identify especially important elements
within the course. This application illustrates the use of ML
in modeling and it illustrates how one can gain insight into
key factors (e.g., important assignments) affecting course
grades. The goal here is not to develop an extremely accurate
tool for predicting course grades, but to illustrate the use of
ML in identifying particularly important assignments or key
moments in a course.

The application of ML to grade prediction is illustrated
through a step-by-step example below. The computer code
uses the Python 3 programming language, and three additional
libraries are used:

• Numpy <www.numpy.org>: this library adds additional
vector, array, and linear algebra tools for use in Python
programs. The tools are computationally efficient as
most of the underlying computer code is written in FOR-
TRAN or C.

• Pandas <pandas.pydata.org>: the Pandas library is
designed specifically for data science on large data sets
and includes extensive tools for reading and writing data
from/to different sources and then statistically analyzing
(and modifying) the data.

• Scikit-Learn <scikit-learn.org>: this is the most impor-
tant library for this discussion as it adds the machine
learning tools that are illustrated below in the Python
language.

The full Python code (and Jupyter notebook, <jupyter.org>)
and anonymized grade data sets that are illustrated below are
available at <www.chbe.montana.edu/heys/mlandche>. All
names and other identifiable information have been removed
from the data sets and a few of the grades have been randomly
modified by a small amount. An exemption was granted by
the Montana State University Institutional Review Board
for the data set. The interested user who wants to explore the
example code below, but is unfamiliar with Python, is encour-
aged to download the Anaconda Python distribution (<https://
www.continuum.io/downloads>) for MacOS or Windows, as
it includes Python and additional libraries that are typically
used in data science or engineering.[25]

IMPORTING DATA
The data for this first example is all the grades from a

course on computational methods for chemical and biological
engineers taught at Montana State University. Two different
data sets are examined from two different years of teaching
the course, but the data sets are not merged together because

of changes in the course. The graded assignments in the
course include:

1. Ten homework assignments that cumulatively accounted
for 40% of the final grade. Note that the each homework
assignment grade is out of 10 possible points and the fi-
nal grade percentages in the spreadsheet reflect the final
percentage after dropping the lowest homework score.

2. Two midterm exams that each account for 25% of the
final grade. The midterm exams are graded out of 100
points, and additional points are sometimes included so
exam scores of more than 100 points are possible.

3. A final project that accounts for 10% of the final grade
and is graded out of 10 points.

The course data sets have 152 students in year A and 146
students in year B. As expected, not all assignments and exams
were completed by all the students so there are many blanks
in the data set that will ultimately be equivalent to zero points.

Fortunately, the Pandas library supports the importing of
data from Excel files. The following Python code imports the
full course grade data set for year A from file “GradesA.xlsx.”
import pandas # import the pandas library for read-

ing the data files

import numpy

gradeData = pandas.read_excel(open(“GradesA.
xlsx”,’rb’),sheetname=’Sorted’)

gradeData = gradeData.fillna(0) # fill missing grades
with zero

The first two lines import external libraries, and a single line
of code reads the data set from an Excel spreadsheet using the
read_excel() function in the Pandas library. The final line of
code above fills in the missing data points, i.e., unsubmitted
assignments, with zeros.

LINEAR REGRESSION
Since most chemical engineers are comfortable with

multivariable linear regression, that is a good place to begin
illustrating ML algorithms. The code below performs linear
regression on just the nine best homework grades for each
student (stored in matrix X and referred to as the features)
in order to predict the final course grades (stored in vector y
and referred to as the labels).
from sklearn.linear_model import LinearRegression

X = gradeData.loc[:,’Homework 1’:’Homework 10’] #
features

y = gradeData[‘Final Pct’] # labels

lin_reg = LinearRegression() # setup for multivari-
able regression

w = lin_reg.fit(X, y) # perform regression

print(“Weights”,w.coef_)

The linear regression algorithm in Scikit-Learn, LinearRe-
gression(), minimizes the root mean square error just like tra-
ditional linear regression, and the minimization of alternative

Chemical Engineering Education246

objective functions is straightforward. The weights, stored in
variable w, correspond to the coefficients (or slope) associated
with each independent variable (or feature). Each retained
homework assignment is equally important in calculating the
final grade (i.e., each homework assignments represents 4.4%
of the final course grade), but they are not equally important
for predicting overall performance in the course. The weights
from linear regression for the 10 different homework assign-
ments are: 0.90, 0.91, 0.89, 0.16, 0.72, 1.03, 0.50, 0.83, 1.08,
and 0.41, and they tell a different story. If an instructor wants
to predict final course grades, the fourth and tenth homework
assignments are almost useless based on the small weights of
0.16 and 0.41, respectively. The sixth homework assignment,
on the other hand, is very important in predicting final grades
and students may want to pay special attention to their grade
on this assignment if they want to predict how they might fin-
ish the course. The mean scores on the 10 different homework
assignments varied by less than 10% over the semester so
the average assignment score is less variable than the linear
regression weights. It is also recommended that the standard
correlation coefficient matrix be checked because the linear
regression weight for any assignment with low correlation
may not be meaningful. For this data set, all the correlation
coefficients between individual homework assignments and
the final grade percentage were between 0.5 and 0.7 with
the exception of homework 1, which had a value of 0.41.
Homework 1 often correlates poorly because students are
unfamiliar with instructor expectations.

The second data set from the same course but a different
year is stored in the file “GradesB.xlsx” and has similar vari-
ability for the weights corresponding to each assignment.
The trend in data sets for two separate offerings of the course
suggest that middle-of-the-semester homework assignments
falling roughly in weeks 6–8 of a 15-week semester are par-
ticularly influential if multivariable linear regression is used
to predict final percentage grades.

There are a number of gaps in the analysis above. First,
the accuracy of the grade predictions using only homework
scores and leaving out exams and a project has not been ana-
lyzed. Are homework scores a good predictor (i.e., do they
correlate strongly) or should we focus only on exam scores?
If we repeat the analysis above using just the two midterm
exam scores to predict the final grade and leave out the project
and homework scores, we find that for both years the second
midterm is twice as important compared to the first midterm
in predicting the final grade in the class. Was the first midterm
too easy? The average grade was only slightly higher than the
second midterm for both years so there is no evidence for the
“easy” midterm. Finally, nothing in this analysis is new or
groundbreaking. However, the tools provided by ML did make
the importing of data and analysis simple and straightforward,
and simplicity becomes even more important as the data sets
and analysis become more complex.

LOGISTIC REGRESSION AND TEST SETS
To put the example above in more of an ML framework, two

changes are helpful. The first change is to divide the data into
a training set and a test set. The majority of the data (70-80%,
typically) is put in the training set and used to determine the
regression weights. The remaining data is placed in the test
set and used to assess the predictive ability of the ML model.
(n.b., ML practitioners will often split the full data set into
three sub-sets: a training set, a test set, and a validation set.
The reason for this is that the lengthy process of tuning the
model often results in a model that is especially well tuned to
the test set because the test set is always used for assessment.
The validation set provides a data set that should only be used
to assess the quality of the final model and should never be
used for improving/tuning the model.) The second change
is that the model is now used to predict the final letter grade
of A, B, C, D, or F instead of a final percentage. Hence, the
model is now a classifier as it classifies the input data as that
associated with a typical A grade or F grade, for example. In
ML, characters and strings such as letter grades, words, or
phrases are typically encoded to unique numbers (normally
integers), which are required by most ML algorithms and
minimizers. The encoder used below replaces the letter grades
A, B, etc. with the integers 0, 1, etc. (n.b., This simple encod-
ing works fine in this example, but there are more complex
ML applications where this encoding is unfavorable because
integers have an order and their use suggests an ordering to the
labels that may not exist. For these cases, an encoding called
“one hot encoding” should be used instead.) The code below
illustrates the full process of splitting the data into training
and test sets along with encoding.
from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

trainData, testData = train_test_split(gradeData,
test_size=0.2)

encoder = LabelEncoder() # setup label encoder

X_train = trainData.loc[:,’Homework 1’:’Homework
10’]

y_train = encoder.fit_transform(trainData[‘Final
Grade’])

X_test = testData.loc[:,’Homework 1’:’Homework 10’]

y_test = testData[‘Final Grade’]

log_reg = LogisticRegression() # setup for logit
regression

w = log_reg.fit(X_train, y_train) # perform regres-
sion

gradePredictions = log_reg.predict(X_test) # check

model performance on test data

The performance of the Logistic Regression model can be
assessed using the test data in a number of different ways.
One of the simplest methods is to calculate the root mean
square error (RMSE) on the test set (20% of the class or

Vol. 52, No. 4, Fall 2018 247

30 students) and this is typically
5–8% or a little less than one letter
grade. In other words, for this class,
we can predict the final grade cor-
rectly about two-thirds of the time
using only the homework scores.
Homework scores could be a much
better or a much poorer predictor for
other courses. Another assessment
is to just look at the predictions
for the first 10 students in the test
set and compare their predicted
grades to their actual grades as
shown in Table 1. In only 10% of
the cases did the prediction miss
by more than a single letter grade
and in about 50% of the cases, the
prediction was correct. (n.b. Even if
all available grades are used in the
prediction—all homework, midterm
exams, and project grades—the
prediction is still incorrect about
1% of the time because the model
does not account for the dropping
of the lowest homework score when
calculating the actual final percentage.) If +/- grading is used,
the prediction would be incorrect more frequently due to the
larger number of possible value, but the average size of the
error (i.e., RMSE) would be similar.

DECISION TREES
One of the advantages associated with ML maturing as a

research field is that the current libraries make it easy to try out
different types of algorithms quickly and easily to determine
the best choice for a particular data set and modeling project.
Decision trees are typically used for classification problems
like the letter grade prediction example above. The algorithm
first determines the most important feature (in this case, the
most important homework assignment) for predicting the
labels or final letter grade, and then creates a branch based on
the optimal dividing threshold for that feature as determined
by the algorithm. Additional layers of branches can be added
to the decision tree as desired.

The code below is very similar to the previous logistic
regression code, but it uses the decision tree algorithm from
Scikit-Learn, DecisionTreeClassifier(), to predict final grades.
from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_
test_split

from sklearn.preprocessing import LabelEncoder

split data into training and test sets

trainingData, testData = train_test_

split(gradeData, test_size=0.2)

encoder = LabelEncoder()

X_train = trainingData.loc[:,’Homework
1’:’Homework 10’]

y _ t r a i n = e n c o d e r . f i t _
transform(trainingData[‘Final Grade’])

X_test = testData.loc[:,’Homework 1’:’Home-
work 10’]

y_test = testData[‘Final Grade’]

dec_tree = DecisionTreeClassifier(max_depth=2)

w = dec_tree.fit(X_train, y_train) # build de-
cision tree

gradePredictions = dec_tree.predict(X_test) #
test decision tree on test data

The predictions and actual grades for 10 random students in
the test set are shown in Table 2. For this particular example,
the performance of the decision tree is close but not quite
as good as logistic regression, but for many other applica-
tions, decision trees can be as good or better for supervised
learning. The decision tree performance here could also be
improved by allowing more than two layers in the decision
tree; a limitation set by the max_depth=2 parameter in the
Python code, but increasing the number of layers risks over
fitting the data in the training set, which would lead to worse
predictions in general.

One of the advantages to building decision trees is that the re-
sulting model can help in identifying both critical features and
potentially important values associated with those features.

TABLE 1
Predicted and actual grades for 10 students from the test set.
The two different data sets are for two different years, and

logistic regression was used for the predictions.
Data Set: GradesA.xlsx

Predicted: D B B A A A B A C A

Actual: D B F B A A A B C B

Data Set: GradesB.xlsx

Predicted: C A F A B F D B A B

Actual: B A F B B F C C C B

TABLE 2
Predicted and actual final grades using homework scores and a decision tree

algorithm. The data sets are from two different years.
Data Set: GradesA.xlsx

Predicted: B B B A A A B A F A

Actual: D B F B A A A B C B

Data Set: GradesB.xlsx

Predicted: B A F A A F B B A B

Actual: B A F B B F C C C B

Chemical Engineering Education248

The decision tree shown in Figure 1 is
based on predicting final letter grades
using only the first six homework as-
signments from the GradesA.xlsx data
set. The decision tree starts with 121
individuals in the training set (recall
that the other 30 students are in the test
set), and the values shown for each box
in the decision tree show the number of
students in that group that ultimately
receive an A, B, C, D, or F, respective-
ly. The first branch in the decision tree
is based on the score for homework 3.
No student that ended with an A in the
class received less than a 7.25 on this
homework assignment. Further, all the
students receiving D or F at the end of
the course received less than a 7.25 on
this assignment. This could be help-
ful information to the students in the
course that might see this as a relative-
ly unimportant homework assignment.
The next layer on the decision tree
looks at homework 5 for students that
did well (>7.25 points) on homework
3 and at homework 6 for students that
did not score above 7.25 on homework
3. Recall that the weights determined
using linear regression also suggested
that homework 6 was very important in
predicting final grades and homework
4 was not important. Homework 4 does
not appear in the decision tree and homework 6 is present.
Finally, Figure 1 also shows the gini score for each branch
point (or node) and this is a measure of the impurity of a
node where gini=0 is a “pure” node.[7] The gini score is a
measure of how often a randomly chosen data point from
the data set would be incorrectly labeled with a grade if it
was assigned a random grade using the distribution of grades
in the data set.

Constructing a decision tree on the second data set from
GradesB.xlsx gives a similar result as shown in Figure 2. It
is important to note that the year the course was taught cor-
responding to the year-B data set had one fewer homework
assignment on the early course material so homework 4,
which was less important in the year-A data set, would be
most similar to homework 3 in this data set. Once again, the
most important assignments for predicting final grades are
from the middle of the semester. Students scoring a 5/10 or
better on homework 5 and a 10/10 on homework 4 usually
received an A and always passed with a C or better. Students
receiving a 4/10 or less on homework 5 and less than a 6/10
on homework 6 always received an F for this data set.

MATERIAL AND ENERGY BALANCES
COURSE

The two data sets used previously to predict final grades
based on homework (or midterm) grades during a semester
were from the same course on engineering computations over
two different years. A third data set of grades from a material
and energy balances course was examined using the same
tools from ML. The goal was to identify similarities and dif-
ferences in the ML models that are developed for predicting
final grades. The final grades in this course were based on
the completion of 10 homework assignments (10% of final
grade), nine in-class quizzes (10%), two midterm exams (25%
each), and a final exam (30%). The homework assignments
are graded based only on the fraction of problems that were
attempted. There were 132 students that received a final grade
in the course.

Using multivariable linear regression on the homework
scores to predict final grades resulted in a low performance
model. The weights associated with various homework as-
signments were highly variable (including some negative
weights!), and the root mean square error on the test set was

Figure 1. Decision Tree for predicting final grades using only the first six
homework assignments in the GradesA.xlsx data set.

Figure 2. Decision Tree for predicting final grades using only the first six
homework assignments in the GradesB.xlsx data set.

Vol. 52, No. 4, Fall 2018 249

12–15%, which means that the model predicts the correct
letter grade less than half the time. This result is probably
expected as the homework assignments were not graded for
accuracy or correct answers, and, instead, points were given
for attempting the problems. The nine quiz scores, on the other
hand, gave a more accurate model even though the scores
combined to represent only 10% of the final course grade. The
root mean square error was typically 7–10%, which means
the final grade was correctly predicted about half the time.
Using the two midterm exam scores to predict the final grade
resulted in a root mean square error of less than 5% typically,
but this is not surprising since 50% of the final grade was from
the midterm exams.

A decision tree was built using just the nine quiz scores and
it was similar to those built for homework scores in the engi-
neering computations course. A quiz grade from the middle
of the semester, quiz #4, was at the top of the decision tree
and the branch separated the “likely to pass” group from the
“unlikely to pass” group. Interestingly, both branches in the
second layer of the decision tree used quiz #8 from near the
end of the course (this was the first quiz to contain an energy
balance question).

Finally, a few remarks on using ML with more complex
data sets. First, depending on the ML tool that is used, data
scaling—which was not used here because the numerical
values used were always between 0 and 100—may be criti-
cal for both good computational performance and accurate
predictions. Second, these few examples were not intended
to demonstrate the full potential of ML. These were relatively
small data sets and only three different algorithms were tested.
There are many other ML algorithms that could potentially be
used to analyze course grades and anyone wanting to explore
ML tools further for grade prediction or other applications is
encourage to consider References 7–9.

CONCLUSIONS
The primary goal here was to illustrate how ML can be used

to identify critical elements in a course that strongly impact
overall performance. ML libraries are becoming easier to use
and more flexible, allowing a number of different algorithms
to be tested quickly using data from a standard data source
like an Excel spreadsheet file. We close by asking if the type
of analysis that results from grade prediction might be useful
to students. Would students benefit from learning that certain
assignments or quizzes are more important for predicting their
final grade? Would students benefit from knowing that if they
score below a certain percentage on a particular homework
assignment, they are statistically unlikely to get an A in the
course?

Hopefully, this discussion has provided a useful brief
overview of terminology and types of tools used in ML
applications. Using ML algorithms, instructors can take a
few minutes to see if they can identify the most important

and least important items used for student assessment in
their courses and use the information if it is helpful. Finally,
departments and programs are encouraged to “keep an eye”
on the field of ML, as it is having a growing role in chemi-
cal engineering.

REFERENCES
 1. Georgiopoulos M, et al. (2009) A sustainable model for integrating

current topics in machine learning research into the undergraduate
curriculum. IEEE Transactions on Education 52(4):503.

 2. Mellody M (2014) Training Students to Extract Value from Big Data:
Summary of a Workshop (National Academies Press, Washington, DC
p. 66).

 3. Qin SJ (2014) Process data analytics in the era of big data. AIChE
Journal 60(9):3092.

 4. Beck DAC, Carothers JM, Subramanian VR, & Pfaendtner J (2016)
Data science: accelerating innovation and discovery in chemical en-
gineering. AIChE Journal 62(5):1402.

 5. Witten IH, Frank E, Hall MA & Pal CJ (2017) Data Mining : Practical
Machine Learning Tools and Techniques, Fourth Edition (Elsevier,
Amsterdam).

 6. Alpaydin E (2014) Introduction to Machine Learning, Third edition,
Adaptive computation and machine learning (The MIT Press, Cam-
bridge, Mass.).

 7. Géron A. (2017) Hands-On Machine Learning With Scikit-Learn
and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent
Systems (O’Reilly, Sebastopol, CA).

 8. Grus J (2015) Data Science From Scratch : First Principles with Python
(O’Reilly, Sebastopol, CA).

 9. Raschka S (2015) Python Machine Learning: Unlock Deeper Insights
Into Machine Learning With This Vital Guide To Cutting-Edge Predic-
tive Analytics. Community Experience Distilled (Packt Publishing,
Birmingham, UK).

 10. Due to updates at press time, see Reference 7.
 11. Verma A (2016) Most Popular Programming Languages For Machine

Learning And Data Science. Accessed June 9, 2017; Available from

The primary goal here was
to illustrate how ML can be used

to identify critical elements in a course
that strongly impact overall

performance. ML libraries are
becoming easier to use and more

 flexible, allowing a number of
different algorithms to be tested

quickly using data from a
standard data source like an

Excel spreadsheet file.

Chemical Engineering Education250

<https://fossbytes.com/popular-top-programming-languages-machine-
learning-data-science/>.

 12. Collobert R, Farabet C, & Kavukcuoğlu K (2008) Torch: scientific
computing for luajit, in NIPS Workshop on Machine Learning Open
Source Software.

 13. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Gua-
darrama S, & Darrell T (2014) Caffe: Convolutional architecture for
fast feature embedding, in Proceedings of the 22nd ACM International
Conference on Multimedia.

 14. Chollet F (2018) Deep Learning with Python (Manning Publications,
Shelter Island, NY).

 15. Al-Rfou R et al. (2016) Theano: A Python framework for fast computa-
tion of mathematical expressions. doi: arXiv:1605.02688. 472.

 16. Yadav SK, & Pal S (2012) Data mining: a prediction for performance
improvement of engineering students using classification. World of
Computer Science and Information Technology Journal 2(2):51.

 17. Huang S, & Fang N (2013) Predicting student academic performance
in an engineering dynamics course: A comparison of four types of
predictive mathematical models. Computers & Education. 61:133.

 18. Wood DA, & Langevin MJ (1972) Moderating prediction of grades in
freshman engineering. Journal of Educational Measurement 9(4):311.

 19. Marbouti F, Diefes-Dux HA, & Madhavan K (2016) Models for early
prediction of at-risk students in a course using standards-based grading.
Computers & Education. 103:1.

 20. Tekin A (2014) Early prediction of students’ grade point averages at
graduation: a data mining approach. Eurasian Journal of Educational
Research. 54:207.

 21. Lykourentzou I, Giannoukos I, Nikolopoulos V, Mpardis G, & Lou-
mos V (2009) Dropout prediction in e-learning courses through the
combination of machine learning techniques. Computers & Education.
53(3):950.

 22. Dekker G, Pechenizkiy M, & Vleeshouwers J (2009) Predicting stu-
dents drop out: A case study. in Educational Data Mining 2009.

 23. Kotsiantis S, Pierrakeas C, & Pintelas P (2004) Predicting students’
performance in distance learning using machine learning techniques.
Applied Artificial Intelligence 18(5):411.

 24. Kotsiantis S, Patriarcheas K, & Xenos M (2010) A combinational
incremental ensemble of classifiers as a technique for predicting stu-
dents’ performance in distance education. Knowledge-Based Systems.
23(6):529.

 25. Heys JJ (2017) Chemical and Biomedical Engineering Calculations
Using Python (John Wiley & Sons, Hoboken, NJ). p

