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The goal of this article is to demonstrate the use of ma-
chine learning (ML) as a tool to potentially identify 
key assignments or critical sections in engineering 

courses. The article begins with a brief overview of the field 
of ML, including some of the tools and terminology used in 
ML. The discussion is not intended to be comprehensive but, 
instead, to provide some common terminology and highlight 
some of the more common ML techniques for someone with 
a background in engineering. The main topic here is an il-
lustration of how ML tools can provide insight into grade 
analysis, student assessment, and the relative importance of 
different course components in predicting the overall course 
performance of a student.

Courses on ML have existed for decades at many academic 
institutions.[1,2] ML is considered a sub-field of computer sci-
ence and the students in ML courses are likely to be in com-
puter science or a closely related field such as data science. 
It is easy to document the widespread use of ML tools for 
solving problems in computer science such as spam filtering 
and imaging recognition, and there is recent evidence that 
ML use is growing in chemical engineering.[3,4] Growth in the 
range and diversity of problems where ML approaches are be-
ing applied should cause almost anyone to pause and consider 
the potential role of ML in the future. Before discussing grade 
analysis and prediction, a brief overview of ML is provided.

OVERVIEW OF MACHINE LEARNING
If it is possible, machine learning—which includes arti-

ficial intelligence and deep learning as closely related and 
overlapping fields—is both over-hyped and underappreci-
ated simultaneously.[5] The mathematical algorithms that 
form the foundation of ML go back more than a century 
(e.g., optimization of an objective function, regression, and 

clustering). Critics point to the deep history of the underlying 
mathematics as evidence that the recent surge in ML interest 
is merely hype. However, this fails to recognize extraordinary 
improvements made by ML researchers on new algorithms for 
ML that are more flexible, more adaptable, easier to imple-
ment, easier to use, require minimal mathematical training, 
and can be executed on very large data sets (e.g., millions of 
data points) using only modest, inexpensive computational 
hardware. The first two major applications of ML were optical 
character recognition in the 1980s and email spam filtering 
that started in the 1990s.[6] Research in ML actually declined 
during the first decade of the 21st century, but ML interest 
has exploded with the recent demand for speech recognition, 
image recognition, self-driving vehicles, and other related 
technologies. Simultaneously, the availability of graphical 
processing units (GPUs) to support the computational burden 
and large datasets provided by the internet were significant 
enablers of ML.[7,8] The use of ML in engineering applications 
is relatively recent, but ML methods including support vector 
machines and artificial neural networks for chemical process 
modeling are growing rapidly, especially in areas where large 
datasets are now available.[3,4]
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ML approaches can be roughly divided into two categories: 
supervised learning and unsupervised learning.[9] Supervised 
learning requires an existing dataset with the values of the 
desired output variables included. Optical character recogni-
tion is an example where supervised learning is used. The data 
typically consists of a pixelated image of a single handwritten 
character, i.e., the data is a vector of pixel color values for ev-
ery pixel in the image and the corresponding character shown 
in the image is given. In ML, the color value of each pixel is 
called a “feature” and the true character shown in the image 
is called the “label.” In short, supervised learning requires 
labeled input data, and the result after training is an algorithm 
that can predict labels for future, unlabeled, input data. The 
most common approaches for supervised learning include:

•  Multivariable Regression[6]: the large datasets with 
many features (i.e., independent variables) in typical ML 
applications can lead to very large-scale multivariable 
linear regression problems (and, sometimes, multivari-
able polynomial or nonlinear regression problems) 
where the minimization of the objective function is 
usually performed using a gradient descent algorithm 
because the data sets are too large for a direct solution 
algorithm.

•  Logistical Regression (or Logit Regression): this ap-
proach starts with the use of linear regression to predict 
a probability that some set of features from a data set 
should have a certain label applied. For example, the 
probability that a vector of pixel colors corresponds to 
the letter “b.” Then, the logistic of the probability is 
taken (i.e., a sigmoid function is used) to determine the 
final label that is applied. Hence, logistical regression is 
an extension of linear regression so that it can be used 
as a classification technique.[7]

• Decision Trees: these algorithms build decision trees by 
first identifying the most important features in the data 
(e.g., the most important pixels in an image for deter-
mining the character in the image) and then building 
decision trees for classification.[9]

•  Support Vector Machines (SVM): these algorithms 
identify boundaries that optimally separate data based 
on the different labels connected with each item in the 
data set. For example, the pressure, temperature, opaci-
ty, and other data might be collected for various steps in 
a chemical process, and then the final product is labeled 
as “off-spec” or “acceptable.” An SVM algorithm could 
be used to determine the boundaries between conditions 
that frequently lead to the different outcomes so that the 
final product quality could be predicted in the future as 
the process measurements are being made at each step 
in the process.[7]

Beyond the basic learning methods mentioned above, much 
of the research in ML today is directed towards the use of 
artificial neural networks (ANN) and other deep learning ap-
proaches. These methods use multiple, hidden layers of inputs 
and outputs to develop networks with more flexibility and the 

potential to provide significantly greater predictive power 
than methods with a single layer of weights. For example, 
imagine if the output of a multivariable linear or nonlinear 
regression model was used as the input for another, hidden, 
linear or nonlinear regression model. The resulting network 
would have twice as many parameters and would require 
significantly more data for training, but it would have the 
potential to provide a better model of the data. Deep learning 
approaches are beyond the scope of the current discussion, but 
they are some of the most promising and exciting methods in 
ML when very large quantities of data are available.

Unsupervised learning uses clustering algorithms to identify 
related or correlated features among the different samples 
in a dataset.[6] These algorithms do not require that the data 
be labeled or that a result is known. For example, a website 
might have data on the various items individuals purchase. The 
website could use a clustering algorithm to recognize that indi-
viduals that purchased shoes also frequently purchased socks 
and then use that information to advertise socks to every future 
customer searching for shoes. The most common clustering 
algorithms include k-means and hierarchical cluster analysis. 
Principle component analysis is also an unsupervised learning 
algorithm used for dimensionality reduction with large datasets. 
It is the author’s opinion that the potential applications for su-
pervised learning in chemical engineering are significant while 
the applications for unsupervised learning are probably limited.

There are a number of commercial software packages 
for ML, but the field is dominated by open source libraries 
that support a number of different programming languages, 
including C++, Java, R, and MATLAB, but the most popu-
lar language in the field of ML is Python.[11] Some of the 
most widely used libraries are Torch,[12] Caffe,[13] Keras,[14] 
Therano,[15] TensorFlow,[7] and Scikit-Learn.[7] Most libraries 
provide tools that help with importing data, preprocessing 
and scaling the data, multiple ML algorithms for supervised 
and unsupervised learning, and postprocessing algorithms. 
The libraries include computationally efficient implementa-
tions with some even supporting parallel execution of many 
calculations on a GPU.

MACHINE LEARNING FOR GRADE ANALYSIS 
AND PREDICTION

Many studies have been published on the topic of grade 
prediction, including the prediction of grades in engineering 
programs.[16,17] Most of these studies focus on the identifica-
tion of factors that can be used to predict students that might 
need additional support in order to be successful in their 
engineering program.[18] While most of these studies used 
traditional statistical analysis to identify differences (e.g., t-
tests) and trends (e.g., linear regression), a few recent studies 
have examined the use of ML algorithms to predict students’ 
overall GPAs at graduation[19,20] or student retention.[21,22] 

The only examples of using ML to predict performance 
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in a single class that were found were a pair of studies on 
predicting student performance in distance learning courses 
by Kotsiantis et al.,[23, 24] and no publications on predicting 
engineering course performance using ML were found. The 
focus here is on both predicting the final grade in a chemi-
cal engineering course—based on assessment elements like 
homework or quizzes within the course—and using the results 
of the ML analysis to identify especially important elements 
within the course. This application illustrates the use of ML 
in modeling and it illustrates how one can gain insight into 
key factors (e.g., important assignments) affecting course 
grades. The goal here is not to develop an extremely accurate 
tool for predicting course grades, but to illustrate the use of 
ML in identifying particularly important assignments or key 
moments in a course.

The application of ML to grade prediction is illustrated 
through a step-by-step example below. The computer code 
uses the Python 3 programming language, and three additional 
libraries are used:

• Numpy <www.numpy.org>: this library adds additional 
vector, array, and linear algebra tools for use in Python 
programs. The tools are computationally efficient as 
most of the underlying computer code is written in FOR-
TRAN or C.

• Pandas <pandas.pydata.org>: the Pandas library is 
designed specifically for data science on large data sets 
and includes extensive tools for reading and writing data 
from/to different sources and then statistically analyzing 
(and modifying) the data.

• Scikit-Learn <scikit-learn.org>: this is the most impor-
tant library for this discussion as it adds the machine 
learning tools that are illustrated below in the Python 
language.

The full Python code (and Jupyter notebook, <jupyter.org>) 
and anonymized grade data sets that are illustrated below are 
available at <www.chbe.montana.edu/heys/mlandche>. All 
names and other identifiable information have been removed 
from the data sets and a few of the grades have been randomly 
modified by a small amount. An exemption was granted by 
the Montana State University Institutional Review Board 
for the data set. The interested user who wants to explore the 
example code below, but is unfamiliar with Python, is encour-
aged to download the Anaconda Python distribution (<https://
www.continuum.io/downloads>) for MacOS or Windows, as 
it includes Python and additional libraries that are typically 
used in data science or engineering.[25]

IMPORTING DATA
The data for this first example is all the grades from a 

course on computational methods for chemical and biological 
engineers taught at Montana State University. Two different 
data sets are examined from two different years of teaching 
the course, but the data sets are not merged together because 

of changes in the course. The graded assignments in the 
course include:

1.  Ten homework assignments that cumulatively accounted 
for 40% of the final grade. Note that the each homework 
assignment grade is out of 10 possible points and the fi-
nal grade percentages in the spreadsheet reflect the final 
percentage after dropping the lowest homework score.

2.  Two midterm exams that each account for 25% of the 
final grade. The midterm exams are graded out of 100 
points, and additional points are sometimes included so 
exam scores of more than 100 points are possible.

3.  A final project that accounts for 10% of the final grade 
and is graded out of 10 points.

The course data sets have 152 students in year A and 146 
students in year B. As expected, not all assignments and exams 
were completed by all the students so there are many blanks 
in the data set that will ultimately be equivalent to zero points.

Fortunately, the Pandas library supports the importing of 
data from Excel files. The following Python code imports the 
full course grade data set for year A from file “GradesA.xlsx.”
import pandas # import the pandas library for read-

ing the data files

import numpy

gradeData = pandas.read_excel(open(“GradesA.
xlsx”,’rb’),sheetname=’Sorted’)

gradeData = gradeData.fillna(0) # fill missing grades 
with zero

The first two lines import external libraries, and a single line 
of code reads the data set from an Excel spreadsheet using the 
read_excel() function in the Pandas library. The final line of 
code above fills in the missing data points, i.e., unsubmitted 
assignments, with zeros.

LINEAR REGRESSION
Since most chemical engineers are comfortable with 

multivariable linear regression, that is a good place to begin 
illustrating ML algorithms. The code below performs linear 
regression on just the nine best homework grades for each 
student (stored in matrix X and referred to as the features) 
in order to predict the final course grades (stored in vector y 
and referred to as the labels).
from sklearn.linear_model import LinearRegression

X = gradeData.loc[:,’Homework 1’:’Homework 10’] # 
features

y = gradeData[‘Final Pct’] # labels

lin_reg = LinearRegression() # setup for multivari-
able regression

w = lin_reg.fit(X, y) # perform regression

print(“Weights”,w.coef_)

The linear regression algorithm in Scikit-Learn, LinearRe-
gression(), minimizes the root mean square error just like tra-
ditional linear regression, and the minimization of alternative 
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objective functions is straightforward. The weights, stored in 
variable w, correspond to the coefficients (or slope) associated 
with each independent variable (or feature). Each retained 
homework assignment is equally important in calculating the 
final grade (i.e., each homework assignments represents 4.4% 
of the final course grade), but they are not equally important 
for predicting overall performance in the course. The weights 
from linear regression for the 10 different homework assign-
ments are: 0.90, 0.91, 0.89, 0.16, 0.72, 1.03, 0.50, 0.83, 1.08, 
and 0.41, and they tell a different story. If an instructor wants 
to predict final course grades, the fourth and tenth homework 
assignments are almost useless based on the small weights of 
0.16 and 0.41, respectively. The sixth homework assignment, 
on the other hand, is very important in predicting final grades 
and students may want to pay special attention to their grade 
on this assignment if they want to predict how they might fin-
ish the course. The mean scores on the 10 different homework 
assignments varied by less than 10% over the semester so 
the average assignment score is less variable than the linear 
regression weights. It is also recommended that the standard 
correlation coefficient matrix be checked because the linear 
regression weight for any assignment with low correlation 
may not be meaningful. For this data set, all the correlation 
coefficients between individual homework assignments and 
the final grade percentage were between 0.5 and 0.7 with 
the exception of homework 1, which had a value of 0.41. 
Homework 1 often correlates poorly because students are 
unfamiliar with instructor expectations.

The second data set from the same course but a different 
year is stored in the file “GradesB.xlsx” and has similar vari-
ability for the weights corresponding to each assignment. 
The trend in data sets for two separate offerings of the course 
suggest that middle-of-the-semester homework assignments 
falling roughly in weeks 6–8 of a 15-week semester are par-
ticularly influential if multivariable linear regression is used 
to predict final percentage grades.

There are a number of gaps in the analysis above. First, 
the accuracy of the grade predictions using only homework 
scores and leaving out exams and a project has not been ana-
lyzed. Are homework scores a good predictor (i.e., do they 
correlate strongly) or should we focus only on exam scores? 
If we repeat the analysis above using just the two midterm 
exam scores to predict the final grade and leave out the project 
and homework scores, we find that for both years the second 
midterm is twice as important compared to the first midterm 
in predicting the final grade in the class. Was the first midterm 
too easy? The average grade was only slightly higher than the 
second midterm for both years so there is no evidence for the 
“easy” midterm. Finally, nothing in this analysis is new or 
groundbreaking. However, the tools provided by ML did make 
the importing of data and analysis simple and straightforward, 
and simplicity becomes even more important as the data sets 
and analysis become more complex.

LOGISTIC REGRESSION AND TEST SETS
To put the example above in more of an ML framework, two 

changes are helpful. The first change is to divide the data into 
a training set and a test set. The majority of the data (70-80%, 
typically) is put in the training set and used to determine the 
regression weights. The remaining data is placed in the test 
set and used to assess the predictive ability of the ML model. 
(n.b., ML practitioners will often split the full data set into 
three sub-sets: a training set, a test set, and a validation set. 
The reason for this is that the lengthy process of tuning the 
model often results in a model that is especially well tuned to 
the test set because the test set is always used for assessment. 
The validation set provides a data set that should only be used 
to assess the quality of the final model and should never be 
used for improving/tuning the model.) The second change 
is that the model is now used to predict the final letter grade 
of A, B, C, D, or F instead of a final percentage. Hence, the 
model is now a classifier as it classifies the input data as that 
associated with a typical A grade or F grade, for example. In 
ML, characters and strings such as letter grades, words, or 
phrases are typically encoded to unique numbers (normally 
integers), which are required by most ML algorithms and 
minimizers. The encoder used below replaces the letter grades 
A, B, etc. with the integers 0, 1, etc. (n.b., This simple encod-
ing works fine in this example, but there are more complex 
ML applications where this encoding is unfavorable because 
integers have an order and their use suggests an ordering to the 
labels that may not exist. For these cases, an encoding called 
“one hot encoding” should be used instead.) The code below 
illustrates the full process of splitting the data into training 
and test sets along with encoding.
from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

trainData, testData = train_test_split(gradeData, 
test_size=0.2)

encoder = LabelEncoder() # setup label encoder

X_train = trainData.loc[:,’Homework 1’:’Homework 
10’]

y_train = encoder.fit_transform(trainData[‘Final 
Grade’])

X_test = testData.loc[:,’Homework 1’:’Homework 10’]

y_test = testData[‘Final Grade’]

log_reg = LogisticRegression() # setup for logit 
regression

w = log_reg.fit(X_train, y_train) # perform regres-
sion

gradePredictions = log_reg.predict(X_test) # check 

model performance on test data

The performance of the Logistic Regression model can be 
assessed using the test data in a number of different ways. 
One of the simplest methods is to calculate the root mean 
square error (RMSE) on the test set (20% of the class or 
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30 students) and this is typically 
5–8% or a little less than one letter 
grade. In other words, for this class, 
we can predict the final grade cor-
rectly about two-thirds of the time 
using only the homework scores. 
Homework scores could be a much 
better or a much poorer predictor for 
other courses. Another assessment 
is to just look at the predictions 
for the first 10 students in the test 
set and compare their predicted 
grades to their actual grades as 
shown in Table 1. In only 10% of 
the cases did the prediction miss 
by more than a single letter grade 
and in about 50% of the cases, the 
prediction was correct. (n.b. Even if 
all available grades are used in the 
prediction—all homework, midterm 
exams, and project grades—the 
prediction is still incorrect about 
1% of the time because the model 
does not account for the dropping 
of the lowest homework score when 
calculating the actual final percentage.) If +/- grading is used, 
the prediction would be incorrect more frequently due to the 
larger number of possible value, but the average size of the 
error (i.e., RMSE) would be similar.

DECISION TREES
One of the advantages associated with ML maturing as a 

research field is that the current libraries make it easy to try out 
different types of algorithms quickly and easily to determine 
the best choice for a particular data set and modeling project. 
Decision trees are typically used for classification problems 
like the letter grade prediction example above. The algorithm 
first determines the most important feature (in this case, the 
most important homework assignment) for predicting the 
labels or final letter grade, and then creates a branch based on 
the optimal dividing threshold for that feature as determined 
by the algorithm. Additional layers of branches can be added 
to the decision tree as desired.

The code below is very similar to the previous logistic 
regression code, but it uses the decision tree algorithm from 
Scikit-Learn, DecisionTreeClassifier(), to predict final grades.
from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_
test_split

from sklearn.preprocessing import LabelEncoder

# split data into training and test sets

trainingData, testData = train_test_

split(gradeData, test_size=0.2)

encoder = LabelEncoder()

X_train = trainingData.loc[:,’Homework 
1’:’Homework 10’]

y _ t r a i n  =  e n c o d e r . f i t _
transform(trainingData[‘Final Grade’])

X_test = testData.loc[:,’Homework 1’:’Home-
work 10’]

y_test = testData[‘Final Grade’]

dec_tree = DecisionTreeClassifier(max_depth=2)

w = dec_tree.fit(X_train, y_train) # build de-
cision tree

gradePredictions = dec_tree.predict(X_test) # 
test decision tree on test data

The predictions and actual grades for 10 random students in 
the test set are shown in Table 2. For this particular example, 
the performance of the decision tree is close but not quite 
as good as logistic regression, but for many other applica-
tions, decision trees can be as good or better for supervised 
learning. The decision tree performance here could also be 
improved by allowing more than two layers in the decision 
tree; a limitation set by the max_depth=2 parameter in the 
Python code, but increasing the number of layers risks over 
fitting the data in the training set, which would lead to worse 
predictions in general.

One of the advantages to building decision trees is that the re-
sulting model can help in identifying both critical features and 
potentially important values associated with those features. 

TABLE 1
Predicted and actual grades for 10 students from the test set.  
The two different data sets are for two different years, and 

logistic regression was used for the predictions.
Data Set: GradesA.xlsx

Predicted: D B B A A A B A C A

Actual: D B F B A A A B C B

Data Set: GradesB.xlsx

Predicted: C A F A B F D B A B

Actual: B A F B B F C C C B

TABLE 2
Predicted and actual final grades using homework scores and a decision tree 

algorithm. The data sets are from two different years.
Data Set: GradesA.xlsx

Predicted: B B B A A A B A F A

Actual: D B F B A A A B C B

Data Set: GradesB.xlsx

Predicted: B A F A A F B B A B

Actual: B A F B B F C C C B
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The decision tree shown in Figure 1 is 
based on predicting final letter grades 
using only the first six homework as-
signments from the GradesA.xlsx data 
set. The decision tree starts with 121 
individuals in the training set (recall 
that the other 30 students are in the test 
set), and the values shown for each box 
in the decision tree show the number of 
students in that group that ultimately 
receive an A, B, C, D, or F, respective-
ly. The first branch in the decision tree 
is based on the score for homework 3. 
No student that ended with an A in the 
class received less than a 7.25 on this 
homework assignment. Further, all the 
students receiving D or F at the end of 
the course received less than a 7.25 on 
this assignment. This could be help-
ful information to the students in the 
course that might see this as a relative-
ly unimportant homework assignment. 
The next layer on the decision tree 
looks at homework 5 for students that 
did well (>7.25 points) on homework 
3 and at homework 6 for students that 
did not score above 7.25 on homework 
3. Recall that the weights determined 
using linear regression also suggested 
that homework 6 was very important in 
predicting final grades and homework 
4 was not important. Homework 4 does 
not appear in the decision tree and homework 6 is present. 
Finally, Figure 1 also shows the gini score for each branch 
point (or node) and this is a measure of the impurity of a 
node where gini=0 is a “pure” node.[7] The gini score is a 
measure of how often a randomly chosen data point from 
the data set would be incorrectly labeled with a grade if it 
was assigned a random grade using the distribution of grades 
in the data set.

Constructing a decision tree on the second data set from 
GradesB.xlsx gives a similar result as shown in Figure 2. It 
is important to note that the year the course was taught cor-
responding to the year-B data set had one fewer homework 
assignment on the early course material so homework 4, 
which was less important in the year-A data set, would be 
most similar to homework 3 in this data set. Once again, the 
most important assignments for predicting final grades are 
from the middle of the semester. Students scoring a 5/10 or 
better on homework 5 and a 10/10 on homework 4 usually 
received an A and always passed with a C or better. Students 
receiving a 4/10 or less on homework 5 and less than a 6/10 
on homework 6 always received an F for this data set.

MATERIAL AND ENERGY BALANCES 
COURSE

The two data sets used previously to predict final grades 
based on homework (or midterm) grades during a semester 
were from the same course on engineering computations over 
two different years. A third data set of grades from a material 
and energy balances course was examined using the same 
tools from ML. The goal was to identify similarities and dif-
ferences in the ML models that are developed for predicting 
final grades. The final grades in this course were based on 
the completion of 10 homework assignments (10% of final 
grade), nine in-class quizzes (10%), two midterm exams (25% 
each), and a final exam (30%). The homework assignments 
are graded based only on the fraction of problems that were 
attempted. There were 132 students that received a final grade 
in the course.

Using multivariable linear regression on the homework 
scores to predict final grades resulted in a low performance 
model. The weights associated with various homework as-
signments were highly variable (including some negative 
weights!), and the root mean square error on the test set was 

Figure 1. Decision Tree for predicting final grades using only the first six 
homework assignments in the GradesA.xlsx data set.

Figure 2. Decision Tree for predicting final grades using only the first six 
homework assignments in the GradesB.xlsx data set.
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12–15%, which means that the model predicts the correct 
letter grade less than half the time. This result is probably 
expected as the homework assignments were not graded for 
accuracy or correct answers, and, instead, points were given 
for attempting the problems. The nine quiz scores, on the other 
hand, gave a more accurate model even though the scores 
combined to represent only 10% of the final course grade. The 
root mean square error was typically 7–10%, which means 
the final grade was correctly predicted about half the time. 
Using the two midterm exam scores to predict the final grade 
resulted in a root mean square error of less than 5% typically, 
but this is not surprising since 50% of the final grade was from 
the midterm exams.

A decision tree was built using just the nine quiz scores and 
it was similar to those built for homework scores in the engi-
neering computations course. A quiz grade from the middle 
of the semester, quiz #4, was at the top of the decision tree 
and the branch separated the “likely to pass” group from the 
“unlikely to pass” group. Interestingly, both branches in the 
second layer of the decision tree used quiz #8 from near the 
end of the course (this was the first quiz to contain an energy 
balance question).

Finally, a few remarks on using ML with more complex 
data sets. First, depending on the ML tool that is used, data 
scaling—which was not used here because the numerical 
values used were always between 0 and 100—may be criti-
cal for both good computational performance and accurate 
predictions. Second, these few examples were not intended 
to demonstrate the full potential of ML. These were relatively 
small data sets and only three different algorithms were tested. 
There are many other ML algorithms that could potentially be 
used to analyze course grades and anyone wanting to explore 
ML tools further for grade prediction or other applications is 
encourage to consider References 7–9.

CONCLUSIONS
The primary goal here was to illustrate how ML can be used 

to identify critical elements in a course that strongly impact 
overall performance. ML libraries are becoming easier to use 
and more flexible, allowing a number of different algorithms 
to be tested quickly using data from a standard data source 
like an Excel spreadsheet file. We close by asking if the type 
of analysis that results from grade prediction might be useful 
to students. Would students benefit from learning that certain 
assignments or quizzes are more important for predicting their 
final grade? Would students benefit from knowing that if they 
score below a certain percentage on a particular homework 
assignment, they are statistically unlikely to get an A in the 
course?

Hopefully, this discussion has provided a useful brief 
overview of terminology and types of tools used in ML 
applications. Using ML algorithms, instructors can take a 
few minutes to see if they can identify the most important 

and least important items used for student assessment in 
their courses and use the information if it is helpful. Finally, 
departments and programs are encouraged to “keep an eye” 
on the field of ML, as it is having a growing role in chemi-
cal engineering.
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