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  13 
The Kicking Mule Brewing Co. at West Point enables members of our chemical engineering club, 14 
students, and beer enthusiasts alike to acquire chemical engineering acumen, knowledge, and skills 15 

by developing a tangible product. Through a rigorous on-site brewing process with subject matter 16 
experts, our goal is enhancement of student chemical engineering knowledge with respect to batch 17 

reactors and mixtures, heat exchange processes, process control, and bio-chemical reaction 18 
kinetics while simultaneously providing quality products to The United States Corps of Cadets. 19 

 20 
 21 

INTRODUCTION 22 
 23 

Batch quantity beer production at West Point serves a number of audiences: the 24 

American Institute of Chemical Engineering (AIChE) Student Chapter, cadets and faculty, and 25 

the chemical engineering curriculum.  This is optional for Chemical Engineering cadets and is 26 

open to any interested cadet. Beer making is a nearly ideal process to demonstrate a wide variety 27 

of chemical engineering concepts and has recently served this purpose at several other 28 

undergraduate institutions.[1, 2, 3, 4, 5, 6]  Heat transfer, reactor design and kinetics, process control, 29 

separations, and basic unit operations are all included in one process, and the data analysis has 30 

the potential to tie into our Chemical Engineering electives in our eight semester academic 31 

sequence.[7, 8, 9, 10, 11]  We will articulate this potential in the Discussion section.  32 

The process begins with the creation of wort, which is the sugary precursor to beer. Wort 33 

contains the sugars necessary for fermentation in addition to hops for flavor, bitterness, and 34 

aroma. In our process, cadets create the wort from milled grain by cooking the grain in an 35 
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aqueous batch reactor (also known as the “mash tun” in the vernacular of beer brewing).  The 1 

heat of cooking activates enzymes that break down long-chain sugars into short-chain, 2 

fermentable, sugars.  This process exposes cadets to concepts taught in Separation Processes 3 

classes, such as solid-liquid extraction and leeching.[6, 11]   4 

When yeast is added following the production of the wort (the mash with the grain solids 5 

removed), cadets also get an introduction to the overlap of chemical and bioengineering.  6 

Because the yeast cells are alive, undergoing their lifecycle from cell birth to cell growth and cell 7 

apoptosis, this batch system, in addition to brewing the beer, is also a bioreactor.  The sugar and 8 

temperature must be controlled under a range that would optimize the yeast life cycle and 9 

produce ethanol.[5,6]  Maintaining and engineering adequate conditions for the life cycle of the 10 

yeast cells  has clear ties to biological engineering. 11 

 Temperature control is important throughout the beer brewing process.  During wort 12 

production, the temperature at which the enzymes are activated will produce longer- or shorter-13 

chain sugars leading to more- or less-fermentable sugars.  By controlling the temperature 14 

throughout the fermentation process, students have the opportunity to collect kinetic reaction 15 

data. They collect this data using a refractometer, hydrometer, and gas chromatograph with mass 16 

spectrometric detection (GC-MS). After collecting data from several fermentations (at least 17 

three), they can model the data using the Parallel Tempering Algorithm, which is a recently 18 

published global, stochastic data fitting optimization algorithm with several appropriate bio-19 

kinetic models used for the production of ethanol.[6,12,13]  While accounting for the variables of 20 

sugar consumption rates, ethanol production rates, and biomass content, cadets fit their 21 

experimental data to models from literature, which includes the Monod, Aiba, Tiessier and 22 

Hinshelwood models[13-17]. By modeling the data, students observe how the temperature of the 23 
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fermenter affects the reaction rate. A higher fermenter temperature yields a faster, more vigorous 1 

fermentation reaction rate. 2 

 Our beer brewing process uses a countercurrent plate heat exchanger to chill the wort from 3 

boiling to a temperature suitable for fermentation in a single pass of tap water. By adjusting the 4 

wort flow rates with a pump, and the countercurrent cold water with a faucet, students can achieve 5 

the optimal flow rates and temperatures to chill the wort for fermentation. Cadets use this 6 

information to calculate the heat transfer parameters for the heat exchanger. After seeing the 7 

application of the heat exchanger, cadets model the process in CHEMCAD using a countercurrent 8 

heat exchanger unit to develop their capabilities with the software and to gain confidence in 9 

performing an energy balance on a practical, working, system.[8, 10]    10 

The remainder of the paper is as follows: we will demonstrate how the Kicking Mule 11 

Beer brewing process incorporates chemical engineering aspects and facilitates development of 12 

acumen in chemical reaction engineering, data fitting and optimization, lab data analysis, and 13 

process controls.  We first show the collected reactant and product vs. time data for three batches 14 

of Kicking Mule beer and fit the data to published bio-kinetic models. We fit the model 15 

parameters to the data using a recently published optimization algorithm. We then show how we 16 

calculate the overall heat transfer coefficients for all of our heating and cooling equipment using 17 

best practices outlined in literature. Following this effort, we record transient temperature control 18 

information on our PID temperature controlling device. Finally, with our modeling and 19 

parametric analysis complete, we use the CHEMCAD software to model parts of the process.  20 

Each of these subtopics is a course, or a part of one of our courses, readers can see a list of all 21 

required courses at https://www.usma.edu/chemistry/SitePages/Chemical%20Engineering.aspx. 22 

  23 
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APPARATUS AND METHODS 1 

The beer brewing system used by cadets in our program is a professional, three-vessel, 2 

electric system used to brew beer from grain. This system gives industry-level precision for 3 

temperatures and controls. The system is an Electric Heat Exchange Recirculating Mash System 4 

(E-HERMS) and allows for multiple levels of control throughout the brewing process from the 5 

mash to the boil and then to the fermenter which is also temperature controlled, and therefore the 6 

control aspect of this process can also be modeling in the context of our Chemical Engineering 7 

Process Controls course.[9] 8 

The beginning of the brewing process starts with recipe selection, to include types and 9 

roasts of grains, types and amounts of hops, and strain of yeast for fermentation.  Once the recipe 10 

is finalized, the grain is milled to expose the starches and subsequently maximize the contact 11 

time of the starches with the water.  The process of cooking the starches out of the grain to 12 

produce the “mash” occurs in the far-left vessel of the E-HERMS shown in Figure 2a.  13 

To activate the desired enzymes when the milled grain is mixed with heated water, the 14 

temperature must be precisely regulated.  The mash needs to be held at a constant temperature 15 

for about an hour and our system uses a constant recirculation of the mash through a coiled heat 16 

exchanger which is immersed in a water bath in the middle tank, called the hot liquor tank 17 

(HLT). The constant recirculation is achieved through a gravity primed liquid pump and high 18 

temperature hoses.  The water in the hot liquor tank is heated and the temperature regulated 19 

through a Proportional-Integral-Derivative (PID) controller and an electric heating element. The 20 

main control panel allows for exact PID control of the temperature in the HLT which in turn 21 

transfers heat to the mash through the heat exchanger. This allows for indirect heating of the 22 

mash during starch conversion which mitigates any scorched grains and off flavors from direct 23 
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fired heating. The constant recirculation also allows for the water in the mash to be drawn 1 

through the grain bed, which settles, and acts as a filter giving a clearer product. This portion of 2 

the process allows for hands-on application of controls as well as unit operations. 3 

Once the mash has finished its conversion, which is monitored with a refractometer to 4 

ensure completion, the fully converted sugar solution, called wort, is pumped to the far-right 5 

vessel, shown in Figure 2a, the boil kettle. This demonstrates real world plant-type operations in 6 

determining which valves need to be closed, which hoses need to be moved, and which pumps 7 

need to be running.  8 

When the wort is completely transferred, it is boiled. The boil kettle also uses an electric 9 

heating element to provide energy. The element uses a separate controller to regulate output from 10 

0-100% power. This gives cadets another step to control and minimize energy use while still 11 

maintaining a rolling boil. During the boil, hops are added. By regulating the amount, variety, 12 

and time at which the hops are added during the boil, cadets can affect the characteristics of the 13 

final product. Specifically, by varying the boil time, the alpha acids in the hops contribute to a 14 

spectrum of characteristics, including aroma, flavor, and bitterness. At the conclusion of the boil, 15 

the wort needs to be cooled rapidly in order to reach a temperature conducive to yeast 16 

fermentation.  17 

Post-boil processing is critical for the wort, as the transition from the boil kettle to the 18 

sanitized fermenter exposes the product to potential infection from airborne bacteria or wild 19 

yeast. Cooling rapidly with minimum contact time to the atmosphere reduces the chance for 20 

contamination as well as minimizing process time. In order to accomplish this, we use a counter-21 

current plate heat exchanger shown in Figure 2c. The wort is sent through the sanitized heat 22 

exchanger, with regular tap water run counter-currently. By regulating the flow rates of both the 23 
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wort and the tap water cadets can achieve the desired temperature, usually about 68 °F, 1 

maximize flow rate of the wort, and minimize exposure to bacteria. After the wort is cooled, it is 2 

moved to the unagitated fermenter shown in Figure 2b.  The fermenter is equipped with both a 3 

heating pad and Peltier coolers in order to regulate the temperature during fermentation. The 4 

fermenter also has a side valve to take samples during fermentation. The cadets track 5 

fermentation using multiple analytical methods. 6 

Three main methods are used to track ethanol production, as well as sugar consumption, 7 

over time. The first method employs an industry standard hydrometer. The density of the wort 8 

changes as sugar is converted to ethanol, changing the level the hydrometer floats.  We also used 9 

a refractometer which uses the refractive index of the wort solution to track sugar content. This 10 

method is not as widely used, as the addition of ethanol, as well as biomass, in the solution, 11 

skews the refraction. While it is possible to compensate, the refraction method is not as accurate 12 

for active fermentation and, because of the large uncertainty associated with it, we did not 13 

include this data in our analysis.    14 

The final method we use is GC-MS, specifically, a polar Supelcowax capillary column 15 

(30m x 0.2mm x 0.2µm).  We used the internal standard calibration method with methanol as the 16 

internal standard. We used an oven temperature program of: 1 min at 40°C, ramp to 240°C at 17 

100°C per min, and then holding at 240°C for 30 seconds. Samples were filtered using 0.2µm 18 

filters before adding the internal standard.  This allows a very precise measurement of alcohol 19 

production over time, incorporating our chemistry majors by bringing a new and practical project 20 

into their laboratory experience. These methods are then compared to see if they correlate, while 21 

also providing multiple data sets to use for kinetic modeling.  An example of the consistency and 22 

corroboration of the hydrometer reading and GC-MS is shown in the results section. 23 
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a. b.  

 1 

c. 

  

Figure 2. Brewing apparatus: a. E-HERMS.; b. Fermentation reactor; c. Blichmann Heat 2 
Exchanger 3 
 4 

SAFETY 5 
 6 

The brewing process pedagogical method provides the perfect opportunity to discuss 7 

process safety and demonstrate the need to imbed safety in the design process.  Safety concerns 8 

include burning hazards, electrical hazards, and the typical “slips, trips and falls” risk that is 9 

ubiquitous in all chemical engineering plant operations.  Cadet leadership was directed to ensure 10 
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safety best practices were followed.  A formal written risk assessment is briefed prior to 1 

operations and safety measures are enforced throughout the process, as per the Cadets Safety and 2 

Chemical Engineering Education (SAChE) training, that all of the senior Cadets must take in 3 

conjunction with their Senior Chemical Engineering Lab Course. 4 

DATA ANALYSIS 5 

Yeast Fermentation Kinetics Analysis 6 

 Brewing beer is a bioprocess in which the consumption of sugar by living yeast cells 7 

produces two products: the desired product, ethanol, and undesired biomass.  From a reaction 8 

kinetics perspective, this is not a convenient first-, second-, or even fractional-order reaction with 9 

which our students are generally familiar.  Determining an appropriate model (rate law) which 10 

they can then apply to their knowledge of reactor design is a critical skill.  This methodology 11 

also provides background for discussions about whether achieving models that follow from first 12 

principles is necessary or desired, or if the data takes precedent when designing or scaling 13 

systems. 14 

For the kinetic reaction data presented in this paper, three modeling equations were used. 15 

The model representing the production of biomass given by Eq. 1 below, where all 16 

concentrations are mass-based:  17 

 

dX
Biomass : = μ(t)X(t)

dt  , (1) 18 

where X is the concentration of cells and µ(t) is the specific growth or kinetic reaction rate with 19 

respect to time. The production of the desired product, ethanol, follows a similar model given by 20 

Eq. 2:    21 
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dP

Ethanol : = q(t)X(t)
dt

, (2) 1 

where P is the ethanol concentration, and q(t) is the product accumulation rate.  The ethanol 2 

production model shows a rate of increase of product concentration P with respect to time given 3 

cell concentration X and kinetic rate of reaction q(t). These models are reliant on the 4 

consumption of the substrate sugar. The rate of consumption of sugar is given by equation Eq. 3: 5 

                                               
x/s p/s

dS 1 dX 1 dP
Sugar : = - -

dt Y dt Y dt
 ,                                          (3)  6 

where S is the concentration of the sugar, and 𝑌𝑥/𝑠 and 𝑌𝑝/𝑠 are the yield coefficients[13-17].  The 7 

rate of consumption of substrate S is in proportion with the rates of production of both the cell 8 

concentration X and the product concentration P. The ratio of both products produced from the 9 

consumed substrate are represented by the yield coefficients 𝑌𝑥/𝑠 and 𝑌𝑝/𝑠. 
[13-17] 10 

The following models from literature depict the fermentation process over time. In each 11 

model, µ(t) represents the specific growth rate and q(t) represents the specific product 12 

accumulation rate. The function S(t) is the concentration of substrate over time and is a term in 13 

each of the four kinetic models we model with the ethanol data presented here. The Aiba and 14 

Hinshelwood models include the function P(t) representing the concentration of the product 15 

ethanol over time.[13-17]  As shown in Eqs. 4-7, each of the four models have unique expressions 16 

for the specific growth rate μ(t) and the specific product accumulation rate q(t).  Table 1 has a 17 

listing and description of each of the respective model parameters. 18 

  19 
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MONOD:  1 

 

max

sx

max

sp

S(t)
μ = μ

K +S(t)

S(t)
q = q

K +S(t)

 
 
 

 
 
 
 

  (4) 2 

TESSIER:    3 

     

max

sx

max

sp

S(t)
μ = μ 1-exp -

K

S(t)
q = q 1- exp -

K

  
   

  

   
  
    

            (5) 4 

AIBA:           5 

                 

 

 

max ix

sx

max ip

sp

S(t)
μ = μ exp -K P(t)

K +S(t)

S(t)
q = q exp -K P(t)

K +S(t)

 
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 

 
 
 
 

           (6) 6 

HINSHELWOOD: 7 

     

 

 

max ix

sx

max ip

sp

S(t)
μ = μ 1-K P(t)

K +S(t)

S(t)
q = q 1- K P(t)

K +S(t)

 
 
 

 
 
 
 

           (7) 8 

 9 
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 1 
 2 

MODEL FITTING PROCEDURE 3 
 4 
 The data is collected for each of the three runs via a hydrometer and the current density is 5 

correlated with a sugar and ethanol concentration.  At the beginning of the reaction there is a lag 6 

of approximately 24-36 hours and then a quick ramp up in ethanol production and sugar 7 

consumption.  Therefore, we frontload a greater frequency of data collection for the first 3-4 8 

days of the reaction, with 3-4 readings per 24-hour period.  We record data for approximately 8-9 

10 days, taking 2 – 3 readings per 24-hour period.   10 

However, empirical data for the biomass cell count needed for the models could not be 11 

collected and so there was no yeast concentration vs time data to incorporate into the ODEs.  12 

With the data we did collect, we executed a stochastic minimization, parallel tempering-like, 13 

algorithm[12] for each of the data sets of sugar and ethanol and allowed the stochastic models to 14 

Model Parameter Units Description

μmax d
-1

model parameter

Ksx
g dm

-3
model parameter

qmax
g (g d)

-1
model parameter

Ksp
g dm

-3
model parameter

Yx/s - yield coefficient

Yp/s - yield coefficient

μmax d
-1

model parameter

Ksx
g dm

-3
model parameter

qmax
g (g d)

-1
model parameter

Ksp g dm
-3

model parameter

Yx/s - yield coefficient

Yp/s - yield coefficient

Kix
g dm

-3
model parameter

Kip
g dm

-3
model parameter

Monod       &           

Tessier

Aiba            

& 

Hinshelwood

Table 1                                                                                                       

Model Parameters, Units and Descriptions
[13-17]
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find the “best fit parameters” for each of the kinetic models, including the kinetic parameter for 1 

yeast.  Each of the kinetic models was fit with the stochastic algorithm a total of five times with 2 

randomized initial guess, and the parameter values yielding the smallest Fcost were recorded, as 3 

well as the average and standard deviation from each of the 5 fits for each of the models, for each 4 

of the three data sets.  Because the minimization algorithm is stochastic and global, there is a 5 

different value for each of the “best-fit” parameter values on each of the runs, with a different 6 

value of cost function, shown in Eq. 8.  In addition, we calculate a residual sum of squares (RSS) 7 

value for each run, shown in Eq. 9.[12]  Lastly we incorporate an Akaike Information Criteria 8 

(AIC), shown in Eq. 10, for each best model fit, which attempts to “level the playing field by 9 

assigning a penalty for over-fitting data sets, whereby models with more parameters are 10 

penalized more than lower parameter counterparts[18].   11 

 For the parallel tempering algorithm, we run Nrun number of separate, yet parallel runs, 12 

whereby new parameters are guesses based on a search algorithm.  Each of the runs is at a different 13 

“Boltzman Energy” (EB), in such a way that there is a larger parameter space explored the higher 14 

the EB, and higher probability of keeping a set of parameters that produce a larger value of Fcost.  15 

Lastly, the algorithm pauses at prearranged times to compare parameter values with neighbor runs 16 

to the left and right.  Parameter sets yielding values of are slowly shifted to the “cold” side over 17 

time, thereby producing the best fit set of parameters.  We run each fit for each data set and each 18 

respective model five times.  We chose to run each model for each data set five times to give us a 19 

large enough population of fit model parameters to enable the calculation of average and standard 20 

deviation for each parameter fit.  By using a stochastic fitting algorithm, gathering and reporting 21 

statistics allows a deeper understanding of the kinetic models and the dynamic process, and also 22 

allows reporting each parameter average and standard deviation shown in Table 2a-c. [12-17] 23 
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There a Nrun number of “Energy Levels”, whereby new parameters are guessed; if the new 1 

set of parameters produce a better cost function value they are kept; while there is a probability 2 

(PA) of acceptance even when there is no improvement based on cost function value.  Over the 3 

course of the algorithm running, “nearest neighbor” energy levels compare parameter and cost 4 

function values, and exchange parameters sending the best parameter values based on cost function 5 

to the colder end of the flow chart. The cost function is computed as follows[12]: 6 

    
N

EtOH,i EtOH,i GLUC,i GLUC,i

i

F = (f - y ) (f - y )2 2
cos 2t    ,                                 (8) 7 

where fi is the model prediction of concentration and yi is the actual concentration.  The residual 8 

sum of squares is shown below, and is another useful metric required for the AIC calculation: 9 

    
N

EtOH,i EtOH,i GLUC,i GLUC,i

i

Mod. RSS = (f - y ) (f - y )2 2 2N  .           (9) 10 

 11 
Lastly the AIC is calculated per equation 10, 12 
 13 
     14 

     AIC = 2k + 2 ln(Mod. RSS)  ,         (10) 15 

 16 

where k is the number of model parameters, and RSS is the residual sum of squares.[12] 17 
 18 

 19 

MODEL FITTING RESULTS 20 
 21 

The four model fitting results are shown below in Figure 4a-c.  The additional two 22 

parameters utilized by the Aiba and Hinshelwood models give slightly better fits for modeling 23 

the ethanol production and glucose consumption vs time, as demonstrated by the lower cost 24 

functions. 25 

 26 
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 3 
Figure 4a Ethanol and glucose vs. time kinetic data of the Kicking Mule Brewery run from May 4 
2017; b July 2017; c October 2017.  Depicted are the model fits using the Monod, Tessier, Aiba, 5 

and Hinshelwood kinetic models. 6 

 7 
The values of the best fit parameters for the Monod, Tessier, Aiba, and Hinshelwood models, for 8 

each of the data sets along with averages, μ, and standard deviations, σ, are shown in Table 2a-d 9 

below.[13-17] 10 

 11 

Parameter Best μ σ Best μ σ Best μ σ units

μmax 0.30 0.32 0.03 0.66 0.27 0.12 0.446 0.426 0.012 d
-1

Ksx 3720 2200 990 9200 9100 400 8710 9390 650 g dm
-3

Ksp 640 320 280 545 533 53 675 634 34 g (g d)
-1

qpmax 1090 610 410 4200 4200 320 4070 3860 180 g dm
-3

Yx/s 0.88 0.44 0.56 5.3E-06 0.013 0.027 0.61 0.80 0.22 -

Yp/s 0.4 4.2 3.1 0.66 0.54 0.11 0.372 0.373 0.001 -

May-17 Jul-17 Oct-17

Table 2a                                                                                                                                                                    

Best fit Monod model parameters for May 2017, July 2017, and October 2017;  w/ ave. and stdev. 
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 1 
 2 

 3 
 4 

 5 
 6 

The overall model comparisons for each data set are shown in Tables 3a-c for each of the 7 

respective ethanol and glucose data sets from May 2017, July 2017 and October 2017.  In this 8 

case, having more parameters improves the modeling of the sugar and ethanol concentrations, 9 

Parameter Best μ σ Best μ σ Best μ σ units

μmax 0.31 0.32 0.01 0.37 0.43 0.02 0.43 0.42 0.02 d
-1

Ksx 3300 3000 1100 9950 9840 180 8860 9160 530 g dm
-3

Ksp 530 460 220 628 595 25 653 630 19 g (g d)
-1

qpmax 840 760 340 4560 4310 180 3720 3600 110 g dm
-3

Yx/s 1.21 0.90 0.79 0.52 0.47 0.34 0.62 0.70 0.28 -

Yp/s 0.37 0.72 0.46 0.3650 0.3638 0.0007 0.3740 0.3748 0.0007 -

Table 2b                                                                                                                                                                    

Best fit Tessier model parameters for May 2017, July 2017, and October 2017;  w/ ave. and stdev. 

May-17 Jul-17 Oct-17

Parameter Best μ σ Best μ σ Best μ σ units

μmax 0.15 0.15 0.01 0.43 0.14 0.04 0.39 0.41 0.01 d
-1

Ksx 9750 9740 470 9450 9890 870 9130 9170 300 g dm
-3

Ksp 850 1040 120 131.4 1.9 5.5 317 304 28 g (g d)
-1

qpmax 3950 4000 110 3730 4880 470 3700 3480 140 g dm
-3

Yx/s 0.053 0.031 0.016 0.03 0.34 0.47 1.2 1.5 0.4 -

Yp/s 0.378 0.374 0.005 0.38 0.28 0.05 0.384 0.382 0.002 -

Kix 15.1 14.6 4.3 20.2 1.4 1.3 12.5 7.3 2.8 g dm
-3

Kip 0.035 0.030 0.003 0.039 0.022 0.007 0.019 0.017 0.002 g dm
-3

Table 2c                                                                                                                                                                    

Best fit Aiba model parameters for May 2017, July 2017, and October 2017;  w/ ave. and stdev. 

May-17 Jul-17 Oct-17

Parameter Best μ σ Best μ σ Best μ σ units

μmax 0.18 0.16 0.02 0.42 0.41 0.01 0.40 0.42 0.01 d
-1

Ksx 10860 10290 920 8848 8932 95 9340 9940 920 g dm
-3

Ksp 1040 1134 52 200 209 5 381 395 12 g (g d)
-1

qpmax 3710 3960 140 3350 3460 60 3420 3539 79 g dm
-3

Yx/s 0.13 0.15 0.10 0.95 0.74 0.32 0.92 1.04 0.27 -

Yp/s 0.390 0.389 0.001 0.38 0.37 0.02 0.384 0.384 0.001 -

Kix 5.0 5.5 0.4 7.5 7.7 0.3 2.0 2.4 0.3 g dm
-3

Kip 7.9E-07 2.1E-05 1.9E-05 3.1E-06 2.7E-06 1.1E-06 0.0022 0.0005 0.0009 g dm
-3

Table 2d                                                                                                                                                                    

Best fit Hinshelwood model parameters for May 2017, July 2017, and October 2017;  w/ ave. and stdev. 

May-17 Jul-17 Oct-17
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per the decreased cost function numbers.  This, however, comes with a penalty as shown by the 1 

respective increased AIC values.  This is a critical lesson on modeling and optimization for the 2 

cadets.  In this case, the addition of two model parameters is potentially justified because of the 3 

better fit (cost function); however, this will not necessarily be true for all models.  As seen in 4 

Tables 3a-c, the parameter penalty does not significantly change the comparison.[13-17]  The best 5 

models are then carried forward for use in our Chemical Reactor Design course, CH364 in 6 

Figure 1, to model batch reactors.  With the kinetic models above, and best fit parameters, one 7 

can modify the kinetic equations in CHEMCAD with excel Macros and model the batch reactor, 8 

obtaining the correct reactor volume that will agree with the actual fermentation reactor volume. 9 

Table 3a 

May 2017 Data, Model Comparison 

Model No. Parameters N Cost Function Modified RSS AIC 

Monod 6 1320 383 0.30 9.5 

Tessier 6 1320 376 0.28 9.5 

Aiba 8 1320 275 0.21 12.9 

Hinshelwood 8 1320 196 0.15 12.2 

      

      

Table 3b 

July 2017 Data, Model Comparison 

Model No. Parameters N Cost Function Modified RSS AIC 

Monod 6 507 130 0.26 9.3 

Tessier 6 507 127 0.25 9.2 

Aiba 8 507 63 0.12 11.8 

Hinshelwood 8 507 30 0.059 10.3 

      

Table 3c 

October 2017 Data Model Comparison 

Model No. Parameters N Cost Function Modified RSS AIC 

Monod 6 575 92 0.16 8.3 

Tessier 6 575 84 0.15 8.2 

Aiba 8 575 41 0.071 10.7 

Hinshelwood 8 575 31 0.054 10.2 
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 1 
 2 

To validate our data collection activities using the hydrometer, which was the basis of the kinetic 3 

model fitting optimization, we compare the GC-MS and hydrometer data for the ethanol 4 

concentration in Table 4.  As seen, the two methods agree to within 10%. 5 

* The ABV value was calculated from the specific gravity using a Brix scale.  Calculators for 6 

brewers can be found on various websites.  We used: https://brucrafter.com/convert-brix-to-sg/ 7 
 8 

CONTROLS DATA ANALYSIS 9 
 10 

Students observe the advantage of process control in the brewing process, which is 11 

incorporated into many facets of engineering, and is directly applicable to Introduction to 12 

Automatic Process Controls course.  Seemingly abstract material taught in the classroom is 13 

reinforced in a fun and interesting manner.  Observing a system that uses process control for 14 

safety and product specifications physically demonstrates the importance of accurate system 15 

modeling, controller design, tuning, and sensor and valve selection, while highlighting the 16 

balance between performance and robustness. 17 

Table 4 

Comparison of Hydrometer and GC-MS measurements of EtOH (%) 

No. Date 
Time 

(hrs) 

Running 

Time 

(min) 

Hydrometer 

specific 

gravity 

Hydrometer 

ABV(%)* 

glucose 

conc. 

(mol/L) 

GC-MS 

ABV(%) 

1 2-Oct 1612 0  0 - - 

2 3-Oct 740 928 1.063 0.3 0.93618 0.3±0.2 

3 4-Oct 910 2458 1.037 3.7 0.54982 3.6±0.2 

4  1500 2808 1.034 4.1 0.50524 3.8±0.2 

5 5-Oct 845 3873 1.022 5.7 0.32692 5.3±0.2 

6  1500 4248 1.02 5.9 0.2972 - 

7 6-Oct 1330 5598 1.016 6.5 0.23776 7.0±0.2 

8 8-Oct 1000 8268 1.010 7.2 0.1486 - 

https://brucrafter.com/convert-brix-to-sg/
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In brewing, the temperature is the most important controlled variable (CV) because it 1 

ultimately affects taste and alcohol content.  Through their brewing, students first briefly witness 2 

the system with no control.  PID control is then used to demonstrate the ability of the engineer to 3 

control product quality with automated CV manipulation.[9]         4 

 5 

Figure 5 Temperature control of the wort tank using PID.  Strict adherence to the set point with 6 

no oscillation is a great demonstration of the benefits of derivative control 7 
 8 

One of the many advantages of a PID controlled process shown in Figure 5 is the ability 9 

to demonstrate the effects of changing controller parameters.  This can be done in the controller, 10 

but it is easier, less expensive, and just as effective to do on a simulation of the actual process.  11 

Once students successfully model either the wort tank or the fermenter, control algorithms are 12 

applied to the modeled process.[9] 13 
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 1 
Figure 6  Block diagram for the temperature control law associated with the wort tank. 2 
Specifically, Ysp is the temperature set point; e is the difference between the set point and the 3 

actual temperature, Ym; and Pb is the electricity sent to the heating element (if required) to 4 
produce the heat, U, required to change the temperature of the wort (the process).  All of the 5 
“G” terms represent the transfer functions of the individual control loop elements. 6 

 7 
A tremendous learning opportunity is presented for cadets in the applying of various 8 

control laws (P, PI, PID) on the same process, while also demonstrating the importance of 9 

accurate tuning and establishing key parameters, such as gain and time constants.  Cadets’ 10 

classroom instruction is further reinforced when they see the process components physically 11 

during the construction of control block diagrams for the brewing process, like the one in Figure 12 

6.  Block diagrams are a struggle for many students and pairing their physical observations with 13 

the diagrams is a valuable tool.   14 

Exploring and describing the consequences of poor (or no) control on a process’s quality 15 

is a watershed in students’ understanding of process engineering.  The ability to provide smooth 16 

and rapid responses to system changes is just as important as being flexible enough to handle a 17 

broad range of conditions and disturbances.  Exploiting student-generated models in 18 

computational software allows educators to demonstrate and adequately discuss these important 19 

tradeoffs.  After comparison of process data with modeled data, students gain appreciation for 20 

the importance of accurate modeling prior to control law implementation.[9]      21 
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A basic “PID control model” can be constructed to replicate the action of the wort 1 

heating element, where the cadets can use the following equations to analyze the model of u(t) 2 

and e(t), the controller effort and error signal, and incorporate an energy balance: 3 

t

P

I D0

1 1 de(t)
u(t) = K e(t) + e(t)dt +

τ τ dt

 
 
 

 ,         (11) 4 

                        
set

e(t) = T(t) -T  ,                       (12) 5 

where Kp is the gain, τI is the integral constant and τD is the derivative constant.  Students, and 6 

arguably some operators in industry, typically are challenged by calculating and implementing 7 

tuning parameters in controllers.  Having the ability to adjust tuning parameters using widely 8 

accepted methods provides the perfect environment for students to “see” the adjustments take 9 

effect.  The energy balance for the on/off temperature controller is shown below: 10 

      tank wort wort

dT
V ρ Cp = Q

dt
        (13) 11 

where ρwort is the density of the wort, Cpwort is the heat capacity of the wort, Vtank is the tank 12 

volume, the quantity dT/dt is the time derivative of the temperature and Q  is the heat flow rate of 13 

the heater.  With Eqs. 11-13, the cadets can design a basic controller and adjust the control 14 

parameters Kp, τI, and τD until the control effort reaches zero with minimal oscillation, overshoot, 15 

or offset.  In addition, the cadets can verify the appropriate heat was applied by analysis of the 16 

energy balance equation.[19] 17 

HEAT AND MASS TRANSFER DATA ANALYSIS 18 

 The cooling of the boiled wort to an appropriate temperature for fermentation provides 19 

data for cadets to conduct both energy balances and heat exchanger design calculations.  20 
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Measuring the inlet and outlet temperatures of both the wort and the cooling water, as well as the 1 

volumetric flow rates, allows cadets to conduct an energy balance around the heat exchanger.  2 

Cadets gain experience in measuring quantities that, for the most part, have been abstract 3 

‘givens’ in their academic careers.  This provides great opportunities for demonstrating 4 

everything from a known-volume (sanitized) bucket and stop watch to more accurate rotameters.  5 

Discussions and calculations with uncertainties and error propagation necessarily follow as well.  6 

These calculations are directly applicable to the classroom or the lab in our Heat and Mass 7 

Transfer course, CH485.  In addition, the cadets conduct similar analysis in the Chemical 8 

Engineering Lab course, CH459, using a single effect evaporator, also performing mass and 9 

energy balances and calculating the heat transfer coefficient. 10 

After completing an energy balance, cadets use the data they have collected to analyze the 11 

plate heat exchanger used by the brewing crew.  The wort is run in a single continuous flow through 12 

the plate heat exchanger, counter-current to the coolant water from a bench sink in the brewing 13 

room.  From the flows and temperatures, they are required to calculate the overall heat transfer 14 

coefficient, Ua, for the heat exchanger, using Eqs. 14 and 15. 15 

𝑄𝑙𝑜𝑎𝑑 = 𝑈𝑎∆𝑇𝐿𝑀 ,                                                   (14) 16 

where ∆𝑇𝐿𝑀 is the log mean temperature difference for countercurrent flow, defined as 17 

                            ∆𝑇𝐿𝑀 =
(𝑇𝑐𝑜𝑜𝑙_𝐹𝑒𝑒𝑑−𝑇𝑤𝑜𝑟𝑡_𝑒𝑥𝑖𝑡)−(𝑇𝑐𝑜𝑜𝑙_𝑒𝑥𝑖𝑡−𝑇𝑤𝑜𝑟𝑡_𝐹𝑒𝑒𝑑)

𝑙𝑛[
𝑇𝑐𝑜𝑜𝑙_𝐹𝑒𝑒𝑑−𝑇𝑤𝑜𝑟𝑡_𝑒𝑥𝑖𝑡
𝑇𝑐𝑜𝑜𝑙_𝑒𝑥𝑖𝑡−𝑇𝑤𝑜𝑟𝑡_𝐹𝑒𝑒𝑑

]
   .                                       (15) 18 

where we define the parameters as follows: 19 

𝑇𝑐𝑜𝑜𝑙_𝐹𝑒𝑒𝑑 is the coolant (utility) fluid feed temperature 20 

𝑇𝑐𝑜𝑜𝑙_𝑒𝑥𝑖𝑡 is the temperature of the coolant at the exit of the heat exchanger 21 
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𝑇𝑤𝑜𝑟𝑡_𝐹𝑒𝑒𝑑 is the feed temperature of the wort (process fluid) 1 

𝑇𝑤𝑜𝑟𝑡_𝑒𝑥𝑖𝑡 is the temperature of the wort at the exit of the heat exchanger. 2 

𝑄𝑙𝑜𝑎𝑑 = 𝑚̇𝐶̂𝑝_𝑤𝑜𝑟𝑡∆𝑇𝑤𝑜𝑟𝑡                                                         (16) 3 

where 𝑄𝑙𝑜𝑎𝑑 is the heat load for the heat exchanger, 𝑚̇ is the mass flow rate of the wort, 𝐶̂𝑝_𝑤𝑜𝑟𝑡 is 4 

the average specific heat capacity of the wort, and ∆𝑇𝑤𝑜𝑟𝑡 is the change in temperature of the wort 5 

as it passes through the heat exchanger. 6 

Because the cooling fluid is simply tap water from the bench sink, there is no control over 7 

the inlet temperature and only nominal control over the coolant flow rate.  However, the wort flow 8 

can be varied using a pump, taking between 2 and 10 minutes to circulate a single fermenter of 9 

about 15 gallons.  The equipment available did not allow immediate temperature feedback to 10 

demonstrate the initial time dependency of both the wort feed (slowly cooling from initial boiling) 11 

and exit temperatures.  Though providing potential for future data, discussion, and modeling, the 12 

flow rates were assumed to be sufficient to allow the heat exchanger to reach steady state, making 13 

equations appropriate for modeling. 14 

The lack of control of the cooling water flow rates and temperatures results in the data 15 

taken from every batch being different, with the most noticeable contrast between summer and 16 

winter brews where the inlet temperature can vary by several degrees.  The varying data allows 17 

cadets, over time, to develop an accurate picture of how the heat transfer coefficient varies (or 18 

remains constant) as the conditions change.  This variation is a great demonstration of why 19 

tabulated heat exchange coefficients[8] are general estimates, at best, and confirmation through 20 

experimental data is almost always required.  Finally, cadets are able to model the heat exchanger 21 

within the CHEMCAD modeling software.  They are able to develop their skills with the 22 
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simulation via several mechanisms.  Wort is not one of the materials routinely found in the data 1 

library of the code, so cadets either have to choose a simulated fluid (water is usually a starting 2 

point for novice users), calculate a representative sugar content, or define their own material.  They 3 

are able to compare their energy balance with that calculated from the actual flow data they take.[8]  4 

Figure 7 shows a CHEMCAD heat exchanger flowchart, while Figures 8 and 9 show the stream 5 

and equipment boxes from the CHEMCAD solution, which is in close agreement with our data 6 

from the analysis of the wort heat exchanger. 7 

 8 
Figure 7 Screen shot of the input display of a simple, two-inlet, heat exchanger in CHEMCAD. 9 

The simulation can be configured for frame-and-plate heat exchangers, exploring heat transfer 10 
coefficients and areas, fouling factors, flow rates, and materials, including wort characteristics. 11 
  12 
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 1 

Table 5.  An example CHEMCAD stream report showing the properties of the flow streams from 2 
Figure 7.  The data can be used in energy balance calculations and compared to measured values. 3 

Stream No 1 2 3 4 

Name Wort Feed Wort Out Water feed Water Out 

--Overall—     

Temp C 99.9000 20.0000 15.5600 57.4324 

Enth MJ/sec -1.3011 -1.3291 -2.5437 -2.5157 

Mass flow kg/s 0.0837 0.0837 0.1600 0.1600 

Std liq cc/sec 83.7001 83.7011 160.0002 160.0002 

--Liquid only--     

Mass flow kg/s 0.0837 0.0837 0.1600 0.1600 

 4 
Table 6.  A sample equipment table from CHEMCAD showing the heat exchange coefficient, U, 5 

and heat exchanger area, a, calculated by the simulation for the properties specified. 6 

Equip. No. 1 

  

Name Plate HXR 

1st Stream T Out C 20.0000 

Shells in Series 1 

No. of SS Passes 1 

No. of TS Passes 1 

Calc Ht Duty MJ/sec 0.0280 

LMTD (End Points) C 16.8406 

LMTD Corr Factor 1.0000 

Calc U W/m2-K 1849.1259 

Calc Area m2 0.9000 

 7 

Modifying equations 14 and 16, as shown below, we calculate the product Ua 8 

       p pcooling water wort
ρC ΔTV = ρC ΔTV     (17) 9 

     p lmcooling water
ρC ΔTV = UAΔT     (18) 10 

where ρ is the density of the water and wort respectively (1.0 and 1.06 g/mL); Cp is the heat 11 

capacity assumed to be the same for both water and wort; ΔT is the temperature difference between 12 

the inlet and outlet, and V is the volumetric flow rate, U is the overall heat transfer coefficient, a 13 

is the surface area, and ∆TLM is the log mean temperature difference for countercurrent flow. 14 
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For a verification of the CHEMCAD simulation, we turn to the Therminator Performance 1 

Data shown in the Therminator Owners Manual.[20]  The performance data figure of the manual 2 

uses the following parameters: wort specific gravity of 1.04; wort outlet temperature of 68°F 3 

(20°C), and wort inlet temperature of 212°F (100°C).  Choosing a cooling water inlet temperature 4 

of 60°F (15.6°C) and cooling water flow rate of 2.5 gallons per minute, the required wort flow rate 5 

is approximately 1.25 gallons per minute.  These are the values (with converted units) used in the 6 

simulation demonstrated in Figures 7 to 9.  Although a value of Ua is not available from the 7 

owner’s manual, the charted flow values match very nearly to those calculated by CHEMCAD.  In 8 

the future, careful measurement of inlet and outlet temperatures will allow more direct calculation 9 

of Ua and comparisons to the manufacturer’s performance data. 10 

PROCESS ECONOMICS AND PRODUCT ENGINEERING 11 

 Data for analysis of the profitability (or lack thereof) of our brewing process is shown in 12 

Tables 7 to 9 to 7. 13 

Table 7: Pints & ($) of Kicking Mule Produce per batch calculation 

Volume Gallons Pints Cost ($)/pint Total ($)/ batch 

 16 128 2.50 320.00 

 14 

  15 
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 1 

Table 8: Cost Analysis per Batch 

Batch Cost 

Ingredient Cost ($) 

Yeast 20.00 

Hops 20.00 

Bulk Grain and Additives 20.00-40.00 

CO2 - 

Total Spent ($) 80.00 

Total Brought in ($) 320.00 

Profit ($) per Batch 240.00 

 2 

Based on a careful analysis of the data shown in Table 7, we can produce a maximum of 3 

16 gallons of Kicking Mule per batch, correlating to 128 pints.  At $2.50/pint, the going rate of a 4 

pint of Kicking Mule, we earn $320.00 per batch of Kicking Mule.  By subtracting off the cost of 5 

a batch of Kicking Mule: $20.00 for yeast; $40.00 for grain and additives; and $20.00 for hops our 6 

profit per batch is roughly $240.00. 7 

Table 9: Long Term Investment Cost 

Long Term Investment 

Equipment Cost ($) 

Heat Exchanger 200.00 

Refrigerator 150.00 

Grinder 100.00 

Batch Reactor 1000.00 

EHERMs 4700.00 

Total: 6150.00 
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Considering the overall investment in the equipment necessary for the operation (described 1 

in Figure 2), we see the total initial cost is $6150.00.  With a profit per batch of $280.00 it will 2 

take approximately 26 batches of kicking mule to recoup the cost of the initial investment.  3 

As an extracurricular activity, some standard economic expenses are not evaluated in this 4 

process.  Most notably, labor costs, traditionally a significant portion of operational costs, are not 5 

included in this basic analysis.  Other considerations, including estimated values of depreciation, 6 

equipment replacement or maintenance timelines and costs, utility costs, and even interest rates 7 

can be used for more complex and long-term analyses of the sustainability of the process.  When 8 

viewed as a pilot plant, these more detailed economic concerns can be analyzed within the 9 

context of scaling this batch system to a more industrial scale where such considerations are 10 

critical and cannot be assumed as negligible. 11 

With respect to quality control, each recipe is diligently recorded, and notes taken about 12 

the quality of the flavor, coloring, alcohol content etc. for future Kicking Mule batch 13 

reproduction.  Typically, the overall batch quality is determined qualitatively and quantitatively 14 

through measurements of density (then converted to alcohol content), coloring and informal 15 

surveys from the point of sale. 16 

CONCLUSION 17 

 Fundamentally, the beer brewing operations of the Kicking Mule Brewing Co. allow the 18 

members of the club to put into practice the chemical engineering principles they have learned 19 

(or will learn) through their classroom and laboratory experiences.  Their learning is enhanced 20 

through real-world measurements, data analysis, uncertainty propagation, and, ultimately, the 21 

production of a useable, saleable, product that meets the needs (wants) of a client.  In the future, 22 
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there is the potential for even more exploration of various chemical engineering principles, 1 

including jacket heat exchangers, batch chemical reactors, the economic and profitability 2 

analysis, etc.  It should also be noted that the data generated in the execution of a single batch of 3 

Kicking Mule can be used in the context of the reactor design, controls and heat transfer 4 

chemical engineering electives.  The focus has been, and will continue to be, providing an 5 

excellent, but continually improving, undergraduate chemical engineering education. 6 

 7 
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