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Unquestionably, the most widely used construct in the 
science and engineering literature in regards to data 
analysis and statistical inference is “error bars.” In 

an extensive search in the top 25% of physiology journals 
between Jan. 1 and March 31, 2014 (n = 703), Weissgerber, 
et al.[1] found at least one “bar graph” in about 86% of the 
articles. I did a study a few years ago in one particular journal 
that produces a large number of experimental articles and 
examined every article over a 20-year period and found that 
75% had error bars in a plot or table. There are basically two 
types of “error bars” used in this literature. The first one, that 
shall be called “Form 1,” is simply the sample mean, x, plus 
or minus ( ±  ) the sample standard deviation, s, or x ± s. 
The second one, that shall be called “Form 2,” is similar and 
given by x ± s n( )−1

, where n is the sample size. Note that 

s n( )−1
 is the estimated standard error of the mean. Error 

bars appear to be a construct outside of the statistical com-
munity since they are not even mentioned in the most widely 
(perhaps any) used statistical textbooks.

To my knowledge, there are basically two kinds of discus-
sions in the science and engineering literature. One discussion 
centers on differentiating the two forms and their application.[2,3] 

The other one is about a better way of presenting information 
from data when the sample size is small.[1] However, neither 
of these discussions strongly suggests the elimination of the 
use of error bars completely on the grounds that they are not 
sound on a statistical modeling basis. Thus, the objective 
of this article is to show that the use of error bars should be 
eliminated completely in statistical data analysis and infer-
ence on the basis of soundness. This article will support this 

contention using a statistical modeling approach and showing 
that error bars either do not comply with the model or have 
very low statistical significance when they do comply, which 
essentially makes them useless. More specifically, Form 1 is 
not an interval estimator for any population parameter and 
while Form 2 can be considered an interval estimator for 
a population mean, its level is too small to be useful. This 
contention will be defended on the basis of sound statistical 
analysis and inference from the perspective of the statistical 
model. Moreover, I contend that when sound statistical model-
ing is practiced and data analysis and inference are consistent 
with the model, error bars will be clearly seen as erroneous 
and unfounded. This contention is supported in this article 
for several common cases: one population, two populations, 
one-way ANOVA (say p populations), multifactor ANOVA 
(say pq populations for two-way ANOVA), and regression. By 
taking a clearly specified modeling approach, this work will 
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unquestionably show that error bars have no sound basis for 
use in statistical analysis and inference and will provide sta-
tistically sound alternative approaches in all these applications 
that can be taught to students in introductory statistics courses, 
and applied to experiments in undergraduate education and all 
types of research including academia and industry. Moreover, 
this article is written at the undergraduate introductory level 
of an engineering statistics course and assumes familiarity 
and experience with the cases and methodologies covered 
by the scope of this article.

ONE POPULATION CASE
The experiment

Before taking on the task of writing a statistical model, the 
population(s) should be clearly defined, the goal(s) of the 
study clearly stated, and the experiment and data collection 
clearly articulated. The One Population Case presented here 
has two population parameters for some attribute of interest, 
the mean (µ) and the standard deviation (σ) with N items in 
the population. These quantities are commonly unknown. The 
experiment is to randomly select n items from the population 
and obtain the value of the attribute for each one.
Statistical model

Defining xi as the value of this attribute for the ith selection 
(i = 1, . . ., n) the statistical model is given as follows:

xi =µ +εi 1( )

where εi  is independently distributed 
 

∼
indep






  with a mean of

0 and variance of σ 2 for i = 1, . . . , n and written as

 
εi ∼

indep

0,σ 2( ) ∀i 2( )

The statistical model gives a detailed description of how 
the experimenter believes the data will behave. For sound-
ness I proposed the following practices. First, that a detailed 
statistical model be given when statistical inference is implied 
or assumed in data collection studies. Second, that articles 
submitted for review containing data studies give detailed sta-
tistical models as a requirement to be accepted for publication. 
In my experience I have found that often the experimenters 
cannot clearly specify the statistical model. This inability is 
an indication that the person does not completely understand 
what he/she is doing and this leads to statistically unsound 
practices and analyses.

A pictorial description of this case is given in Figure 1. As 
illustrated, the sampling from the population is a “Random 
Sample (RS)” of size n. An RS of size n is a sample of n items 
taken from a population that has the same probability of being 
selected as any other sample of size n. The statistical model 
[Eqs. (1) and (2)] indicates that sampling is independently 
and identically distributed, i.e., an RS.

The goal of this case is to evaluate hypotheses for one or 
both of the population parameters (µ and σ ). For example, 
one might be interested to know if µ  >µ

0 or if σ < σ 0 where 
µ

0 and σ 0 are fixed values.[4]

Inference for s

From Eqs. (1) and (2), the variance of xi σ x i

2( ) is σ2 ∀i and 
the variance of x σ x

2( ) is σ2/n. Thus, σ  is a measure of spread 
of the samples about their true mean of µ. This understanding 
of σ  is critical. Equally critical is the understanding that its 
value is the result of all sources that cause variability about the 
mean. These sources include the differences of the numerical 
value of the items in the population as well as any sources of 
experimental (i.e., sampling) error in obtaining the value of 
any sample. Thus, the size of σ  is a reflection of the quality 
of the data since the likelihood of larger experimental errors 
mean a larger value of σ.

It is critical to understand the difference between a sample 
quantity and a population quantity. This is often confused in 
the engineering and scientific literature and this confusion 
leads to misunderstanding and erroneous conclusions. More 
specifically, s is not σ. While it is a point estimate of σ  it can 
be a highly inaccurate one. The likelihood that it is a highly 
inaccurate estimate is the situation that is most often found 
in engineering and science literature, that is, when n is small.

For this one population case, Forms 1 and 2 error bars are 
x ± s and x ± s n , respectively. As shown, Form 1 gives an 
estimated spread (s) about an estimated mean ( x ). Form 2, 
which will be discussed in more depth later, is a poor interval 
estimate of the true mean, µ, and does not convey informa-
tion of the spread of samples about their mean. Thus, it is 
not considered further in this discussion about spread. When 
n is small a scatter plot of all the data is more informative 
than Form 1 as it reveals all the information.[1] When n is 
sufficiently large, formal statistical inference (i.e., confidence 
intervals and hypothesis testing) for σ  will be far superior 
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Figure 1. Representation of the One Population Case.
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than presenting x ± s for inference of the spread about µ. 
Under normality, for this one population case, a 100(1- α)% 
confidence interval for σ  is

s
n −1( )

Xα /2 ,n−1
2

, s
n −1( )

X1−α /2 ,n−1
2

3( )

where Xα ,n−1
2  is the 100(1- α)th percentile of the X2 distribu-

tion with n –1 degrees of freedom. Note that formal statistical 
inference can always be done regardless of the sample size 
but when the sample size is small, for example, confidence 
intervals will not likely be very precise (i.e., are likely to be 
very wide) and the true level of spread is likely to be better 
assessed in the scatter plot of the data.[1]

2.4 Inference for m
The point estimator for µ is x . The standard error of x  

is σ x = σ / n  and its point estimator is sx = s / n . As any 
estimator, x  is unreliable for small n. For statistical infer-
ence regarding µ  in this one population case, the use of 
error bars cannot provide a statistically sound analysis that 
is consistent with the model given by Eqs. (1) and (2). Es-
sentially, error bars are interval estimates. However, Form 
1, x ± s, is not an interval estimate for any parameter in the 
population. Actually, it is not an interval estimate for any 
type of parameter. An interval estimate for some parameter 
θ  will contain the estimate of θ , θ̂ , and the standard error of 
θ̂,σ

θ̂
or the estimated standard error of θ̂, s

θ̂
. Form 1, x ± s, 

does not meet this requirement since s is not the estimated 
standard error of x . Furthermore, while Form 2, x ± s/ n , 
does meet this requirement as an interval estimate for µ, its 
level of reliability is so small that any sound analysis would 
not even consider it. The type of interval estimator that has 
measures of both precision and reliability is a confidence 
interval. Under normality for the above model, a 100(1- α )% 
confidence interval for µ is[4]

x ± tα /2 ,n−1

2
n

4( )

where tα ,n−1 is the 100(1-a)th percentile of the student-t distri-
bution with n -1 degrees of freedom. For Form 2, tα /2 ,n−1 = 1. 

For n = 5 and 10, Form 2 gives 63% and 66% confidence 
intervals, respectively, levels that are too low to be of value.

In summary for this one population case, neither Form 1 
or Form 2 have merits in assessing spread about the mean 
—this should be assessed using scatter plots with all the data 
when n is small and using formal statistical analyses when 
n is large enough for the estimator s to be reliable. Form 1 
has no value in statistical inference for m while Form 2 is an 
interval estimate for m that is too low to be of any value and 
not worth considering.

TWO POPULATION CASE
The experiment

The goal of this case is to evaluate hypotheses for the 
Population 1 parameters (m1 and σ1) in relation to the Popula-
tion 2 parameters (m2 and σ2).

[4] For example, one might be 
interested to know if m1 > m2 or is σ1 < σ2. Defining xi as the 
ith random selection from Population 1 (i = 1, . . . , m) and yj 
as the jth random selection from Population 2 (j = 1, . . . , n), 
i.e., the experiment is to take a random sample of size m from 
Population 1 and a random sample of size n from Population 2.
The statistical model

The statistical model is:

xi =µ1 +εi 5( )

y j =µ2 +ε j 6( )
where

 

εi ∼
indep

0,σ1
2( ) ∀i 7( )

ε j ∼
indep

0,σ 2
2( ) ∀i 8( )

εi indep ε j ∀i, j 9( )

A pictorial description of this case is given in Figure 2.

Inference for s
Forms 1 and 2 error bars for populations 1 and 2 are, respec-

tively: x ± s1 , x ± s1 / m; y ± s2 , y ± s2 / n . Form 1 error bars 
should not be used to assess a difference in spread between 
the two populations for the same reasons mentioned above 

in the one population case. For small sample 
sizes, scatter plots that use all the data are most 
informative.[1] For sufficiently large sample 
sizes for both populations, formal statistical 
inferential procedures should be used. For ex-
ample, under normality, for this two-population 
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Figure 2. Representation of the Two 
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case, a 100(1-a)% confidence interval for σ1 / σ 2  is[4]

s1

s2

1
fα /2 , m −1, n−1

, s1

s2

fα /2 , n−1, m −1 10( )

where fα ,m −1,n−1  is the 100(1-a)th percentile of the f distribution 
with m – 1 numerator degrees of freedom and n – 1 denomina-
tor degrees of freedom. Note that formal statistical inference 
can always be done regardless of the sample sizes but when 
the sample sizes are small, for example, this confidence in-
terval will not likely be very precise and the true difference 
in spread is likely to be better assessed by comparing the 
scatter plots of the data.

Inference for m
As in the one population case, Form 2 error bars are not 

statistically sound interval estimates for the two population 
case for the same reason. When the sample sizes are small, 
scatter plots using all the data are better informative tools for 
assessing differences in population means.[1] In all other cases, 
formal statistical inference will be best. Under normality for 
the two population model, a 100(1-a)% confidence interval 
for m1 – m2 is

[4]

x − y ± tα /2 ,v

s1
2

m
+ s2

2

n
11( )

where

v =

s1
2

m
+ s2

2

n










2

s1
2

m










2

m −1
+

s2
2

n










2

n −1

12( )

ONE-WAY ANOVA CASE
The experiment

The one-way ANOVA case is an extension of the two 
population case to I populations with the same variance s2. 
In ANOVA the term “Factor” is used as a common descrip-
tion for the I populations. For example, a study may consist 
of determining the best of four 
formulations for an explosive 
mixture. The factor could be 
described as Formulation with 
I = 4 levels or populations. 
For this case J samples will 
be taken from each population 
and is called “the number of 

replicates.” Thus, the total number of runs, nt, is IJ. The nt 
are completely randomized, i.e., the IJ samples are taken in 
random order. The measurement on each sample is called 
the “response.”
The statistical model

As previously, the statistical model is a mathematical de-
scription of the behavior of the response under the conditions 
of the experiment and stated assumptions. In this case the 
statistical model is written as follows[4]

xij =µ i +εij 13( )
where

 
εij ∼

indep

N 0,σ 2( ) ∀ij 14( )

xij is the measured response for the ith level of the factor on 
the jth replicate, mi is the true mean of the response for the ith 
population or level of the factor, εi j is the random deviation 
of the response from µi of the jth replicate and has a normal 
distribution with constant variance s2 for all nt samples. A 
pictorial description of this model is depicted in Figure 3.

Inference
When the model is based on an assumption of constant 

variance any analysis or procedure that seeks to convey 
otherwise is in direct violation of this assumption. Thus, to 
use error bars to convey a variation in spread for different 
populations makes no sense in this context. However, the 
constant variance assumption should be assessed and leading 
statistical packages, such as Minitab, have tests for assessing 
this assumption.

Thus, in one-way ANOVA, inference is strictly focused on 
the means. In this case the null hypothesis is H0: all the mi’s 
are equal versus the alternative hypothesis, Ha: at least two 
of the mi’s  are not equal. Small sample size is typically not 
an issue in One-Way ANOVA because the constant variance 
assumption allows “pooling” of the information to determine 
an estimate for s. Thus, an informal analysis in One-Way 
ANOVA is likely unnecessary.

When H0 is rejected at a specified level of significance, 
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another procedure is needed to assess differences between 
the means. The use of Form 2 error bars is not sound for the 
reason mentioned previously, a low level of reliability, but also 
because multiple tests for pairs of means reduces the overall 
level of reliability even further which is often not reflected 
or appears to be misunderstood by those who use error bars. 
The sound statistical approach to maintaining high reliability 
in multiple inference for pairs of means is called “multiple 
comparisons” and uses a paired confidence interval approach 
that focuses on maintaining a high overall or simultaneous 
level of confidence. A widely accepted procedure for this 
model is the T-method (T is for Tukey).[4] In this method, a set 
of confidence intervals for the difference between two popula-
tion means for all pairs of means are obtained (e.g., m1 – m2). 
Taken together, the overall level of confidence that all of 
them are true is 100(1-a)%. More specifically, a 100(1-a)% 
simultaneous confidence interval for pairs of mi – mj , i ≠ j, 
for all possible pairs, is

xi − xi ±Qα , I, I J−1( )
MSE

J
15( )

where

 
MSE = s1

2 +…+ sI
2

1
16( )

and Qα ,I,I J−1( )  is the 100(1- σ )th percentile of the studentized 
range distribution with I numerator degrees of freedom 
and I(J-1) denominator degrees of freedom. All confidence 
intervals that do not contain 0 conclude the means to be 
significantly different. This is the statistically sound way to 
do this analysis. No approach using Forms 1 and 2 error bars 
can be statistically sound.
Example

A set of data taken under the One-Way ANOVA case is 
shown in Table 1. The factor in this study is formulation and 
has four levels (I = 4) and three replicates (J = 3) for each level 
of the factor. The response is yield. A bar chart with Form 2 
error bars for this data set is shown in Figure 4. This chart is 
a typical way that error bars are shown in the literature. More 
specifically: (1) they rarely identify the type of error bar that 
is on the chart; (2) the type of parameter of focus (means or 
spread) is not usually stated; (3) the level of significances is 
not ever given and; (4) the conclusions are not stated. 

Notwithstanding, the sample standard deviations are based 
on a sample size of 3 and are thus, highly uncertain. However, 
it is common practice for error bars to be constructed from a 
sample size around 3.

Figure 5 is a plot that the statistical software package 
Minitab produced for this data set. Its superiority for statisti-
cal inference is immediately obvious over Figure 4. More 
specifically: (1) the type of parameter is stated, i.e., µ  ; (2) the 
significance level is stated, i.e., 95%; (3) the type of inference 

TABLE 1
Blend Data in the One-Way ANOVA Case

Formula

1 2 3 4

Yield

25.6 25.2 20.8 31.6

24.3 28.6 26.7 29.8

27.9 24.7 22.2 34.3

Figure 4. Average yield for the four formulas (the data 
from Table 1) in the One-Way ANOVA case. This bar 

graph is a typical way that error bars are displayed in the 
literature. The type of error bar is not identified. The type 
of parameter of interests (m or s) is not stated. The level of 
significances is not given and conclusions are not given.

is given, i.e., confidence intervals; (4) the type of confidence 
intervals, i.e., Tukey’s and simultaneous, i.e., based on Eqs. 
(15) and (16) and; (5) the conclusions are stated for each pair 
of means. If error bars were presented as in Figure 5, they 
would be exposed and their impotence in formal statistical in-
ference would be revealed. Thus, its survival in the literature, 
to a large extent, has been essentially the lack of this exposure.

MULTIFACTOR ANOVA CASE
The experiment

Multifactor ANOVA is an extension of one-way ANOVA 
to more than one factor. The number of populations is the 
product of the levels for the factors. The one presented here 
is a Two-Way ANOVA case as this allows the populations to 
be visualized in two dimensions (see Figure 6). The number 
of levels for factors A and B are I and J, respectively. Thus, 
in this case there are IJ populations or “treatment combina-
tions.” In this case the number of replicates for each treatment 
combination is K and is constant. Here we consider the case 
where K > 1. Thus, nt is IJK. The nt are completely random-
ized, i.e., the IJK samples are taken in random order. As in 
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one-way ANOVA, s2 is assumed to be the same for 
each of the IJ populations. The factors are fixed which 
means that they each have a set of specific populations 
that were not subject to random selection from a larger 
set of populations.
Two-Way example

Before giving the Two-Way model, it will be informa-
tive to give the example for this case since it puts the 
model into a real context. This experiment was actually 
run in the classroom of a statistics course that I taught 
recently. It is a broad jumping experiment. Factor A is 
person and it has three levels (I = 3), that is, three people. 
This factor is fixed. Factor B is activity, it is also fixed 
and it has two levels (J = 2). The first level of the activity 
was standing behind the line and jumping. The second 
level was coming up to the line, closing the eyes, patting 
the head, rubbing the stomach and turning around three 
times. After they stopped I would align them so that they 
were pointed straight ahead. They could actually be far in 
front or behind the line before jumping. The number of 
replications for each treatment combination (IJ = 6) is K 
= 3. Thus, nt is IJK = 18. These 18 trials were run completely 
in a random order. The response is the distance a person lands 
from the marked line.
The statistical model

The statistical model for this experiment is given as follows:

xijk =µ ij +εijk 17( )

where

µ ij =µ +αi +β j + γij 18( )

 

α i
i=1

3

∑ = 1, β j
j=1

2

∑ = 0, γ ij
i=1

I

∑ = 0, γ ij
j=1

J

∑ = 0 19( )

ε ijk ∼
indep

N 0,σ 2( ) ∀ijk 20( )
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xijk is the distance land-
ed from the line for 
the ith person, on the 
jth activity, for the kth 
replicate; mij is the true 
mean distance from the 
line for the ith person 
on the jth activity; m is 
the grand mean distance 
from the line; ai is the 
main effect for person 
i; bj is the main effect 
for activity j and; gij is 
the interaction effect for ith person on the jth activity. Thus, 
the response can be describe mathematically as the grand 
mean (m), plus an adjustment for person (ai), plus an adjust-
ment for activity (bj), plus a correction for the interaction 
between person and activity (gij) plus random deviation ( εi jk) 
attributed to phenomenon like measurement error. As a 
scientist or engineer seeking to effectively apply statistical 
inference to the results of their study, he/she should be able 
to describe the response mathematically in this way and to 
write out the statistical model in the details given here. If 
the person cannot do this, it is likely that they will have dif-
ficulty understanding the results statistically and in soundly 
applying statistical inference. On the other hand, when the 
person can do this it is not likely that will apply unsound 
methodologies like the use of error bars. The ability helps to 
keep them on a solid foundation for sound statistical infer-
ence when all applications, methodologies and analyses are 
scrutinized by this understanding.
Hypotheses

As in the case in one-way ANOVA all the hypotheses 
are focused on the means for multi-factor ANOVA since 
the variance is assumed to be constant for all the popula-
tions. Hypotheses are tested in the order from the highest 
order interaction to the lowest order interaction, then to 
the main effects lastly, depending on the testing results at 
each level. The hypotheses for this study and the proper 

order of testing are[4]:
H0AB:gij = 0;ij versus HaAB: at least one gij ? 0; H0A: ai=0;i 

versus HaA: at least one ai ? 0 and; H0B: bj = 0;j versus HaB: 
at least one bj ? 0.
Results

The responses obtained for this study are given in Table 2. 
An ANOVA table (a table that is commonly used to provide 
the results for the effects in a study,[4] e.g., in this case the 
two main effects and the interaction effect) from Minitab is 
given by Table 3. The significance level is set at 0.05. The 
significance level (a) is the type 1 error rate, that is, the prob-
ability of rejecting a null hypothesis (H0) when it is true .[4] 

Note that Table 3 gives the P-value for evaluating the signifi-
cance of each effect. The P-value for each case is determined 
from the results (i.e., the sampled data). The results suf-
ficiently support statistical significance when the P-value is 
less than a. Starting with the interaction hypothesis test (HT), 
since its P-value = 0.131 is greater than 0.05, the evidence is 
not strong enough to conclude that the interaction is significant 
(i.e., H0AB:gij = 0;ij is not rejected in favor of HaAB: at least 
one gij ? 0). Conversely for the factor Person, its P-value = 
0.011 is less than 0.05 so this factor is found to be statistically 
significant (i.e., H0A: ai=0;i is rejected in favor of HaA: at 
least one ai ? 0). Finally, the factor Activity, with a P-value 
of 0.162, is not found to be statistically significant (i.e., H0B: 
bj = 0;j is not rejected in favor of HaB: at least one bj ? 0).

TABLE 2
Results of the Two-Way Experiment with the Run Order Given

Person

1 2 3

Distance (in) Order Distance (in) Order Distance (in) Order

Activity

1

67.8 11 87.3 17 74.8 15

70.0 10 80.3 1 76.0 12

68.5 4 87.0 5 69.5 7

2

54.4 14 76.5 6 91.4 16

53.8 2 87.1 8 84.0 13

57.1 18 56.3 3 64.9 9

TABLE 3
ANOVA Table from Minitab for the Two-Way Experiment

Analysis of Variance for Distance

Source DF SS MS F P 

Person 2 1040.04 520.02 6.71 0.011

Activity 1 72.28 172.28 2.22 0.162

Person*Activity 2 375.22 187.61 2.42 0.131

Error 12 930.36 77.53

Total 17 2517.91
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The estimate for s, s, is equal to MSE = 8.8 inches which 
is quite high. A large value of s adversely affects the ability to 
detect significant effects, i.e., to have high statistical power. 
This appears to be the case here as an informal analysis will 
reveal. An interaction plot from Minitab is given in Figure 7. 
This plot shows clearly that the interaction is significant. Thus, 
both factors are concluded to be significant. This analysis 
illustrates the importance of informal analysis when power 
is low.

An analysis checking the assumption of equal variances will 
reveal that it does not appear to be true for this experiment. 
However, since ANOVA is very robust for departures from 
this assumption when the factors are fixed, as in this case, 
this is not a concern. Minitab has a formal test for checking 
the assumption of equal variances and provides a discussion 
of its strengths and weaknesses under certain conditions as 
well as references on procedures that can be used when this 
assumptions is not adequate. This is true for many statistical 
software tools.

Typically, in this type of study, error bars would be put on 
bar graphs for each level of the factor and bar graphs for the 
interactions would not be shown. Since the type of parameter 
being assessed is the true mean, Form 2 error bars would be 
the only applicable ones. In addition to the limitation of as-
sessing interaction, the weaknesses of error bars described 
in the one-way case would also be revealed here and in any 
ANOVA study.

REGRESSION
Statistical model

While the discussion in this article will be given in the 
context of linear regression (LR) it is applicable to regression 
in general as it relates to error bars. Regression is a statistical 
methodology to obtain a fitted model for the response (y) on a 
set of explanatory variables (x) when change in y is affected 
by the change in x in a continuous manner even though the 
actual changes in x may be discrete. A general model for LR 
with k carriers is as follows:

 yi = β0 +βIx1i +…+βk xki +εi =µy i /x i
+εi 21( )

where

 
εi ∼

indep

N 0,σ 2( ) ∀i 22( )

 xi = x1i…xki[ ]T , β0  is an unknown non-carrier parameter, 
bi (l = 1, …, k) is an unknown carrier parameter associated 
with carrier x1, and the common assumptions follow for εi  as 
given by Eq. (22). Note that the constant variance assumption 
is also applicable to the regression model. The objective is to 
obtain values for the unknown parameters that agree with the 
model assumptions and give the “best” fit based on the least 
squares criterion given below:

Minimize SSE = yi − ŷi( )2

i=1

n

∑ 23( )

Figure 7. 
Interaction 
plot for the 
Two-Way ex-
ample from 
Minitab.
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where  ŷi = β̂0 +β̂1x1i +…+β̂k xki  and β̂0 and β̂I  (l = 1, …, k) 
are the estimators of b0 and bI (l = 1, …, k), respectively, that 
satisfy Eq. (23) and are called the least squares estimators.
Regression example

The example for regression comes from a case of fitting a 
model to real data presented to me by a colleague. The ap-
proach used by him is one that appears often in the literature 
in modeling data using regression. The fit of the model by 
my colleague is shown in the plot on the left in Figure 8. 
The bars in this plot are not error bars but 95% confidence 
intervals for mean values of y at the values of x shown. These 
confidence intervals were obtained using replicated data at 
the given values of x. While these are confidence intervals, 
they could have been error bars, as they too have appeared 
in this literature in a similar manner. While I commend my 
colleague for attempting to apply a legitimate statistical 
methodology, it was misapplied in violation of the model and 
critical features of the model were not exploited to obtain the 
best fit and sound inference.

The confidence intervals for µy i x i
 were obtained using rep-

licated values of the response at each xi (i.e., time) as shown 
in the plot. Since the variation of these values is different at 
each xi, the width of the confidence intervals vary as shown. 
Form 2 error bars would have varied similarly but their width 
would have been narrower because their level of confidence 
is much lower than 95% as mentioned above. Nonetheless, 
determining confidence intervals in this manner, or forming 
error bars, do not follow the regression model, more specifi-
cally, its assumption of constant variance which would give 
much smaller estimated standard errors for µ̂y i x i

 and thus, 
tighter 95% confidence intervals.

To obtain inference that complies with the regression model, 
I refit the data using linear regression techniques. The re-
sults for this fit 
are also shown 
in Figure 8 in 
the plot on the 
right that was 
generated by 
Minitab. First, 
since the re-
sponses do not 
vary linearly 
with time, I fit 
a third order 
po lynomia l . 
The model as-
sumptions for 
this fit held fair-
ly well except 
that the residu-
als ei = yi − ŷi( )  

were somewhat serially correlated which is not surprising 
since the data were sequentially collected. (For addressing se-
rial correlation in regression to improve parameter estimation 
see Reference 5. Similarly, for exploiting serial correlation 
to improve prediction, see the pre-whitening approaches in 
References 6 and 7.) However, observing that the serial cor-
relation was not too strong I continued with the analysis and 
obtained 95% confidence bands for µy x  and 95% prediction 
bands for future predictions of y given x yfuture x( ). Prediction 
bands are wider than confidence bands due to the additional 
uncertainty in the variability about the estimate of the mean, 
i.e., µ̂y x. For a given x, the upper and lower values of the 
bounds give the limits of the confidence intervals or the 
prediction intervals at that value of x. These limits are nar-
rower on the average than those in the left plot in Figure 8 
due to using the pooled estimate of σ. General equations for 
a 100(1-a)% confidence interval for µy x  and a 100(1-a)% 
prediction interval for yfuture x  are given by Eqs. (24) and (25), 
respectively[4]:

µ̂y /x ± tα /2 ,n− k+1( )Sµ̂ y/x
24( )

µ̂y /x ± tα /2 ,n− k+1( ) Sµ̂ y/x

2 + s2 
1/2

25( )

where sû y x
 is the estimated standard error of µ̂y x . The im-

portance of complying with the regression model is clearly 
illustrated in Figure 8 for sound statistical analysis and infer-
ence which error bars cannot provide. Thus, the practice of 
using error bars in regression should not even be considered 
on the basis of noncompliance to the model that will lead to 
erroneous statistical analysis and inference.

CONCLUDING REMARKS
The use of error bars is extensive in the science and engi-

Figure 8. The regression example with the original results on the left and the Minitab
results on the right. For the plot on the left, 95% confidence intervals for µy x  are

determined using replicated data at one value of xi (i.e., time). The plot on the right uses a
pooled estimate of σ  in compliance with the regression model to obtain 95% confidence

bands for µy x
and 95% prediction bands for yfuture x .
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neering literature. However, as shown in this work using a 
modeling based approach, error bars do not provide sound 
statistical data analysis and inference. For situations of low 
power, commonly due to small sample size but can also occur 
from large spread about the mean (i.e., a large s), informal sta-
tistical analysis such as scatter plots are more informative than 
error bars.[1] While Form 1 error bars reflect some information 
for spread about the mean, formal statistical procedure for 
inference about s, such as confidence intervals or hypothesis 
testing, are more informative and thus, superior. Similarly, 
while Form 2 error bars are interval estimators for means, their 
levels are too low to be of any value, which drops even more 
for the overall level in multiple comparison situations. Thus, 
the construction of confidence intervals for means should not 
be done with error bars and should follow sound statistical 
practice of complying with the model assumptions, giving the 
level of confidence or significance, identifying the population 
parameter and simultaneously holding at a specified level in 
the context of multiple comparisons.

The importance of modeling in sound statistical inference 
was illustrated in several cases. These cases are common ones 
in data collection and analysis and showed directly how the 
use of error bars did not comply with these models as well as 
their incorrect use or impotence in sound statistical inference. 
The reality of error bars is that there is no sound justification 
for their use in statistical analysis and inference and their use 
should stop. This work proposes requiring a clearly and ac-
curately stated statistical model whenever data are collected 

and statistical analysis and inference are done. This practice, 
when applied soundly, will result in the elimination of error 
bars, as illustrated by the cases in this work. Thus, as more 
researchers use statistical modeling in data collection stud-
ies, the quality of data analysis and statistical inference will 
improve and the use of error bars will vanish, as it should.
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Due to a production error, there is one symbol missing in the paper “Level Control...” by Larry K. Jang, published in the 
Fall 2016 issue of CEE. The letter “f” is missing in the final print. Eq. (1) on Page 245 should appear like

q = f x,h( ) = Cv x( ) ∆Pvalve

S.G.
= kx h 1( )
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