MY association with Scott Fogler started sometime in the early 1980s, when I went to a session at an AIChE conference devoted to planning several series of undergraduate ChE instructional modules (AIChEMI). Scott was in charge of Series E (Kinetics), and by the end of the session he had talked Mike Dudukovic of Washington University in St. Louis and me into writing a set of five modules on mixing effects in chemical reactors. We wrote them and they were published in 1983. While I can’t say they had a major impact on chemical engineering education (I’ve never met anyone who claimed to have read any of them), they were extremely important in my life because they initiated a lifelong friendship between Scott and me.

In many ways, the two of us seemed to be on parallel life pathways. I was born in July 1939 and Scott in October 1939. We both got our undergraduate chemical engineering degrees in 1962, and he got his PhD in 1965 and I got mine in 1966. We were both career academics — I’m positive I could never have been content in any work setting but a campus, and he evidently felt the same way but came to the realization sooner. As soon as he completed his doctorate he joined the faculty at the University of Michigan, while I dithered through two post-docs, interviewed for both academic and industrial positions, and in 1969 joined the North Carolina State University faculty. Neither of us ever changed employers.

Scott and I began our faculty careers as conventional engineering professors – writing research proposals, getting grants, doing the research and publishing papers on it, and lecturing our way through our course syllabi. Early in my career, though, I heard another call and started to spend growing amounts of time and effort exploring ways to help my students learn better. In 1972 my NCSU colleague and friend Ron Rousseau and I decided that we could write a better textbook than the one then being used for the introductory course on material and energy balances, and several years later Elementary Principles of Chemical Processes appeared in print. Good teaching was also exceptionally important to Scott throughout his career, and he clearly heard the same call I did. He waited several years longer than I did to fully respond to it, though, during which he did research that established his reputation as one of the world’s leading experts in chemical reaction engineering. Fortunately for all of us, he eventually found the time to write the first edition of Elements of Chemical Reaction Engineering. That masterful work still commands the market for kinetics texts and in 2008 led to his inclusion in AIChE’s list of 30 authors of groundbreaking chemical engineering books. Continuing the Scott-Rich parallels, we each went on to write other books about teaching and learning: Scott and Steve LeBlanc wrote the inspiring Strategies for Creative Problem Solving, and my wife and colleague Rebecca Brent and I wrote Teaching and Learning STEM: A Practical Guide.
Bound by our common passion for teaching and learning, Scott and I intersected at professional conferences whenever we could, often exchanged ideas and caught up on each other’s lives by e-mail, and gave seminars at each other’s universities. Our most enjoyable personal interaction came in October 2009, when we were separately invited to Chile to take part in the 17th Annual Chilean Chemical Engineering Congress in Valparaiso. We each went with our wives, Jan and Rebecca, and were treated like royalty to spectacular meals and wine-tastings and private guided tours of the city. Chemical engineering students from all over Chile attended the conference, and Scott and I were invited to give them short motivational talks. They had all used Spanish translations of our textbooks, and after our presentations they crowded around us, thrusting books and conference programs at us to autograph and trying out their English on us. We later correctly speculated that the occasion would be the closest thing to rock stardom we would ever attain. Two pictures from the trip are shown in Figures 2-3, including one showing Scott chatting with a group of admiring students.

Some years ago I wrote about the prevalent academic myth that to earn tenure and promotion, all professors should excel at both research and teaching. The reality is that the time demands imposed by those two activities are competitive, forcing most professors to dedicate themselves primarily to one at the expense of the other. Given the nature of the academic incentive and reward system, the function that usually suffers is teaching. There are some engineering professors, however, who manage to be outstanding at both. Scott was a prime example of this rare species. His international reputation in his research specializations was formidable, and at the same time he built up a decades-long record of effort and achievement in education — creating pedagogical innovations, teaching students with them and validating their effectiveness, disseminating them through publications and seminars, and mentoring junior faculty colleagues in effective teaching. His list of awards and other recognitions for his research, teaching, and service — the latter including a term as AIChE President — is unmatched by any other past or present engineering educator I can think of.

I was stunned and deeply saddened by the news of Scott’s recent passing. I mourn his loss: our discipline will almost certainly never see his likes again. ■