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s CIENTIFIC ANALYSIS OF explosions and flames 
is not viewed today as an area of interest or 

concern for us as chemical engineers. N everthe­
less we often bear the responsibility for assuring 
that no harm will come through explosion or flame 
to a chemical plant or refinery we are operating or 
planning, or to a laboratory experiment we are 
conducting. Combustion takes on new importance 
as we strive for higher energy efficiency, avoidance 
of pollution, and use of alternate fuels. Intellectu­
ally, the "runaway" phenomena can enrich our 
perceptions of thermodynamics, kinetics, and 
thermal and mass transport. The award from 
ASEE of this Lectureship, which has been es­
tablished through the generosity of the 3M 
Company, has enabled me to focus my attention on 

Nuclear explosions are the 
most researched, most dramatic and most 
unwanted ... The mushroom cloud is not 
unique to nuclear explosions; it occurs also 
even in middle-sized explosions on land or in 
fairly small "shots" under water. 

© Copyright ChE Di11ision, ASEE, 1979 

156 

"runaway" systems and to share my findings 
with you about aspects of these areas which 
appear accessible, interesting, and valuable. 

The area of process dynamics comes close to 
dealing with runaway problems, but even there 
the emphasis is more on preventing the runaway 
than on analyzing it. 

THE ANATOMY OF AN EXPLOSION 

NUCLEAR EXPLOSIONS ARE the most researched, 
most dramatic, and most unwanted. Scale­

down, rather than scale-up, will relate this proto­
type to conventional applications. The mushroom 
cloud (Figure 1) is not unique to nuclear ex­
plosions; it occurs also even in middle-sized ex­
plosions on land or in fairly small "shots" under 
water. Every explosion has both a build-up and a 
let-down stage, and the mushroom cloud is part of 
the let-down. Samuel Glasstone's book "The 
Effects of Nuclear Weapons" is the source of 
Figure 1 and of the following description of a 
nuclear "blast" : 

The time scale for a nuclear explosion is so short 
that we sense only the overall result. At the instant the 
critical mass for nuclear fusion is brought together, only 
a few neutrons are present. Fission begins promptly, with 
a reaction time of about 10-8 seconds (10 nanoseconds). 
Each fission step consumes one neutron and produces· two 
neutrons or a fraction more. A kiloton (as TNT) of 
energy release requires production of 1023 neutrons, or 
about 53 generations of reaction time-530 nanoseconds. 
A megaton requires 1000 times more-another 7 genera­
tions, that is, another 70 nanoseconds. Thus the build-up 
lasts less than one microsecond, and the bulk of the 
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"detonation" occurs in less than one-tenth of a micro­
second. 

The energy released raises the local temperature to 
more than 10 million degrees Kelvin, and the local pres­
sure to more than 1 million atmospheres. X-rays rapidly 
rndiate into the surrounding atmosphere, heating the air 
so high that it too becomes luminous. The mixture of air 
and weapon residue forms a fireball which grows out­
ward and upward 500 feet in the first millisecond. This 
volumetric rate of growth persists, so that the fireball 
spreads to more than a mile across within 10 seconds. At 
this time its center of mass is rising about 400 ft/ sec. The 
light intensity per unit exposed area of fire ball is greatest 
at 1 millisecond, but the total light emitted from the fire­
ball peaks at 10 seconds. The expansion and upward motion 
continue much longer. In about 1 minute, the fireball is 4 
miles above the burst point; it no longer emits visible 
light; and it has become a toroid, or "mushroom cloud." 
An updraft of drawn-in air follows the cloud. A thermo­
nuclear bomb will give a larger cloud than one only 
involving fission, but the pattern of behavior does not 
change. 

The blast wave reaches its peak velocity (about 5 
miles/ sec) and peak pressure at the end of the build-up. 
It pulls ahead of the spent charge, and travels outward at 
sonic velocity-that is, at over 1000 ft/sec-with one to 
two atmospheres of maximum overpressure, which persist 
for one second or longer at each point. Its intensity is 
heightened by reflection of the shock wave from the 
ground, and by the kinetic energy of the 500 ft/sec wind 
accompanying the wave. In another second or so, a suction 
wave arrives with an underpressure of up to one-fourth 
of an atmosphere, and this causes additional damage. The 
blast or shock wave subsides with increasing distance 
from the source, but an overpressure of one fifth of an 
atmosphere may be felt 2 miles away from a small nuclear 
explosion and 10 miles away for a large one. 

To summarize the energy balance, one-third of the 
energy leaves as radiation over all wavelengths; one-third 
is dissipated as purely thermal molecular energy; and one-

UPDRAFT THROUGH 
CENTER OF TOROID 

FIGURE 1. Toroidal circulation inside the radioactive 
cloud from a nuclear explosion (after Glasstone) 
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Relative volume 

FIGURE 2. Hugoniot curves for shock waves under let­
down and build-up conditions 

third is discharged by the blast wave as pressure energy, 
attenuated by friction and turbulence. On a still larger 
scale of nuclear explosions, novas are believed to be ex­
ploding planets; and supernovas, exploding stars. 

As we adapt to these concepts, we become 
interested first in how to identify potential runa­
way; then in how to monitor and control potential 
runaway, to reduce its chance of happening; and 
finally to strive for the supermonitoring and 
supercontrol that might interrupt a runaway al­
ready started. For a nuclear bomb, we would have 
to detect the neutron build-up within 30 nano­
seconds, and take evasive action within 300 nano­
seconds, in order to blunt the harmful effects of 
the bomb. If this disruption were done by a laser 
blast, the laser would have to be located within 50 
meters' distance from the bomb. 

THE RANKINE-HUGONIOT DIAGRAM 

PRESSURE AND VOLUME ARE familiar coordinates 
to us, along with their typical constant­

temperature and constant-entropy paths; but the 
curves applicable to shock waves at sonic velocity, 
shown in Figure 2, involve generally unfamiliar 
balances. 

The curved paths in the figure represent the 
passage of a one-dimensional compression wave 
through an ideal gas. The Bernoulli relation or 
equation of motion relates the velocity change to 
the pressure change, and the energy balance 
records the temporary conversion of kinetic 
energy to internal energy. With 7T = P/Po, cp = 
v/v0 , and 0 = T/To, the temperature and pressure 
ratios follow the relation: 

- 2y + 1, + 7T 8 
- 2y + 1 + (l/1r) 
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If frictiona.l dissipation and spherical 
geometry are neglected, for a shock wave 
travelling through air after the build-up stage, 
the Rankirie-Hugoniot curve shows the 
compressed condition of the gas corresponding 
to the pressure rise in the shock. 

with, for example, 'Y = Cp/Cv = 1.4 for air. In the 
event '11" iS; very large, the least value of the 
volume ratio cf, ( = 8 /Tr) is 1/ (2-y+ 1), or 0.26 for 
air. Hence every different starting point will have 
its particular Rankine-Hugoniot curve. Also, the 
slope is steeper than for isentropic compression 
at any given cf,. It is worthwhile to note that the 
Rankine-Hugoniot condition is not a differential 
equation; rather, it is a finite difference relation, 
implying a mathematical discontinuity between 
start and finish. 

If frictional dissipation and spherical ge­
ometry are both neglected, for a shock wave 
travelling through air after the build-up stage, the 
Rankine-Hugoniot curve shows the compressed 
condition of the gas corresponding to the pressure 
rise in the shock. Under ideal conditions, the gas 
will revert to its initial condition when the shock 
has passed, since the original balances again 
apply, and a reciprocal Tr gives reciprocal 8 and 
reciprocal cf,. 

We consider next the behavior of the shock 
during the build-up period. When combustion 
occurs, the gas at a given point does not revert to 
its starting condition, but instead its return to 
initial pressure is characterized by higher volume 
and temperature. This expansion reinforces the 
shock, causing it to increase steadily in pressure. 
The temperature reached by the combusted gas at 
base pressure is represented by a Raleigh line, 
and by the Hugoniot curve to which the Raleigh 
line becomes tangent. At an early stage of build­
up, for example, Tr reaches 2. 7, and a Raleigh line 
carries the mixture to Hugoniot curve 2; later 
Tr reaches 4.7, and another Raleigh line carries 
the mixture to curve 3. 

As combustion occurs in the high-pressure zone 
of the shock, the thermal-energy release tends to 
shift the gas from a lower to a higher isotherm. 
Traveling at the relevant sonic velocity, the shock 
.traverses equal masses of gas in equal time ( cor­
. responding to a constant mass velocity of gas 
through the shock). The resulting tendency 
toward higher momentum must be off set by a drop 
in pressure, which accounts for the linear be-

158 

havior of the combustion path (the Rayleigh 
line) . Thus, 

p + ( ~: f v = constant 

where Uo is the sonic velocity at the point of maxi­
mum compression. 

The reader will note that Figure 2 is drawn 
on linear scales for the sake of simplicity. The 
wide range of pressures and temperatures ordi­
narily encountered in an explosion would gener­
ally justify the use of logarithmic coordinates for 
such plots. 

CRITICALITY 

A SMOOTHLY RUNNING nuclear reactor, or a 
steady-state star like our sun, has crossed one 

kind of threshold. It appears that there must be 
one barrier-one criticality condition-for burn­
ing nuclear fuel; and another, higher, degree of 
criticality for setting off a nuclear explosion. 

Sometimes the burning condition is not a 
stable state, but an antistable one, only kept in 
balance by oscillatory controls-a push to in­
crease the rate, a pullback to reduce the rate. In 
this case the; measure of dynamic stability lies in 
the adequacy of the combination of controls with 
the reacting material, and not merely in the 
properties of reacting material considered by it­
self. If fluctuations in the system cause an over­
riding of the controls, they may quench the burn­
ing on one hand, or they may launch an explosion 
on the other. 

An analogous situation exists with chemical 
explosions and chemical flames. A flame is not 
usually self-igniting. Within a certain range of 
concentrations bounded by "critical" values, the 
reaction mixture when ignited will produce a 
flame that is self-sustaining. Inside a narrower 
range of concentrations, bounded again by 
"critical" values, the flames will reach sonic 
velocity and thereby will attain the condition of 
detonation. 

Neutron reactions are by nature "chain" re­
actions, and any branching chain which allows the 
number of neutrons to increase without limit is by 
nature "explosive". So too are there chemical re­
actions of branching-chain type, involving mo­
lecular fragments and single atoms; all collectively 
termed free radica_Is . .If the chain branching is 
moderated, so that the concentration of radicals 
tends toward a steady-state value, we might ex­
Continued on page 205. 
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pect to avoid explosion. However, often another 
consideration arises. 

Temperature rise has an accelerative effect on 
chemical reaction rate, which is without direct 
parallel in nuclear reactions. In addition to chain 
runaway, we may encounter thermal runaway of 
any strongly exothermic reaction, limited only by 
its respective adiabatic-maximum temperature 
rise. Again the velocity at which the reaction 
spreads determines whether smooth burning 
("deflagration") or explosion ("detonation") re­
sults. 

It is a question of whether the rate increases 
because the temperature rises, or whether the 
temperature rises because the rate increases. The 
thermal system is controlled by removing heat, 
while the chain reaction is controlled by removing 
neutrons or (in the chemical case) free radicals. 
In one case, we select a container lining for its 
thermal conductivity; in the other, for its capacity 
to absorb or adsorb the chain carriers. 

CHEMICAL REACTION LIMITS 

Combustion, thermal pyrolysis, and organic 
photochemistry all occur by multi-step reactions 
involving the production and consumption of free 
radicals. Most studied of the combustion reactions 
as a prototype, and still imperfectly understood, is 
the hydrogen-oxygen reaction-cited in almost 
all physical chemistry texts, and explained ade­
quately and correctly in almost none. 

E 
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FIGURE 3. Ignition limits for stoichiometric hydrogen• 
oxygen mixture in a 15-cm spherical vessel (after Lewis 

and Von Elbe) 
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Figure 3 is a classic diagram of the ignition 
limits for H 2 with 0 2, developed largely through 
the pioneering work of Bernard Lewis and 
Guenther Von Elbe in the U.S. Bureau of .Mines 
during the 1940's. This diagram applies to stoi­
chiometric properties of hydrogen and oxygen, 
which give a flame speed that usually exceeds 
sonic velocity; thus the ignition limits are also 
explosion limits. If we start at very low pressure, 
at a given constant temperature (say, 450°C), 
and move upward in pressure, we 

• start in a zone of slow, measurable reaction 
• advance through the "first explosion limit" into a 

region of high temperature and fast reaction. 
If we start at a still higher pressure (say 1 atm.), 
and then lower the pressure, we 

• start in a zone of slow, measurable reaction 
• drop through the "second explosion limit" into the 

same high.temperature fast.reaction region we had 
previously encountered. 

Starting again at 1 atm. and increasing the pres-

It is a question of 
whether the rate increases because 

the temperature rises, or whether the temperature 
rises because the rate increases. 

sure, we 
• advance through the "third explosion limit" into a 

new overlying region of high temperature and · fast 
reaction. 

First Explosion Limit. If we describe ac­
curately the chemical behavior which occurs in 
the measurable region, we find that the kinetics 
will predict the existence and nature of the ex­
plosion limits. For steady-state concentration of 
radicals, the rates of all the propagation steps 
must be equal, and also, below the first explosion 
limit, collision of radicals with the vessel walls 
must occur at an equivalent rate: 

(Initiation, H2 + 0 2 (at wall) • 2OH . (1) 
weakly) 

(Propagation) OH + H2 • H2O + H (2) 
H + 0 2 • OH + 0 (3) 
0 + H2 • OH + H (4) 

(Net reaction) 3H2 + 0 2 = 2H2O + 2H 
(2, 3, 4, 2) 

(Termination) H (at wall) • 1/2H2 (5) 
At steady state, then, the net production of 
radicals is 

k1 (H2) (02) + ka (H) (O2)-
2[Ks/ (P r 2

)] (H) = 0. 

where the parenthesis denote gas-phase concen-
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trations for partial pressures, (if the coefficients 
are adjusted appropriately), and K 5 / P is an effec­
tive diffusivity for H atoms based on an assumed 
uniform concentration through the entire sphere 
of radius r, at total pressure P. If we solve for 
(H) from this relation, then take the total rate 
equal to that of step 3 and substitute (H) into 
that rate under constant-volume conditions, the 
total steady-state reaction rate is given by: 

k1ka (H2) (02)i~P 
2[K5 /r2

] - ka (02) P 

Because (02) is proportional to P, an increase in 
P will bring on explosion by causing the denomi­
nator to approach zero, and the quotient to ap­
proach infinity. 

Second Explosion Limit. In the explosive 
region between the first and second limits, re­
action steps 2, 3, and 4 continue to predominate. 
As the total pressure increases, a three-body re­
action competing with step 3 (with T the "third 
body") grows in and forms the radical H02 and 
its daughter product hydrogen peroxide. Above 
the second limit the initiation and termination 
steps have shifted from the vessel surface to the 
near-homogeneous phase within. After a short in­
duction period, the reaction path in the steady­
state region above the second limit can be repre­
sented as follows: 

(Initiation, augmented by Step 2 above) 
H20 2 + T • 20H + T (11) 

(Propagation: H 20 2 as product) 
H + 0 2 + T • H02 + T (12) 
H02 + H 2 • H 20 2 + H (13) 

(Propagation: H 20 as product, by addition of 
Step 2 above) 

H + H 20 2 • H 20 + OH (14) 
(Termination) 

H + H02 + T • H 20 2 + T (15) 
We now identify a steady-state reaction con-

dition involving three independent relations. 
First, the rate of oxygen consumption ( ex­
cluding step 3) is 

k1'2 (H) (02)P = k1a (H02) (H2) 
Second, the rate of H 20 production is 

k2 (OH) (H2) = k14 (H) (H20 2) 
Third, the net production of radicals is 

k11 (H20 2) p + ks (H) (02) - k1s (H) (H02) p = 0 
Excluding step 3, we have 

(H02) = k11k12P[ (H20 2) (02)] ½ 
k1ak15 (H2) 

·:::::: K (H20 2) ½ P ½ 

This relation indicates that the H 20 2 concen­
.tration is controlled by the termination reaction. 

20.6 

It will grow rapidly, ahead of the steps producing 
H 20 2, until a limiting ratio to the reactants is 
reached (which increases with .total pressure), 
and will then subside slowly as the reactants are 
consumed. At high H 20 2 a different termination 
step may predominate (2H02 • H 20 2 + 0 2), but 
this will produce very little change in the kinetic 
relations. 

Finally, the total rate (including step 3) is 
approximately 

(k11P + ka) k11 (H20 2) ( 0 2) P 
k1sK (H20 2) ½P 31·2 -ks (02) 

z [ kn~::kia] [ir20 2) ½ ( 0 2) p -½ 

As P falls, the denominator tends toward zero, 
giving a runaway rate. The second explosion limit 
(unlike the first and the third) is seen to be rela­
tively independent of the vessel radius. 

Third Exp]osion Limit. Considerable ingenuity 
has been expended by researchers in the field in 
formulating chain-branching reactions that would 
explain the uppermost explosion limit. However, 
the rates measured in this region do not give any 
indication of impending chemical runaway, such 
as is seen near limits 1 and 2. If we use the exist­
ing rate data or rate equations to predict where 
normal runaway should occur in a spherical 
vessel of 3-inch radius, by a calculation method 
to be described below, the prediction places, it 
almost exactly at the experimental locus of the 
third explosion limit. If instead we assume that 
some type of chain branching occurred in this 
region which accelerated the kinetics, we then 
predict that a thermal runaway would occur at 
a lower temperature or pressure than the experi­
mental value. 

The mechanism given above has been simpli­
fied, and other radicals are also present; but it 
appears that the proponents of a chemical runa­
way are neglecting the temperature difference 
that develops between the reaction vessel contents 
and the isothermal outside wall of the vessel. The 
problem has not been laid to rest, but the case for 
a thermal runaway here is very strong. 

THE THERMAL RUNAWAY LIMIT 

THE PRESUMED THERMAL ignition limit for a 
hydrogen-oxygen mixture is one of a myriad 

of cases of "spontaneous" ignition. Runaway 
occurs if the body of combustible mixture that is 
heated is large enough so that the heat released 
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cannot all be lost by conduction and convection, 
allowing the temperature (and reaction rate) to 
rise to a point where the mixture can react to 
completion. If this reacted portion is part of a 
larger body of combustible mixture, the heat 
liberated in this way is usually sufficient for com­
bustion to spread through the entire mixture. 
Every time you strike a match, or a spark plug 
fires in your automobile engine, the same principle 
is involved. 

We will now examine the criticality condition 
for a spherical vessel which is kept isothermal at 
the vessel surface. For a given mixture composi­
tion, the criticality can be expressed in terms of a 
mass or volume for a given temperature, or a 
surface temperature for a given mass or a given 
dimension (thus the concept of ignition tempera­
ture, which may not be truly constant), or even as 
a value for the rate coefficient at the vessel surface. 

Let R be any radius, R. the entire radius of 
the vessel, and r the relative radius R/R •. Let k . 
be the "rate of conversion" (fractional conversion 
per unit time), or first-order rate constant, for 
unreacted mixture at the surface temperature. 
The effect of temperature on rate is approximated 
by a linear exponential term: k = k. • exp (w8). 
Here 8 is the fractional temperature rise, with 
8 = 1 at the adiabatic maximum temperature 
and 8 = 0 at the vessel surface ; e increases from 0 
at the surface to Be at the center of the sphere. 
The coefficient w is related to effective activation 
energy E by the relation w = EJ / RT.2, where J 
is the adiabatic maximum temperature rise. Also, 
kH is the effective thermal conductivity of the re­
action mixture, and A is the heat release per unit 
volume of reaction mixture for complete conver­
sion. 

Following Frank-Kamenetskii and Damkohler, 
we may now equate the integral for heat release 
over the entire vessel to the heat-transfer rat~ 

from the mixture to the vessel wall : 

A • i 1T Ra k. f ~ !°r2dr = 47T R kHJ ( ~:) 
8 

With the aid of the spherical heat-conduction 
equation (much as in the derivation for effective­
ness factor of spherical catalyst particles) we can 
establish the entire profile of e vs. r, and substi­
tute the result into our present equation. 

The temperature gradient de / dr at the surface 
increases steadily with Be. We find that no steady 
state exists if \J!Be is greater than 1.6, or exp 
(wBe) greater than 5. The corresponding value of 
the dimensionless group formed from the 
variables in the equation is 

!;ks A R 2 / kH J Be] = 2.1 

An alternative group can be formed by introduc­
ing wee: 

~ . A R 2 w /kH J) = 3.3 

All these values are upper limits for avoiding ig­
nition, and lower limits for achieving ignition. 

It should be noted that the subgroup kH J / A is 
the same as thermal diffusivity. Hence either of 
the above groups can be viewed as the thermal 
counterpart of the Thiele modulus for spherical 
catalyst particles, which is used to calculate the 
effect of mass diffusivity on the effectiveness 
factor. 

For a well-stirred spherical tank reactor, with 
the entire contents at a single concentration and 
a single temperature, similar criteria again apply; 
the batch and continuous-flow cases are not very 
different. For this reactor, K 2 /kH is replaced by 
R to the first power divided by U, the overall heat­
transfer coefficient. Again the mathematical 
analytic solution ceases to exist when the critical 
value is reached, the latter group above now being 
e or 2.718 instead of 3.3. 

TABLE 1 
Flammability Limits In Air 

COMPOUND 

Hydrogen 
Methane 
Ethane 
Acetone 
n-Butane 
n-Heptane 
iso-Octane 
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MOLE-FRACTIO{N OF COMPOUND 
LOWER STOIC MAX. VEL. UPPER 

.040 .258 · .745 

.050 .095 · .150 

.033 .056 .063 .125 

.030 .050 .058 .116 

.017 .031 .035 .103 

.010 .019 .023 .084 

.008 .017 .019 .059 

TEMPERATURE, 0 R. 
MAX. VEL. IGNITION 

1500 
1535 

4040 1340 
3820 1500 
4060 1270 
3980 940 
4020 1300 
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It is quite revealing to develop the temperature 
profile in the spherical reactor as an evolutionary 
problem on a programmable hand calculator. A 
value for the critical factor just 0.01 % low results 
in a temperature 1.5 % below the critical value. 
A value 0.01 % too high leads to a very leisurely 
runaway. This close to the critical, an enormous 
time is required to creep past the critical region. 
This brings to mind the ignition and eventual 
devastating detonation of kilotons of ammonium 
nitrate in Texas City, Texas, on April 16, 1947. 

With a plug-flow reactor cooled from outside, 
the sharp distinction between stability and in­
stability disappears, and is replaced by the con­
cept of parametric stability. A relatively steep 
transition occurs from a low conversion to a very 
high one within a narrow range of values of a 
dimensionless factor equivalent to the two groups 
given above. If any particular criterion of 
temperature or conversion is applied, say a 
temperature rise not more than x degrees, then a 
specific value of the factor can be applied as the 
control. 

The rate of fractional conversion, referred to 
above, is a strong function of temperature and 
comparatively a weaker function of mixture com­
position. For any given type of fuel, the tempera­
tures corresponding to the k. values which fit the 
criticality criteria will always lie in a narrow 
range which can be defined loosely as "ignition 
temperature." Table 1 gives flam_mability limits 
for several combustible compounds, along with ig­
nition temperatures measured for: the stoichio­
metric mixtures. In every case, the lower and 
upper flammability limits are the mixtures having 
adiabatic maximum reaction temperatures which 
just reach the reference ignition temperature. This 
means that the flammability limits can be esti­
mated quite accurately from a single value of ig­
nition temperature. Also, one flammability limit 
can be calculated if the other has been measured. 

The lower flammability limit always shows an 
excess of air over combustible which is greater 
than the excess of combustible over air for the 
upper flammability limit. The reason for the 
asymmetry is that CO2, the main product from 
lean-mixture combustion, has a high exothermic 
heat of formation; and that formation of CO, the 
main product from a rich mixture, is considerably 
less exothermic. 

Ignition temperatures have the philosophic 
drawback that they seriously oversimplify the 
kinetics, and thus tend to obscure the detailed be-
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havior of combustion systems. Essentially the rate 
of burning is considered zero below the ignition 
temperature, and infinity above. Our concluding 
section provides another instance of the advant­
ages of detailed modeling. 

ONE-DIMENSION MODELING OF PREMIXED FLAMES 

W E HAVE ALREADY SEEN that combustion 
generally proceeds by a sequence of free­

radical reactions. For a premixed gas, the flame 
sustains itself by projecting free radicals and 
heat backward into the oncoming cold feed. A 
very simple physical model of a flame results if we 
assume that the Lewis number is unity; that is, 
that the thermal diffusivity and mass diffusivity 
are the same. With this assumption the fractional 
extent of stoichiometric reaction matches the 
fraction of adiabatic temperature rise; conversion 
and temperature collapse into a single variable. 

This method enables two partial differential 
equations to coalesce into a single 2nd-order 
ordinary differential equation, which involves (1) 
dimensionless length (a form of Peclet number), 
(2) dimensionless temperature 0 or conversion f, 
(3) the activation energy factor ~, and (4) a 
dimensionless maximum-temperature rate pa­
rameter involving the first-order constant kco. The 
dimensionless length and dimensionless rate 
constant each contain both the effective diffusivity 
D and the flame velocity Ua, Any one kinetics, 
starting temperature, and diffusivity will con­
verge for only one particular value of the rate 
constant; that is, the numerical integration does 
not converge on 100 % conversion unless the right 
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dimensionless rate constant is used which corre­
sponds to the right U 0 • 

We let X represent both the fraction con­
verted f and the dimensionless temperature rise 
(); Y = 1-X; D, both the mass diffusivity and the 
thermal diffusivity; z, distance within the flame, 
measured from a reference plane (e.g., where X= 
0.05) ; Az, the specific distance between X = 0.05 
and X = 0.95; a, the order of reaction, assuming 
stoichiometric proportions of the reactants ; Z, 
zU0 f.D; and C = Dkcxi/U/. 

The ordinary differential equation is 

dX d2X 
Uo dz + D ~ = koo e "' ( l -X) (1-X) a 

In dimensionless form, 

dY d 2Y 
- dZ. - dZ 2 

The results of numerical integration of this 
equation, for a = 1 and 2, and for different w, are 
given in two new plots. Figure 4 gives C as a 
function of w, and can be used to determine the 
flame velocity Uo from the rate coefficient k00, or 
vice versa; Figure 5 gives AZ, also as a function 
of w, and can be used with Uo to define the true 
flame thickness. If one has an experimental flame 
thickness and does not know D, the figures are used 
in reverse order. 

The AZ group has been called the Karlovitz 
number, after a longtime staff member of the U.S. 
Bureau of Mines. This group was observed em­
pirically to be always in the vicinity of 1, lending 
credence to the approximations in our calculation. 

The low-w, low-kro end of these curves once 
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more represents the point where the solution 
vanishes-Le., the flammability limit, which may 
involve a flame speed of only a few feet per second. 
It is a matter of convenience to use k00, rather 
than the starting value ko, as the rate constant; 
Figure 4 would show many more orders of magni­
tude if C contained k 0 • The flame velocity in­
creases rapidly with increasing w, and sonic 
velocity is likely to occur in the rate of 25 to 40 
for w. 

These few concepts with their accompanying 
mathematical models go a long way toward elimi­
nating the mystery that seems to surround flames 
and explosions. Let's work together to examine 
how and where they might be given increased 
attention in the undergraduate curriculum. • 
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[eJ;j:fl stirred pots 

THE CREATION 

And in the beginning there was "Control." And Control 
created r. And Control saw that this was good, but that 
r was lonely, so Control created r a mate and Control saw 
that this also was good. r's mate was called 'TS+ 1. But 
before long rs+ 1 led r down the path of sustained oscilla­
tion. Control saw this and He was troubled. He granted 
r and rs+ 1 a transfer function to the land of instability 
where through the wonders of "Control" rs+l begat Gain. 
And before long rs+l also begat Routh. One day while 
tending the process, Gain became quite angry with Routh 
and rattled his array but good. And then Gain fled to 
the caves of Frequency Response, emerging only at odd 
multiples of r to wash his B.V.D.'s and read the weekly 
edition of the "Control Gazette." 
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