
( 40) , and ( 41) are similar to the usual well-known 
equations when only thermal, compression, and 
mass transfer effects are involved, but these ex­
tended equations account for other effects such as 
surface tension, tensile stress, electric polarization, 
and magnetic polarization. The proper way to 
handle gravitation and other field effects has been 
shown and contrasted with the erroneous methods 
in three well-known books. 

For a more complete discussion of this subject 
the reader is referred to the previous extensive 
treatment of The Symmetrical Fundamental Prop­
erty Relation of Thermodynamics [5]. • 

REFERENCES 

1. Aston, J. G., and J. J. Fritz, Thermodynamics and Sta­
tistical Mechanics, John Wiley & Sons, New York 
(1959). 

2. Gibbs, J. W., Collected Works, Vol. I , Longmans, Green, 
and Sons, New York (1928). 

3. Guggenheim, E. A., Thermodynamics-An Advanced 
Treatment for Chemists and Physicists, Interscience 
Publishers, Inc., New York (1950) . 

4. Lewis, G. N., M. Randall, K. S. Pitzer, and L. Brewer, 
Thermodynamics, 2nd Ed., McGraw-Hill Book Co., New 
York (1961) . 

5. Martin, J. J., The Symmetrical Fundamental Property 
Relation of Thermodynamics, Chemie lngenieur Tech­
nik, 249, Vol. 5 (1972). 

NOMENCLATURE 

C Velocity of light 
E Total energy (internal + kinetic + poten-

tial of all kinds) 
€ Electrical potential or field 
F Force 
G Gibbs free energy, U + PV - TS, or G = U 

g 
H 
H 
l 
LW 
M 
M 
m 
n 
p 
p 

Q 
s 
T 
u 
u 
V 
w 
z 
a 
8 

+ PV - TS - -ya - Fl - EP - HM 
Acceleration due to gravity 
Enthalpy, U + PV 
Magnetic potential or field 
Length 
Lost work (irreversibility) 
Molecular weight 
Magnetic polarization 
Mass 
Number of moles 
Pressure 
Electrical polarization 
Heat flow 
Entropy 
Temperature (absolute) 
Internal (intrinsic) energy of matter 
Velocity 
Volume 
Work flow 
Height above a reference point 
Surface area 
Quantity transferred (as heat 8Q and work 
8W) 
Surface tension 
Potential energy (gz in gravitational field) 
Chemical or mass potential (µ,1 = G1) 

Superscript 

Denotes partial extensive property 
a.fl Points in gravitation field 

Subscripts 

Denotes different chemical species 
Denotes all chemical species except partic­
ular one i being examined. 

RESIDUAL FUNCTIONS AND FUGACITY 

K. R. HALL, P. T. EUBANK, 
AND J. C. HOLSTE 
Texas A & M University 
College Station, TX 77843 

Two PROPERTIES WHICH generate considerable 
confusion in thermodynamics courses are re­

sidual functions and fugacity. They are, in fact, 
closely related concepts and, in this paper, we have 
developed them in a consistent manner. In this 
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way, the composition dependence of the fugacity 
coefficient of a component in a mixture appears in 
an unambiguous manner. 

PROPERTY CHANGES 

The property changes which we shall develop 
in this paper are all of the form: real fluid prop­
erty less perfect gas property. The difference is 
either at the same temperature and pressure or at 
the same temperature and density. The definitions 
are (using M to denote U, H, A, G, S, V). 
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* M-M r 

* 

M(T,p) * M (T,p) 

* M(T,P) - M (T,P) 

* - M(T,P) - M (T,P) 
* 0 = M(T ,p) .- M (T ,P 

0
/RT) 

M - M
0 

- M(T,P) 

- M(T,p) 

(l) 

(~) 

·(3) 

(4) 

We choose to develop these expressions in the 
T-p plane because the results are then most con­
venient for computer computation. The path is 

* * M(T,p) + M (T,O) + M (T, p) 

where the real fluid and perfect gas planes inter­
sect at zero density. 

The most useful working equations for this de­
velopment are 

dU cvdT + [T[~~Jv - Pl dV 

( 
cl Z ] dp 

cvdT + R cl (1/T) p p (5) 

dA = - S dT - P dV = - S dT + RTZ iQ_ (6) p 

We have introduced the compressibility factor to 
facilitate equation of state use. Integrating these 
expressions along the chosen paths provides 
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* U(T ,p) - u · (T,p) Ip 
* ( az ] dp = U(T,p) - U (T,O) + R O cl(l/T) pp 

* * + U (T,O) - U (T,p) + 0 

* 
A(T,p) - A*(T,O) + RT Z f · 

A(T, p) - A (T,p) Ip 

+ •*<T,O) - •'<T~p) + - RT I:'/!'­
Thus, the residual functions, in dimensionless 
form, are 

Ur=.! JP 
RT T 

0 

·[ az ] iQ. 
cl(l/T) p 

p 

Ar d 

J
P 

- = (Z - l] E.Q RT p 
0 

Of course, the other residual functions 
binations of these two 

Hr Ur * Ur PV - PV Z - 1 RT= RT + RT RT+ 

L Ur Ar 
R RT RT 

Gr Ar * Ar PV - PV 
Z - 1 RT RT + RT RT+ 

(7) 

(8) 

are com-

(9) 

(10) 

(11) 

James C. Holste is an Associate Professor in the Chemical Engi­
neering Department at Texas A & M. He received his PhD in physics 

from Iowa State University in 1973 and spent two years at the National 

Bureau of Standards (Boulder) before joining Texas A & M in 1975. He 

has approximately 20 publications describing thermodynamic properties 
of fluids and solids. (R). 

125 



A consistant development 
of residual functions, property changes 
and fugacity reveals close relationships among 
the various properties. 

By definition, y r is zero so 

(12) 

To convert these results to residual functions 
in the T-P plane requires only adjustment of the 
perfect gas values 

* M(T,P) - M (T,P) 

= M(T , p) - M*(T , p) + M*(T , p) - M*(T,P / RT) (13) 

where the r equired terms are 

M(T,p) - M*(T, p) = Mr (1) 

* IQ if Mis U,H 
M*(T , p) - M (T,P/RT) =i (14) 

r 1n Zif Mis A,G,-S 

This step is equivalent to rederiving the expres­
sions in a T-P plane. 

The other types of property change (Eqs. 3 
and 4) also require only adjustments of the perfect 
gas values. For Eq. 3, the adjustment is 

* * M - M = M(T, p) - M (T, p) 
r * * + M (T, p) - M (T,P

0
/ RT) (3) 

where 

M(T , p) - M* (T,p) = Mr 

* * = to if M is uP,H 
M (T,p) - M (T,P

0
/RT) 

-1n z + 1n p 
· (15) 

0 

if M is A,G,-S 

Eq. 4 bases the property change upon the standard 
state and the adjustment is 

* * M - M = M(T,p) - M (T,p) 
0 * * + M (T,p) - M (T,P /RT) 

* *o 
+ M (T ,P /RT) - M (T ,P /RT) 

* 0 * 0 0 
+ M (T

0
,P/RT) - M (T

0
,P/RT

0
) (4) 

In this case, it is most convenient to establish 
U-Uo * and S-So * and then calculate the others from 
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these two. Utilizing Eq. 4, the changes are 

* * T * U - U U - U j C o r 1 V 
~=~+T T RdT 

* * s - s s - s 
o r R- = -R-- -

0 

T * 
T j CV dT 

1n T R T 
o T 

0 

and the other functions become 

* * * 

(16) 

(17) 

H - H
0 

U - U
0 

PV - RT U - U T 
-RT = -RT + ____ o = ___ o + Z ·- ..J:!. (18) 

RT RT T 

* * * A - A u - u TS - TS 
0 0 0 0 

~=~- RT 
* * * u - u T[S - s l S

0
(T - To) 0 0 -~- RT RT 

* * * u - u s - s s 
(1 - :OJ 0 0 0 

(19) = ---icr- - -R-- - R 

* * * * G - G H - H s - s s 
[ 1 _ :OJ ___ o = ___ o - ___ o - _£ 

(20) RT RT RT R 

It is also very important to note that throughout 
these equations the only integrals required are 

!Po ['z - 1) ~=Ar 
p RT 

i: * 
CV dT 
R T 

0 

The first two integrals are relatively simple appli­
cations of the equation of state, and the latter two 
integrals involve only perfect gas specific heat. 

One last point to note is the T-P plane deriva­
tion of GR/ RT. Again followiing a constant tern-
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perature path from P • 0 • P produces 

* G(T,P) - G (T,P) 

* * * =G(T,P) - G (T,0) + G (T,0) - G (T,P) 

but the fundamental equation for G is 

dG = - S dT + V dP = - S dT + RTZ ~p 

and the value for GR becomes 

(21) 

:(T,P) - c*(T,P) • RT J: Z ~P - RT J: ~p 

Therefore, the final expression is 

GR= JP 
RT 

dP Ar · 
[Z - l] p =RT+ Z - 1 - i n Z (22) 

0 

FUGACITY 

The usual definition for fugacity (of a pure 
component) is, in differential form 

dG. = RT d i n f. @ co nstant T 
l. l. 

f. 
lim .2. = 1.0 
P+O P 

- . ( 23 ) 

Upon integration, this expression becomes 

G. £n f. 

J
: dGi = RT J 1. d i n fi 

G. i n P 
l. 

Eq. 24 has an obvious relationship with Eq. 22. In 
fact, we might as well have defined fugacity with 
these two expressions and have extended the defi­
nition to mixtures and components in mixtures: 

Gi (T,P) * G~ f. - Gi (T, P) 
i l. - = .2. np ::: RT RT (25) 

f Gm(T,P) * GR 
i n _!!!. == 

- Gm (T, P) 
= _!!!. p - RT RT (26) 

f. G.(T,P) - G1.~(T ,P) 
i n .2. = _1. ___ --=--

P - RT (27) 

Eq. 22 reveals the calculation procedure for Eqs. 
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25 and 26. Evaluation of Eq. 27 requires closer 
examination 

* Gi - G. G. - G. 
___ l.+ l. l. 

RT RT (28) 

Evaluation of Eq. 28 requires the following analy­
sis 

V _ [clG) 
- c)p T,Z 

P=P 

P=0 
J

P -V. - V. 
= 1 1 dP RT 

0 

-* * 
Gi - Gi 

RT = i n zi (ideal solution) 

(29) 

i: [Zi - 1) ~p • i: [:i -½] dP (22) 

Eq. 27 thus becomes 

f i JP vi - vi JP [V ) 
i n p = £n zi + 0 RT dP - 0 R~ - ½ dP 

in :~p • i: [:i -½] dP (30) 

Furthermore, utilizing previous relationships 

A -R 
f. G. 

i n ,..2-_ = .2. 
z.P RT 
l. 

(31) 

127 



It is also true that 

G: 
.2:. = 
RT 

-R -r 
G. G. l. l. 
RT= RT - Jl,n Zm 

(a (nA r /RT)] 
an. 

l. T,nV,n. 4 • 
Jrl. 

= __ m_ _ 1 d(nV) 

f 
00 {[a (nZ )] } 

an. nV 
nV i T,nV,nj#i 

CONCLUSIONS 

A consistent development of residual functions 
property changes and fugacity reveals close rela~ 
tionships among the various properties. The com­
position dependence of the fugacity coefficient of a 
component in a solution is unambiguous. All prop­
erties result from integrals which are easy to de­
rive from good equations of state. • 

NOMENCLATURE 

A - Helmholz function 
Cv* -perfect gas specific heat (constant volume) 
f1 -fugacity of pure i 
f m - fugaci ty of a mixture 

A GRAPHIC LOOK 

AT AVAILABILITY FUNCTIONS 

MARTIN V. SUSSMAN 
Tufts University 
Medford,MA 02155 

THE ~HERMODYNA:'1IC availabili~y f~nctions can 
be viewed graphically, and this view provides 

valuable unexpected insights into the nature and 
meaning of the functions. 

To demonstrate, consider the question, "What 
is the maximum work a system can perform in 
moving into equilibrium with the temperature and 
pressure of its environment?" 

The answer is given graphically in Fig. 1. Max­
imum work is the work performed when moving 
reversibly along paths (1• 2) and (2• e), from an 
arbitrary initial state (1) to a final state (e) in 
equilibrium with the environment. 
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/\ 
f1 - fugacity of component i in a mixture 
G - Gibbs function 
H - enthailpy 
M - general property symbol 
n -number of moles 
P -pressure 
R - gas constant 
S -entropy 
T - temperature 
U -internal energy 
V -molar volume 
nV -total volume 
Z -compressibility factor 
z -mole fraction 
p -density 

Superscripts 

-T-p residual 
R -T-P residual 
* - perfect gas 

- partial molar 

Subscripts 

-component i 
-mixture 
-standard state 
- reference state 

Now this may appear to be an arbitrary choice 
of paths; but it is not. It constitutes a unique com­
bination of reversible paths leading from (1) to 
(e), that allow heat and mass transfer to occur 
only when the system is at the potentials of its en­
vironment. These are paths that take the system 
isentropically and at constant molarity, (1• 2), to 
the temperature of that environment; and then 
isothermally, (2• e), to the chemical potential of 
the environment. And it is rather easy to prove . . ' agam graphically, that no combination of reversi-
ble process paths connecting states (1) and (e), 
can produce more work. 

PROOF 

Curve (1-k-e) in Fig. 1 traces a reversible but 
arbitrary process path taking a system from state 
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